1
|
Wang K, Li H, Chen X, Wan Z, Wu T, Ahmad W, Qian D, Wang X, Gao J, Khan R, Ling M, Yu D, Chen J, Liang C. Bi-Directional H-Bonding Modulated Soft/Hard Polyethylene Glycol-Polyaniline Coated Si-Anode for High-Performance Li-Ion Batteries. SMALL METHODS 2024; 8:e2301667. [PMID: 38403871 DOI: 10.1002/smtd.202301667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Ultrahigh-capacity silicon (Si) anodes are essential for the escalating energy demands driven by the booming e-transportation and energy storage field. However, their practical applications are strictly hampered by their intrinsically low electroconductivity, sluggish Li-ion diffusion, and undesirably large volume change. Herein, a high-performance Si anode, comprised of a modulated soft/hard coating of polyethylene glycol (PEG) (as Li-ion conductor) and polyaniline (PANI) (as electron conductor) on the surface of Si nanoparticles (NPs) through H-bonding network, is introduced. In this design, the abundant ─OH groups of soft PEG allow it to uniformly cover Si NPs while the hard PANI binds to PEG through its ─N─H group, thus constructing a tight connectin between Si and PEG-PANI (PP). Consequently, the elastic PP allows Si@PP to accommodate the huge volume expansion while possessing fine electronic/ionic conductivity. Therefore, the Si@PP anode exhibits a high initial Coulombic efficiency of 90.5% and a stable capacity of 1871 mAh g-1 after 100 cycles at 1 A g-1 with a retention of 85.7%. Additionally, the Si@PP anode also demonstrates a high areal capacity of 3.01 mAh cm-2 after 100 cycles at 0.5 A g-1. This work reveals a scalable interface design of multi-layer multifunctional coatings for high-performance electrode materials in next-generation Li-ion batteries.
Collapse
Affiliation(s)
- Kun Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Han Li
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xi Chen
- Institute of Zhejiang University, Zheda Road 99, Quzhou, 324000, China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Wan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tong Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Waqar Ahmad
- Institute of Zhejiang University, Zheda Road 99, Quzhou, 324000, China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dan Qian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangxiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianhong Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rashid Khan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Min Ling
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dongxu Yu
- Institute of Zhejiang University, Zheda Road 99, Quzhou, 324000, China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Chen
- Institute of Zhejiang University, Zheda Road 99, Quzhou, 324000, China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengdu Liang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Gueon D, Ren H, Sun Z, Mosevitzky Lis B, Nguyen DD, Takeuchi ES, Marschilok AC, Takeuchi KJ, Reichmanis E. Stress-Relieving Carboxylated Polythiophene/Single-Walled Carbon Nanotube Conductive Layer for Stable Silicon Microparticle Anodes in Lithium-Ion Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:7220-7231. [PMID: 39268393 PMCID: PMC11388140 DOI: 10.1021/acsaem.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Stress-relieving and electrically conductive single-walled carbon nanotubes (SWNTs) and conjugated polymer, poly[3-(potassium-4-butanoate)thiophene] (PPBT), wrapped silicon microparticles (Si MPs) have been developed as a composite active material to overcome technical challenges such as intrinsically low electrical conductivity, low initial Coulombic efficiency, and stress-induced fracture due to severe volume changes of Si-based anodes for lithium-ion batteries (LIBs). The PPBT/SWNT protective layer surrounding the surface of the microparticles physically limits volume changes and inhibits continuous solid electrolyte interphase (SEI) layer formation that leads to severe pulverization and capacity loss during cycling, thereby maintaining electrode integrity. PPBT/SWNT-coated Si MP anodes exhibited high initial Coulombic efficiency (85%) and stable capacity retention (0.027% decay per cycle) with a reversible capacity of 1894 mA h g-1 after 300 cycles at a current density of 2 A g-1, 3.3 times higher than pristine Si MP anodes. The stress relaxation and underlying mechanism associated with the incorporation of the PPBT/SWNT layer were interpreted by quasi-deterministic and quantitative stress analyses of SWNTs through in situ Raman spectroscopy. PPBT/SWNT@Si MP anodes can maintain reversible stress recovery and 45% less variation in tensile stress compared with SWNT@Si MP anodes during cycling. The results verify the benefits of stress relaxation via a protective capping layer and present an efficient strategy to achieve long cycle life for Si-based anodes for next-generation LIBs.
Collapse
Affiliation(s)
- Donghee Gueon
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Haoze Ren
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Zeyuan Sun
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Bar Mosevitzky Lis
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Dang D Nguyen
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Esther S Takeuchi
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Elsa Reichmanis
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Wei Y, Xiao Z, Huang Y, Zhu Y, Zhu Z, Zhang Q, Jia D, Zhang S, Wei F. Insights into the SiO 2 Stress Effect on the Electrochemical Performance of Si anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310240. [PMID: 38105415 DOI: 10.1002/smll.202310240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Silicon (Si) is regarded as the most potential anode material for next-generation lithium-ion batteries (LIBs). However, huge volume expansion hinders its commercial application. Here, a yolk-shell structural nitrogen-doped carbon coated Si@SiO2 is prepared by SiO2 template and HF etching method. The as-prepared composite exhibits superior cycling stability with a high reversible capacity of 577 mA h g-1 at 1 A g-1 after 1000 cycles. The stress effect of SiO2 on stabilizing the electrochemical performance of Si anode is systematically investigated for the first time. In situ thickness measurement reveals that the volume expansion thickness of Si@SiO2 upon charge-discharge is obviously smaller than Si, demonstrating the electrode expansion can be effectively inhibited to improve the cyclability. The density functional theory (DFT) calculation further demonstrates the moderate young's modulus and enhanced hardness after SiO2 coating contribute significantly to the mechanical reinforcement of overall Si@SiO2@void@NC composite. Various post-cycling electrode analyses also address the positive effects of inner stress from the Si core on effectively relieving the damage to electrode structure, facilitating the formation of a more stable inorganic-rich solid electrolyte interphase (SEI) layer. This study provides new insights for mechanical stability and excellent electrochemical performance of Si-based anode materials.
Collapse
Affiliation(s)
- Yanbin Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhexi Xiao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yudai Huang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Yukang Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qi Zhang
- Beijing Research Institute of Chemical Industry, SINOPEC, Beijing, 100013, China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Shijun Zhang
- Beijing Research Institute of Chemical Industry, SINOPEC, Beijing, 100013, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Ordos Laboratory, Inner Mongolia, 017000, China
| |
Collapse
|
4
|
Ren H, Takeuchi ES, Marschilok AC, Takeuchi KJ, Reichmanis E. Enhancing composite electrode performance: insights into interfacial interactions. Chem Commun (Camb) 2024; 60:1979-1998. [PMID: 38190114 DOI: 10.1039/d3cc05608b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Propelled by the widespread adoption of portable electronic devices, electrochemical energy storage systems, particularly lithium-ion batteries (LIBs), have become ubiquitous in modern society. The electrode is the critical battery component, where intricate interactions between the materials govern both the energy output and the overall lifespan of the battery under operational conditions. However, the poor interfacial properties of traditional electrode materials fall short in meeting escalating performance demands. To facilitate the advent of next-generation lithium-ion batteries, attention must be devoted to the interfacial chemistry that dictates and modulates the various dynamic and transport processes across multiple length scales within the composite electrodes. Recent research has concentrated on systematically understanding the properties of distinct electrode components to engineer meticulously tailored electrode formulations. These are geared towards composite electrodes with heightened chemical stability, thermal robustness, enhanced local conductivities, and superior mechanical resilience. This review elucidates the latest advances in understanding the impact of interfacial interactions in achieving high-capacity, high-stability electrodes. Through comprehensive insights into the interfacial interactions between the various electrode components, we can create improved integrated systems that outperform those developed through empirical methods. In light of this, the adoption of a holistic approach to enhance the interactions among electrode materials becomes of paramount importance. This concerted effort ensures the attainment of heightened rate capability, facilitation of lithium-ion transport, and overall system stability throughout the entirety of the cyclic process.
Collapse
Affiliation(s)
- Haoze Ren
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Esther S Takeuchi
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Institute for Energy Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Amy C Marschilok
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Institute for Energy Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Kenneth J Takeuchi
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Institute for Energy Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Elsa Reichmanis
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
5
|
Tan W, Wang L, Lu Z, Yang F, Xu Z. A Hierarchical Si/C Nanocomposite of Stable Conductive Network Formed Through Thermal Phase Separation of Asphaltenes for High-Performance Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203102. [PMID: 35931459 DOI: 10.1002/smll.202203102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Silicon is one of the most promising anode materials for lithium-ion batteries. However, the huge volume change of silicon during lithiation/delithiation triggers continuous growth of solid-electrolyte interphase, loss of conductive contacts and structural collapse of the electrode, which causes a rapid deterioration of battery capacities. Inspired by the polyaromatic molecular nature and phase separation of asphaltenes in bitumen during thermal cracking, a hierarchical Si/C nanocomposite of robust carbon coatings and a firmly connected carbon framework on the silicon surface is synthesized by controlling the concentration of asphaltenes as carbon source and hence desired phase separation during the subsequent carbonization. The electrode made using this special Si/C nanocomposite exhibits a high reversible capacity of 1149 mAh g-1 after 600 cycles with a capacity retention of 98.5% and the operation ability at a high mass loading over 10 mg cm-2 or an area capacity of 23.8 mAh cm-2 , which represents one of the highest area capacities reported in open literature but with much more stable and prolonged operations. This simple and efficient strategy is easy to scale up for commercial production to meet the rapid growth of the electric vehicle industry.
Collapse
Affiliation(s)
- Wen Tan
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lina Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fan Yang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518055, P. R. China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Advanced Materials Innovation Center, Jiaxing Research Institute of Southern University of Science and Technology, Jiaxing, 314031, China
| |
Collapse
|
6
|
Moringa Oleifera leaf extract mediated synthesis of reduced graphene oxide-vanadium pentoxide nanocomposite for enhanced specific capacitance in supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Bai X, Zhang H, Lin J, Zhang G. Durable silicon-carbon composites self-assembled from double-protected heterostructure for lithium-ion batteries. J Colloid Interface Sci 2022; 615:375-385. [PMID: 35149351 DOI: 10.1016/j.jcis.2022.01.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
HYPOTHESIS Silicon-carbon composites have been faced with the contact issues between silicon and carbon in the form of material aggregation and inferior dispersion, leading to electrode cracking or kinetic degradation during cycling. In addition to dispersion improvement from interfacial linkage between self-assembled Si nanoparticles (SiNPs) and carbon fibers (CNFs), the positive influences of high-content carboxymethyl cellulose(CMC) (25 wt%) and amorphous carbon are also expected, respectively after the second-step self-assembly and subsequently sintering. EXPERIMENTS A novel composite (i.e. Si-CNF@C) with the decoration of entire SiNPs in the framework of both CNFs and amorphous carbon was prepared via two-step electrostatic self-assembly followed by sintering. Such a composite with heterogeneous nanostructure was used as a lithium-ion battery anode without additional binders or conductive agents. FINDINGS SiNPs can be well protected with CNFs and amorphous carbon against the dispersion and contact problems under both effects of electrostatic attraction and chemical bonding. With the double-protected heterostructure, such a novel Si-CNF@C electrode exhibits highly reversible capacities of 1200 mAh g-1, 982 mAh g-1, and 849 mAh g-1 after 100, 500, and 1000 cycles at 0.5 A g-1, respectively. The long-term cycling stability with a capacity loss of 0.036% per cycle over 1000 cycles is comparable.
Collapse
Affiliation(s)
- Xiao Bai
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China; State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing (USTB), Beijing 100083, China
| | - Hui Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China.
| | - Junpin Lin
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing (USTB), Beijing 100083, China.
| | - Guang Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China
| |
Collapse
|
8
|
Bai X, Zhang H, Lin J, Zhang G. UV-ozone contributions towards facile self-assembly and high performance of silicon-carbon fiber materials as lithium-ion battery anodes. J Colloid Interface Sci 2021; 598:339-347. [PMID: 33901857 DOI: 10.1016/j.jcis.2021.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 11/30/2022]
Abstract
Si-carbon composites have been considered as next generation lithium-ion battery anodes, with a view to sufficiently exerting the respective superiorities of high specific capacity of Si as well as excellent mechanical flexibility and electrical conductivity of carbon. However, direct blending of carbon with Si cannot obtain a synergy composite, resulting in inferior cycle properties during charge-discharge due to huge volume changes and deficient electron-conducting channels from the unavoidably aggregated Si. Herein, the composition of carbon fibers (CNFs) with Si nanoparticles (SiNPs) has been performed through UV-ozone surface modification followed by electrostatic self-assembly. It is found that solvent-free UV-ozone exposure of CNFs for 20 min successfully introduces carboxylic groups, as conventional acid treatment for 12 h. Besides UV-ozone surface modification provides an efficient and scalable route, the distribution and functionalization of CNFs can be also modified to effectively combine with amino-functionalized SiNPs. As a result, such Si-CNF composites containing 70.0 wt% SiNPs are able to exhibit excellent cycle performance with high coulombic efficiency of 74.8% at the 1st cycle and high specific discharge capacity of 1063 mAh g-1 at the 400th cycle.
Collapse
Affiliation(s)
- Xiao Bai
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China; Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Hui Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China.
| | - Junpin Lin
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Guang Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| |
Collapse
|
9
|
Yan Y, Zhao X, Dou H, Wei J, Zhao W, Sun Z, Yang X. Rational design of robust nano-Si/graphite nanocomposites anodes with strong interfacial adhesion for high-performance lithium-ion batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Lu J, Wang D, Liu J, Qian G, Chen Y, Wang Z. Hollow double-layer carbon nanocage confined Si nanoparticles for high performance lithium-ion batteries. NANOSCALE ADVANCES 2020; 2:3222-3230. [PMID: 36134264 PMCID: PMC9417204 DOI: 10.1039/d0na00297f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/25/2020] [Indexed: 05/30/2023]
Abstract
The huge volume variation and the unstable solid electrolyte interface (SEI) of Si (Si) during the lithiation and delithiation process severely obstruct its practical application as lithium-ion battery anodes. Here, we design and fabricate a hollow structure of double-layer hybrid carbon nanocage encapsulated Si nanoparticles to address these challenges. The double-layer hybrid carbon-Si nanoarchitecture is obtained by integrating electrostatic self-assembly, seed-induced growth and heterogeneous shrinkage. The internal layer of hollow N-doped carbon of the hybrid nanoarchitecture (Si@H-NC@GC) provides limited inner space for controlling volume changes of Si nanoparticles, while the outer graphite carbon layer facilitates the formation of a stable SEI. When evaluated as anode materials for LIBs, the Si@H-NC@GC nanoarchitecture exhibits greatly enhanced electrochemical performance compared with the bare Si, Si@NC and H-NC@GC electrodes. Notably, Si@H-NC@GC delivers a reversible capacity retention of 92.5% after 550 cycles at a high current density of 1 A g-1 and a high capacity of 1081 mA h g-1 after 500 cycles at 0.5 A g-1.
Collapse
Affiliation(s)
- Jijun Lu
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100039 P. R. China
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University Tianjin 300072 P. R. China
| | - Dong Wang
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junhao Liu
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Guoyu Qian
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University Tianjin 300072 P. R. China
| | - Zhi Wang
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100039 P. R. China
| |
Collapse
|
11
|
Zhang X, Wang D, Qiu X, Ma Y, Kong D, Müllen K, Li X, Zhi L. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat Commun 2020; 11:3826. [PMID: 32737306 PMCID: PMC7395733 DOI: 10.1038/s41467-020-17686-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Silicon is a promising anode material for lithium-ion and post lithium-ion batteries but suffers from a large volume change upon lithiation and delithiation. The resulting instabilities of bulk and interfacial structures severely hamper performance and obstruct practical use. Stability improvements have been achieved, although at the expense of rate capability. Herein, a protocol is developed which we describe as two-dimensional covalent encapsulation. Two-dimensional, covalently bound silicon-carbon hybrids serve as proof-of-concept of a new material design. Their high reversibility, capacity and rate capability furnish a remarkable level of integrated performances when referred to weight, volume and area. Different from existing strategies, the two-dimensional covalent binding creates a robust and efficient contact between the silicon and electrically conductive media, enabling stable and fast electron, as well as ion, transport from and to silicon. As evidenced by interfacial morphology and chemical composition, this design profoundly changes the interface between silicon and the electrolyte, securing the as-created contact to persist upon cycling. Combined with a simple, facile and scalable manufacturing process, this study opens a new avenue to stabilize silicon without sacrificing other device parameters. The results hold great promise for both further rational improvement and mass production of advanced energy storage materials. Stabilizing silicon without sacrificing other device parameters is essential for practical use in lithium and post lithium battery anodes. Here, the authors show the skin-like two-dimensional covalent encapsulation furnishing a remarkable level of integrated lithium storage performances of silicon.
Collapse
Affiliation(s)
- Xinghao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Denghui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Yan Y, Zhao X, Dou H, Wei J, Sun Z, He YS, Dong Q, Xu H, Yang X. MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid-Electrolyte Interphases on Silicon Nanoparticle Bundles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18541-18550. [PMID: 32239911 DOI: 10.1021/acsami.0c01959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silicon-based materials are the desirable anodes for next-generation lithium-ion batteries; however, the large volume change of Si during the charging/discharging process causes electrode fracture and an unstable solid-electrolyte interphase (SEI) layer, which severely impair their stability and Coulombic efficiency. Herein, a bundle of silicon nanoparticles is encapsulated in robust micrometer-sized MXene frameworks, in which the MXene nanosheets are precrumpled by capillary compression force to effectively buffer the stress induced by the volume change, and the abundant covalent bonds (Ti-O-Ti) between adjacent nanosheets formed through a facile thermal self-cross-linking reaction further guarantee the robustness of the MXene architecture. Both factors stabilize the electrode structure. Moreover, the abundant fluorine terminations on MXene nanosheets contribute to an in situ formation of a highly compact, durable, and mechanically robust LiF-rich SEI layer outside the frameworks upon cycling, which not only shuts down the parasitic reaction between Si and an organic electrolyte but also enhances the structural stability of MXene frameworks. Benefiting from these merits, the as-prepared anodes deliver a high specific capacity of 1797 mA h g-1 at 0.2 A g-1 and a high capacity retention of 86.7% after 500 cycles at 2 A g-1 with an average Coulombic efficiency of 99.6%. Significantly, this work paves the way for other high-capacity electrode materials with a strong volume effect.
Collapse
Affiliation(s)
- Yuantao Yan
- School of Materials Science and Engineering, Tongji University, Shanghai 200123, China
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Xiaoli Zhao
- School of Materials Science and Engineering, Tongji University, Shanghai 200123, China
| | - Huanglin Dou
- School of Materials Science and Engineering, Tongji University, Shanghai 200123, China
| | - Jingjiang Wei
- School of Materials Science and Engineering, Tongji University, Shanghai 200123, China
| | - Zhihua Sun
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Yu-Shi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Dong
- Hitachi (China) Research & Development Corporation, Rui Jin Building, No. 205 Maoming Road(S), Shanghai 200020, China
| | - Haisong Xu
- Hitachi (China) Research & Development Corporation, Rui Jin Building, No. 205 Maoming Road(S), Shanghai 200020, China
| | - Xiaowei Yang
- School of Materials Science and Engineering, Tongji University, Shanghai 200123, China
| |
Collapse
|
13
|
Han Y, Huang G, Xu S. Structural Reorganization-Based Nanomaterials as Anodes for Lithium-Ion Batteries: Design, Preparation, and Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902841. [PMID: 31565861 DOI: 10.1002/smll.201902841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
In recent years, with the growing demand for higher capacity, longer cycling life, and higher power and energy density of lithium ion batteries (LIBs), the traditional insertion-based anodes are increasingly considered out of their depth. Herein, attention is paid to the structural reorganization electrode, which is the general term for conversion-based and alloying-based materials according to their common characteristics during the lithiation/delithiation process. This Review summarizes the recent achievements in improving and understanding the lithium storage performance of conversion-based anodes (especially the most widely studied transition metal oxides like Mn-, Fe-, Co-, Ni-, and Cu-based oxides) and alloying-based anodes (mainly including Si-, Sn-, Ge-, and Sb-based materials). The synthesis schemes, morphological control and reaction mechanism of these materials are also included. Finally, viewpoints about the challenges and feasible improvement measures for future development in this direction are given. The aim of this Review is to shed some light on future electrode design trends of structural reorganization anode materials for LIBs.
Collapse
Affiliation(s)
- Yu Han
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Guoyong Huang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, 102249, China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shengming Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
|
15
|
Han X, Zhang Z, Zheng G, You R, Wang J, Li C, Chen S, Yang Y. Scalable Engineering of Bulk Porous Si Anodes for High Initial Efficiency and High-Areal-Capacity Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:714-721. [PMID: 30525409 DOI: 10.1021/acsami.8b16942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nano-Si has been long-hampered in its use for practical lithium battery anodes due to its intrinsic high surface area. To improve the Coulombic efficiency and areal mass loading, we extend the starting materials from nano-Si to photovoltaic waste Si powders (∼1.5 μm). Unique morphology design and interfacial engineering are designed to overcome the particle fracture of micrometer Si. First, we develop a Cu-assisted chemical wet-etching method to prepare micrometer-size bulk-porous Si (MBPS), which provides interconnected porous space to accommodate volume expansion. In addition, a monolithic, multicore, interacting MBPS/carbonized polyacrylonitrile (c-PAN) electrode with strong interfacial Si-N-C is designed to improve the interparticle electrical conductivity during volume expansion and shrinkage. Furthermore, intermediate Si nanocrystals are well-maintained during the lithiation of MBPS, which facilitates the reversibility of lithiation-delithiation process. As a result, the MBPS/c-PAN electrodes exhibit a reversible specific capacity of 2126 mAh g-1 with a high initial Coulombic efficiency of 92%. Moreover, even after increasing the capacity loading to 3.4 mAh cm-2, the well-designed electrode shows a capacity retention of 94% in the first 50 cycles at a current density of 0.2 A g-1 with deep lithiation and delithiation processes between 0.005 and 2.5 V.
Collapse
|
16
|
Okashy S, Luski S, Elias Y, Aurbach D. Practical anodes for Li-ion batteries comprising metallurgical silicon particles and multiwall carbon nanotubes. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4058-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Zhang X, Guo R, Li X, Zhi L. Scallop-Inspired Shell Engineering of Microparticles for Stable and High Volumetric Capacity Battery Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800752. [PMID: 29745010 DOI: 10.1002/smll.201800752] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Building stable and efficient electron and ion transport pathways are critically important for energy storage electrode materials and systems. Herein, a scallop-inspired shell engineering strategy is proposed and demonstrated to confine high volume change silicon microparticles toward the construction of stable and high volumetric capacity binder-free lithium battery anodes. As for each silicon microparticle, the methodology involves an inner sealed but adaptable overlapped graphene shell, and an outer open hollow shell consisting of interconnected reduced graphene oxide, mimicking the scallop structure. The inner closed shell enables simultaneous stabilization of the interfaces of silicon with both carbon and electrolyte, substantially facilitates efficient and rapid transport of both electrons and lithium ions from/to silicon, the outer open hollow shell creates stable and robust transport paths of both electrons and lithium ions throughout the electrode without any sophisticated additives. The resultant self-supported electrode has achieved stable cycling with rapidly increased coulombic efficiency in the early stage, superior rate capability, and remarkably high volumetric capacity upon a facile pressing process. The rational design and engineering of graphene shells of the silicon microparticles developed can provide guidance for the development of a wide range of other high capacity but large volume change electrochemically active materials.
Collapse
Affiliation(s)
- Xinghao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruiying Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Zhang X, Qiu X, Kong D, Zhou L, Li Z, Li X, Zhi L. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. ACS NANO 2017; 11:7476-7484. [PMID: 28692250 DOI: 10.1021/acsnano.7b03942] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g-1 at 800 mA g-1), high volumetric capacity (1799 mAh cm-3), remarkable rate capability (950 mAh g-1 at 8 A g-1), and excellent cycling stability (1100 mA h g-1 at 2000 mA g-1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kgca-1 and 1257 Wh Lca-1, respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.
Collapse
Affiliation(s)
- Xinghao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Xiongying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, PR China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, PR China
| | - Lu Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, PR China
| | - Zihao Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, PR China
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| |
Collapse
|
19
|
Shim HC, Kim I, Woo CS, Lee HJ, Hyun S. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. NANOSCALE 2017; 9:4713-4720. [PMID: 28327775 DOI: 10.1039/c7nr00965h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silicon anodes for lithium ion batteries (LiBs) have been attracting considerable attention due to a theoretical capacity up to about 10 times higher than that of conventional graphite. However, huge volume expansion during the cycle causes cracks in the silicon, resulting in the degradation of cycling performance and eventual failure. Moreover, low electrical conductivity and an unstable solid electrolyte interface (SEI) layer resulting from repeated changes in volume still block the next step forward for the commercialization of the silicon material. Herein we demonstrate the carbon nanotube (CNT) aerogel/Si nanohybrid structure for anode materials of LiBs via freeze casting followed by an RF magnetron sputtering process, exhibiting improved capacity retention compared to Si only samples during 1000 electrochemical cycles. The CNT aerogels as 3D porous scaffold structures could provide buffer volume for the expansion/shrinkage of Si lattices upon cycling and increase electrical conductivity. In addition, the nanospherical and relatively thin SEI layers of the CNT aerogel/Si nanohybrid structure show better lithium ion diffusion characteristics during cycling. For this reason, the Si@CNT aerogel anode still yielded a high specific capacity of 1439 mA h g-1 after 1000 charge/discharge cycles with low capacity fading. Our approach could be applied to other group IV LiB materials that undergo large volume changes, and also has promising potential for high performance energy applications.
Collapse
Affiliation(s)
- Hyung Cheoul Shim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea. and Department of Nanomechatronics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ilhwan Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea. and School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Su Woo
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea.
| | - Hoo-Jeong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungmin Hyun
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea.
| |
Collapse
|
20
|
Liu Q, Cui Z, Zou R, Zhang J, Xu K, Hu J. Surface Coating Constraint Induced Anisotropic Swelling of Silicon in Si-Void@SiO x Nanowire Anode for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603754. [PMID: 28121377 DOI: 10.1002/smll.201603754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Here a simple and an environmentally friendly approach is developed for the fabrication of Si-void@SiOx nanowires of a high-capacity Li-ion anode material. The outer surface of the robust SiOx backbone and the inside void structure in Si-void@SiOx nanowires appropriately suppress the volume expansion and lead to anisotropic swelling morphologies of Si nanowires during lithiation/delithiation, which is first demonstrated by the in situ lithiation process. Remarkably, the Si-void@SiOx nanowire electrode exhibits excellent overall lithium-storage performance, including high specific capacity, high rate property, and excellent cycling stability. A reversible capacity of 1981 mAh g-1 is obtained in the fourth cycle, and the capacity is maintained at 2197 mAh g-1 after 200 cycles at a current density of 0.5 C. The outstanding overall properties of the Si-void@SiOx nanowire composite make it a promising anode material of lithium-ion batteries for the power-intensive energy storage applications.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Department of Physics, Donghua University, Shanghai, 201620, China
| | - Zhe Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianhua Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kaibing Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
21
|
Sun CF, Hu J, Wang P, Cheng XY, Lee SB, Wang Y. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery. NANO LETTERS 2016; 16:5875-5882. [PMID: 27518908 DOI: 10.1021/acs.nanolett.6b02720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.
Collapse
Affiliation(s)
- Chuan-Fu Sun
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Junkai Hu
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Xi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Sang Bok Lee
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Sun CF, Glaz BJ, Okada M, Baker E, Cheng XY, Karna SP, Wang Y. Blocking Oxidation Failures of Carbon Nanotubes through Selective Protection of Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6672-6679. [PMID: 27214267 DOI: 10.1002/adma.201601027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The selective growth of Al2 O3 islands over defect sites on the surface of carbon nanotubes significantly increases the oxidation breakdown threshold to 6.8 W cm(-2) , more than double than that of unprotected films. The elevated input power enables thermoacoustic emissions at loud audible sound pressure levels of 90.1 dB, which are inaccessible with the unprotected films.
Collapse
Affiliation(s)
- Chuan-Fu Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Bryan J Glaz
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA
| | - Morihiro Okada
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Edward Baker
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Xi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Shashi P Karna
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
23
|
Hu J, Sun CF, Gillette E, Gui Z, Wang Y, Lee SB. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes. NANOSCALE 2016; 8:12958-12969. [PMID: 27304986 DOI: 10.1039/c6nr02576e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ordered mesoporous carbons (OMCs) are ideal host materials that can provide the desirable electrical conductivity and ion accessibility for high-capacity oxide electrode materials in lithium-ion batteries (LIBs). To this end, however, it is imperative to establish the correlations among material morphology, pore structure and electrochemical performance. Here, we fabricate an ordered mesoporous carbon nanowire (OMCNW)/Fe2O3 composite utilizing a novel soft-hard dual-template approach. The structure and electrochemical performance of OMCNW/Fe2O3 were systematically compared with single-templated OMC/Fe2O3 and carbon nanowire/Fe2O3 composites. This dual-template strategy presents synergetic effects combining the advantages of both soft and hard single-template methods. The resulting OMCNW/Fe2O3 composite enables a high pore volume, high structural stability, enhanced electrical conductivity and Li(+) accessibility. These features collectively enable excellent electrochemical cyclability (1200 cycles) and a reversible Li(+) storage capacity as high as 819 mA h g(-1) at a current density of 0.5 A g(-1). Our findings highlight the synergistic benefits of the dual-template approach to heterogeneous composites for high performance electrochemical energy storage materials.
Collapse
Affiliation(s)
- Junkai Hu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Liang J, Li X, Hou Z, Zhang W, Zhu Y, Qian Y. A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium Ion Batteries. ACS NANO 2016; 10:2295-2304. [PMID: 26789625 DOI: 10.1021/acsnano.5b06995] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A deep reduction and partial oxidation strategy to convert low-cost SiO2 into mesoporous Si anode with the yield higher than 90% is provided. This strategy has advantage in efficient mesoporous silicon production and in situ formation of several nanometers SiO2 layer on the surface of silicon particles. Thus, the resulted silicon anode provides extremely high reversible capacity of 1772 mAh g(-1), superior cycling stability with more than 873 mAh g(-1) at 1.8 A g(-1) after 1400 cycles (corresponding to the capacity decay rate of 0.035% per cycle), and good rate capability (∼710 mAh g(-1) at 18A g(-1)). These promising results suggest that such strategy for mesoporous Si anode can be potentially commercialized for high energy Li-ion batteries.
Collapse
Affiliation(s)
- Jianwen Liang
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China , 96 JinZhai Road, Hefei 230026, China
- School of Chemistry and Chemical Engineering, Shandong University , Jinan, Shandong 250100, P. R. China
| | - Xiaona Li
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China , 96 JinZhai Road, Hefei 230026, China
| | - Zhiguo Hou
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China , 96 JinZhai Road, Hefei 230026, China
| | - Wanqun Zhang
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China , 96 JinZhai Road, Hefei 230026, China
| | - Yongchun Zhu
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China , 96 JinZhai Road, Hefei 230026, China
| | - Yitai Qian
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China , 96 JinZhai Road, Hefei 230026, China
- School of Chemistry and Chemical Engineering, Shandong University , Jinan, Shandong 250100, P. R. China
| |
Collapse
|
25
|
Zhou X, Chen Q, Wang A, Xu J, Wu S, Shen J. Bamboo-like Composites of V2O5/Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3776-3783. [PMID: 26796859 DOI: 10.1021/acsami.5b10196] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A bamboo-like nanomaterial composed of V2O5/polyindole (V2O5/PIn) decorated onto the activated carbon cloth was fabricated for supercapacitors. The PIn could effectively enhance the electronic conductivity and prevent the dissolution of vanadium. And the activation of carbon cloth with functional groups is conducive to anchoring the V2O5 and improving surface area, which results in an enhancement of electrochemical performance and leads to a high specific capacitance of 535.5 F/g. Moreover, an asymmetric flexible supercapacitor based on V2O5/PIn@activate carbon cloth and reduced graphene oxide (rGO)@activate carbon cloth exhibits a high energy density (38.7 W h/kg) at a power density of 900 W/kg and good cyclic stability (capacitance retention of 91.1% after 5000 cycles). And the prepared device is shown to power the light-emitting diode bulbs efficiently.
Collapse
Affiliation(s)
- Xi Zhou
- School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Qiang Chen
- School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Anqi Wang
- School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jian Xu
- School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| |
Collapse
|
26
|
Han X, Chen H, Li X, Lai S, Xu Y, Li C, Chen S, Yang Y. NiSi(x)/a-Si Nanowires with Interfacial a-Ge as Anodes for High-Rate Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2016; 8:673-679. [PMID: 26670955 DOI: 10.1021/acsami.5b09783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conductive metal nanowire is a promising current collector for the Si-based anode material in high-rate lithium-ion batteries. However, to harness this remarkable potential for high power density energy storage, one has to address the interfacial potential barrier that hinders the electron injection from the metal side. Herein, we present that, solely by inserting ultrathin amorphous germanium (a-Ge) (∼5 nm) at the interface of NiSix/amorphous Si (a-Si), the rate capacity was substantially enhanced, 477 mAh g(-1) even at a high rate of 40 A g(-1). In addition, batteries containing the NiSix/Ge+Si anodes cycled over 1000 times at 10 A g(-1) while the capacity retaining more than 877 mAh g(-1), which is among the highest reported. The excellent electrochemical performance is directly correlated with the significantly improved electrical conductivity and mechanical stability throughout the entire electrode. The potential barrier between the NiSix and a-Si was modulated by a-Ge, which constructs an electron highway. Besides, the a-Ge interlayer enhances the interfacial adhesion by reducing void fraction and the inhomogeneous strain of the Li-Ge and Li-Si stacking structure was accommodated through the bending and twist of relatively thin NiSix, thus ensures a more stable high-rate cycling performance. Our work shows an effective way to fabricate metal/a-Si nanowires for high-rate lithium-ion battery anodes.
Collapse
Affiliation(s)
- Xiang Han
- Semiconductor Photonics Research Center, Department of Physics, Xiamen University , Xiamen 361005, People's Republic of China
| | - Huixin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University , Xiamen 361005, People's Republic of China
| | - Xin Li
- Semiconductor Photonics Research Center, Department of Physics, Xiamen University , Xiamen 361005, People's Republic of China
| | - Shumei Lai
- Semiconductor Photonics Research Center, Department of Physics, Xiamen University , Xiamen 361005, People's Republic of China
| | - Yihong Xu
- Semiconductor Photonics Research Center, Department of Physics, Xiamen University , Xiamen 361005, People's Republic of China
| | - Cheng Li
- Semiconductor Photonics Research Center, Department of Physics, Xiamen University , Xiamen 361005, People's Republic of China
| | - Songyan Chen
- Semiconductor Photonics Research Center, Department of Physics, Xiamen University , Xiamen 361005, People's Republic of China
| | - Yong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University , Xiamen 361005, People's Republic of China
| |
Collapse
|
27
|
Zhou M, Li X, Wang B, Zhang Y, Ning J, Xiao Z, Zhang X, Chang Y, Zhi L. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies. NANO LETTERS 2015; 15:6222-6228. [PMID: 26308100 DOI: 10.1021/acs.nanolett.5b02697] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We propose a novel material/electrode design formula and develop an engineered self-supporting electrode configuration, namely, silicon nanoparticle impregnated assemblies of templated carbon-bridged oriented graphene. We have demonstrated their use as binder-free lithium-ion battery anodes with exceptional lithium storage performances, simultaneously attaining high gravimetric capacity (1390 mAh g(-1) at 2 A g(-1) with respect to the total electrode weight), high volumetric capacity (1807 mAh cm(-3) that is more than three times that of graphite anodes), remarkable rate capability (900 mAh g(-1) at 8 A g(-1)), excellent cyclic stability (0.025% decay per cycle over 200 cycles), and competing areal capacity (as high as 4 and 6 mAh cm(-2) at 15 and 3 mA cm(-2), respectively). Such combined level of performance is attributed to the templated carbon bridged oriented graphene assemblies involved. This engineered graphene bulk assemblies not only create a robust bicontinuous network for rapid transport of both electrons and lithium ions throughout the electrode even at high material mass loading but also allow achieving a substantially high material tap density (1.3 g cm(-3)). Coupled with a simple and flexible fabrication protocol as well as practically scalable raw materials (e.g., silicon nanoparticles and graphene oxide), the material/electrode design developed would propagate new and viable battery material/electrode design principles and opportunities for energy storage systems with high-energy and high-power characteristics.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
- Department of Environmental Engineering, University of Science and Technology of Beijing , Beijing 100083, China
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Yunbo Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jing Ning
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Zhichang Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Xinghao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Yanhong Chang
- Department of Environmental Engineering, University of Science and Technology of Beijing , Beijing 100083, China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology , Beijing 100190, China
| |
Collapse
|
28
|
Chang Y, Zhou M, Li X, Zhang Y, Zhi L. Reconstruction of Pyrolyzed Bacterial Cellulose (PBC)-Based Three-Dimensional Conductive Network for Silicon Lithium Battery Anodes. ChemElectroChem 2015. [DOI: 10.1002/celc.201500204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Zhang X, Zhang J, Liu Y, Wang X, Li B. Improving the anode performances of TiO2–carbon–rGO composites in lithium ion batteries by UV irradiation. NEW J CHEM 2015. [DOI: 10.1039/c5nj01855b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-dimensional TiO2–carbon–rGO (TCG) composite was fabricated and post-treated with UV irradiation (254 nm) for 0.5 h to improve the anode performances in LIBs.
Collapse
Affiliation(s)
- Xiujun Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Juan Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yanyan Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xiangyu Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Baojun Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
30
|
Qiu S, Lu G, Liu J, Lyu H, Hu C, Li B, Yan X, Guo J, Guo Z. Enhanced electrochemical performances of MoO2 nanoparticles composited with carbon nanotubes for lithium-ion battery anodes. RSC Adv 2015. [DOI: 10.1039/c5ra17147d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lab-made CNT nanocomposites decorated with MoO2 nanoparticles (MoO2/CNTs) demonstrated superior cycling and rate performances as LIB anode materials.
Collapse
Affiliation(s)
- Song Qiu
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education and School of Materials Science and Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Guixia Lu
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education and School of Materials Science and Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education and School of Materials Science and Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Hailong Lyu
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education and School of Materials Science and Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Chenxi Hu
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education and School of Materials Science and Engineering
- Shandong University
- Jinan
- People's Republic of China
| | - Bo Li
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- China
| | - Xingru Yan
- Integrated Composites Laboratory (ICL)
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- United States
| | - Jiang Guo
- Integrated Composites Laboratory (ICL)
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- United States
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL)
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- United States
| |
Collapse
|