1
|
Nishio K, Shirasawa T, Shimizu K, Nakamura N, Watanabe S, Shimizu R, Hitosugi T. Tuning the Schottky Barrier Height at the Interfaces of Metals and Mixed Conductors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15746-15754. [PMID: 33764742 DOI: 10.1021/acsami.0c18656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding electronic and ionic transport across interfaces is crucial for designing high-performance electric devices. The adjustment of work functions is critical for band alignment at the interfaces of metals and semiconductors. However, the electronic structures at the interfaces of metals and mixed conductors, which conduct both electrons and ions, remain poorly understood. This study reveals that a Schottky barrier is present at the interface of the Nb-doped SrTiO3 metal and a LiCoO2 mixed conductor and that the interfacial resistance can be tuned by inserting an electric dipole layer. The interfacial resistance significantly decreased (by more than 5 orders of magnitude) upon the insertion of a 1 nm thick insulating LaAlO3 layer at the interface. We apply these techniques to solid-state lithium batteries and demonstrate that tuning the electronic energy band alignment by interfacial engineering is applicable to the interfaces of metals and mixed conductors. These results highlight the importance of designing positive electrode and current collector interfaces for solid-state lithium batteries with high power density.
Collapse
Affiliation(s)
- Kazunori Nishio
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Tetsuroh Shirasawa
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Koji Shimizu
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Naoto Nakamura
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Satoshi Watanabe
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ryota Shimizu
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
- Department of Research Promotion, JST-PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Taro Hitosugi
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|
2
|
Oshikiri T, Sawayanagi H, Nakamura K, Ueno K, Katase T, Ohta H, Misawa H. Arbitrary control of the diffusion potential between a plasmonic metal and a semiconductor by an angstrom-thick interface dipole layer. J Chem Phys 2020; 152:034705. [PMID: 31968952 DOI: 10.1063/1.5134900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Localized surface plasmon resonances (LSPRs) are gaining considerable attention due to the unique far-field and near-field optical properties and applications. Additionally, the Fermi energy, which is the chemical potential, of plasmonic nanoparticles is one of the key properties to control hot-electron and -hole transfer at the interface between plasmonic nanoparticles and a semiconductor. In this article, we tried to control the diffusion potential of the plasmonic system by manipulating the interface dipole. We fabricated solid-state photoelectric conversion devices in which gold nanoparticles (Au-NPs) are located between strontium titanate (SrTiO3) as an electron transfer material and nickel oxide (NiO) as a hole transport material. Lanthanum aluminate as an interface dipole layer was deposited on the atomic layer scale at the three-phase interface of Au-NPs, SrTiO3, and NiO, and the effect was investigated by photoelectric measurements. Importantly, the diffusion potential between the plasmonic metal and a semiconductor can be arbitrarily controlled by the averaged thickness and direction of the interface dipole layer. The insertion of an only one unit cell (uc) interface dipole layer, whose thickness was less than 0.5 nm, dramatically controlled the diffusion potential formed between the plasmonic nanoparticles and surrounding media. This is a new methodology to control the plasmonic potential without applying external stimuli, such as an applied potential or photoirradiation, and without changing the base materials. In particular, it is very beneficial for plasmonic devices in that the interface dipole has the ability not only to decrease but also to increase the open-circuit voltage on the order of several hundreds of millivolts.
Collapse
Affiliation(s)
- Tomoya Oshikiri
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0026, Japan
| | - Hiroki Sawayanagi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0026, Japan
| | - Keisuke Nakamura
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0026, Japan
| | - Kosei Ueno
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0026, Japan
| | - Takayoshi Katase
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0026, Japan
| | - Hiromichi Ohta
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0026, Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0026, Japan
| |
Collapse
|
3
|
Kim TL, Choi MJ, Lee TH, Sohn W, Jang HW. Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes. NANO LETTERS 2019; 19:5897-5903. [PMID: 31095915 DOI: 10.1021/acs.nanolett.9b01431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An important factor in the performance of photoelectrochemical water splitting is the band edge alignment of the photoelectrodes for efficient transport and transfer of photogenerated carriers. Many studies for improving charge transfer ability between the electrode and the electrolyte have been reported, while research to improve charge transfer at the interface of the photoactive semiconductor and the conducting substrate is largely lacking. Here, we demonstrate that the water-splitting performance of an oxide heterostructured photoelectrode can be increased 6-fold by inserting an atomically thin polar LaAlO3 interlayer compared with that of an oxide heterostructure without an insertion to modify interfacial band offsets. The electrically lowered Schottky barrier is driven by the atomically thin layer, and the charge transfer resistance between the oxides is reduced by up to 2 orders of magnitude upon insertion of LaAlO3, a wide-gap (5.6 eV) insulator. We show that the critical thickness of the polar layer for enhancing the charge transfer is 3 unit cells. The dipole moment from the polar sheets of LaAlO3 introduces an internal electric field, which modifies the effective band offsets in the device. This work serves as a proof of concept that photoelectrochemical performance can be improved by manipulating the band offsets of the heterostructure interface, suggesting a new design strategy for heterostructured water-splitting photoelectrodes.
Collapse
Affiliation(s)
- Taemin Ludvic Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Woonbae Sohn
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
4
|
Swartz AG, Cheung AKC, Yoon H, Chen Z, Hikita Y, Raghu S, Hwang HY. Superconducting Tunneling Spectroscopy of Spin-Orbit Coupling and Orbital Depairing in Nb:SrTiO_{3}. PHYSICAL REVIEW LETTERS 2018; 121:167003. [PMID: 30387624 DOI: 10.1103/physrevlett.121.167003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 06/08/2023]
Abstract
We have examined the intrinsic spin-orbit coupling and orbital depairing in thin films of Nb-doped SrTiO_{3} by superconducting tunneling spectroscopy. The orbital depairing is geometrically suppressed in the two-dimensional limit, enabling a quantitative evaluation of the Fermi level spin-orbit scattering using Maki's theory. The response of the superconducting gap under in-plane magnetic fields demonstrates short spin-orbit scattering times τ_{so}≤1.1 ps. Analysis of the orbital depairing indicates that the heavy electron band contributes significantly to pairing. These results suggest that the intrinsic spin-orbit scattering time in SrTiO_{3} is comparable to those associated with Rashba effects in SrTiO_{3} interfacial conducting layers and can be considered significant in all forms of superconductivity in SrTiO_{3}.
Collapse
Affiliation(s)
- Adrian G Swartz
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Alfred K C Cheung
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Hyeok Yoon
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Zhuoyu Chen
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Yasuyuki Hikita
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Srinivas Raghu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Harold Y Hwang
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
5
|
Abstract
The nature of superconductivity in the dilute semiconductor SrTiO3 has remained an open question for more than 50 y. The extremely low carrier densities ([Formula: see text]-[Formula: see text] cm-3) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO3, using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimate the doping evolution of the dimensionless electron-phonon interaction strength ([Formula: see text]). Upon cooling below the superconducting transition temperature ([Formula: see text]), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling ([Formula: see text]). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. They further demonstrate that SrTiO3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron-phonon coupling strength.
Collapse
|
6
|
Chang YJ, Phark SH. Direct Nanoscale Analysis of Temperature-Resolved Growth Behaviors of Ultrathin Perovskites on SrTiO3. ACS NANO 2016; 10:5383-90. [PMID: 27163291 DOI: 10.1021/acsnano.6b01592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Revealing growth mechanism of a thin film and properties of its film-substrate interface necessarily require microscopic investigations on the initial growth stages in temperature- and thickness-resolved manners. Here we applied in situ scanning tunneling microscopy and atomic force microscopy to investigate the growth dynamics in homo- (SrTiO3) and hetero- (SrRuO3) epitaxies on SrTiO3(001). A comparison of temperature-dependent surface structures of SrRuO3 and SrTiO3 films suggests that the peculiar growth mode switching from a "layer-by-layer" to "step-flow" type in a SrRuO3 films arises from a reduction of surface migration barrier, caused by the change in the chemical configuration of the interface between the topmost and underlying layers. Island densities in perovskite epitaxies exhibited a clear linear inverse-temperature dependence. A prototypical study on island nucleation stage of SrTiO3 homoepitaxy revealed that classical diffusion model is valid for the perovskite growths.
Collapse
Affiliation(s)
- Young Jun Chang
- Department of Physics, University of Seoul , Seoul 02504, Korea
| | - Soo-Hyon Phark
- Center for Correlated Electron Systems, Institute for Basic Science , Seoul 08826, Korea
- Department of Physics and Astronomy, Seoul National University , Seoul 08826, Korea
| |
Collapse
|
7
|
Tachikawa T, Minohara M, Hikita Y, Bell C, Hwang HY. Tuning Band Alignment Using Interface Dipoles at the Pt/Anatase TiO₂ Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7458-7461. [PMID: 26502952 DOI: 10.1002/adma.201503339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/23/2015] [Indexed: 06/05/2023]
Abstract
The Schottky barrier heights at the Pt/TiO2 (001) junctions are modulated over 0.8 eV by inserting <1 nm of LaAlO3. The large electric field in the LaAlO3 is stabilized by preserving the continuity of in-plane lattice symmetry at the oxide interface. These results greatly expand the application of dipole engineering to versatile polycrystalline metal/binary oxide functional interfaces.
Collapse
Affiliation(s)
- Takashi Tachikawa
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Makoto Minohara
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Yasuyuki Hikita
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Christopher Bell
- School of Physics, University of Bristol, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Harold Y Hwang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Applied Physics, Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|