1
|
Staii C. Conformational Changes in Surface-Immobilized Proteins Measured Using Combined Atomic Force and Fluorescence Microscopy. Molecules 2023; 28:4632. [PMID: 37375186 DOI: 10.3390/molecules28124632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Biological organisms rely on proteins to perform the majority of their functions. Most protein functions are based on their physical motions (conformational changes), which can be described as transitions between different conformational states in a multidimensional free-energy landscape. A comprehensive understanding of this free-energy landscape is therefore of paramount importance for understanding the biological functions of proteins. Protein dynamics includes both equilibrium and nonequilibrium motions, which typically exhibit a wide range of characteristic length and time scales. The relative probabilities of various conformational states in the energy landscape, the energy barriers between them, their dependence on external parameters such as force and temperature, and their connection to the protein function remain largely unknown for most proteins. In this paper, we present a multimolecule approach in which the proteins are immobilized at well-defined locations on Au substrates using an atomic force microscope (AFM)-based patterning method called nanografting. This method enables precise control over the protein location and orientation on the substrate, as well as the creation of biologically active protein ensembles that self-assemble into well-defined nanoscale regions (protein patches) on the gold substrate. We performed AFM-force compression and fluorescence experiments on these protein patches and measured the fundamental dynamical parameters such as protein stiffness, elastic modulus, and transition energies between distinct conformational states. Our results provide new insights into the processes that govern protein dynamics and its connection to protein function.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Li X, Lee KH, Shorkey S, Chen J, Chen M. Different Anomeric Sugar Bound States of Maltose Binding Protein Resolved by a Cytolysin A Nanopore Tweezer. ACS NANO 2020; 14:1727-1737. [PMID: 31995359 PMCID: PMC7162534 DOI: 10.1021/acsnano.9b07385] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conformational changes of proteins are essential to their functions. Yet it remains challenging to measure the amplitudes and time scales of protein motions. Here we show that the cytolysin A (ClyA) nanopore was used as a molecular tweezer to trap a single maltose-binding protein (MBP) within its lumen, which allows conformation changes to be monitored as electrical current fluctuations in real time. In contrast to the current two state binding model, the current measurements revealed three distinct ligand-bound states for MBP in the presence of reducing saccharides. Our analysis reveals that these three states represented MBP bound to different isomers of reducing sugars. These findings contribute to the understanding of the mechanism of substrate recognition by MBP and illustrate that the nanopore tweezer is a powerful, label-free, single-molecule approach for studying protein conformational dynamics under functional conditions.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kuo Hao Lee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Spencer Shorkey
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
3
|
Moree B, Connell K, Mortensen RB, Liu CT, Benkovic SJ, Salafsky J. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation. Biophys J 2016; 109:806-15. [PMID: 26287632 PMCID: PMC4547196 DOI: 10.1016/j.bpj.2015.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022] Open
Abstract
We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein’s structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications.
Collapse
Affiliation(s)
- Ben Moree
- Biodesy, Inc., South San Francisco, California
| | | | | | - C Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania
| | | |
Collapse
|
4
|
Li JR, Ross SS, Liu Y, Liu YX, Wang KH, Chen HY, Liu FT, Laurence TA, Liu GY. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells. ACS NANO 2015; 9:6738-6746. [PMID: 26057701 PMCID: PMC4758354 DOI: 10.1021/acsnano.5b02270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.
Collapse
Affiliation(s)
- Jie-Ren Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shailise S. Ross
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yang Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ying X. Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kang-hsin Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Huan-Yuan Chen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Fu-Tong Liu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Corvaglia S, Sanavio B, Hong Enriquez RP, Sorce B, Bosco A, Scaini D, Sabella S, Pompa PP, Scoles G, Casalis L. Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions. Sci Rep 2014; 4:5366. [PMID: 24947141 PMCID: PMC4064358 DOI: 10.1038/srep05366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/28/2014] [Indexed: 12/25/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine-α-Synuclein adducts.
Collapse
Affiliation(s)
- Stefania Corvaglia
- NanoInnovation Laboratory, Elettra Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy
- Life Science Department, University of Trieste, via Giorgieri 1, I-34127 Trieste, Italy
| | - Barbara Sanavio
- NanoInnovation Laboratory, Elettra Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy
- Department of Biological and Medical Science, University of Udine, Ospedale della Misericordia, Piazzale Santa Maria della Misericordia, 15 -33100 Udine, Italy
- Current address: Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, IFOM-IEO-campus, via Adamello, 16, 20139 Milan, Italy
| | - Rolando P. Hong Enriquez
- Department of Biological and Medical Science, University of Udine, Ospedale della Misericordia, Piazzale Santa Maria della Misericordia, 15 -33100 Udine, Italy
| | - Barbara Sorce
- Center for Bio-Molecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, Via Barsanti-73010 Arnesano, Lecce, Italy
- Current address: ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Alessandro Bosco
- NanoInnovation Laboratory, Elettra Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Denis Scaini
- NanoInnovation Laboratory, Elettra Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy
- Life Science Department, University of Trieste, via Giorgieri 1, I-34127 Trieste, Italy
| | - Stefania Sabella
- Center for Bio-Molecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, Via Barsanti-73010 Arnesano, Lecce, Italy
| | - Pier Paolo Pompa
- Center for Bio-Molecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, Via Barsanti-73010 Arnesano, Lecce, Italy
| | - Giacinto Scoles
- NanoInnovation Laboratory, Elettra Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy
- Department of Biological and Medical Science, University of Udine, Ospedale della Misericordia, Piazzale Santa Maria della Misericordia, 15 -33100 Udine, Italy
| | - Loredana Casalis
- NanoInnovation Laboratory, Elettra Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy
| |
Collapse
|
6
|
Immobilization of proteins on carboxylic acid functionalized nanopatterns. Anal Bioanal Chem 2012; 405:1985-93. [PMID: 23239182 DOI: 10.1007/s00216-012-6621-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/13/2023]
Abstract
The immobilization of proteins on nanopatterned surfaces was investigated using in situ atomic force microscopy (AFM) and ex situ infrared reflectance-absorption spectroscopy (IRAS). The AFM-based lithography technique of nanografting provided control of the size, geometry, and spatial placement of nanopatterns within self-assembled monolayers (SAMs). Square nanopatterns of carboxylate-terminated SAMs were inscribed within methyl-terminated octadecanethiolate SAMs and activated using carbodiimide/succinimide coupling chemistry. Staphylococcal protein A was immobilized on the activated nanopatterns before exposure to rabbit immunoglobulin G. In situ AFM was used to monitor changes in the topography and friction of the nanopatterns in solution upon protein immobilization. Complementary studies with ex situ IRAS confirmed the surface chemistry that occurred during the steps of SAM activation and subsequent protein immobilization on unpatterned samples. Since carbodiimide/succinimide coupling chemistry can be used for surface attachment of different biomolecules, this protocol shows promise for development of other aqueous-based studies for nanopatterned protein immobilization.
Collapse
|
7
|
Wang Y, Tang C, Wang E, Wang J. Exploration of multi-state conformational dynamics and underlying global functional landscape of maltose binding protein. PLoS Comput Biol 2012; 8:e1002471. [PMID: 22532792 PMCID: PMC3330084 DOI: 10.1371/journal.pcbi.1002471] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 02/04/2023] Open
Abstract
An increasing number of biological machines have been revealed to have more than two macroscopic states. Quantifying the underlying multiple-basin functional landscape is essential for understanding their functions. However, the present models seem to be insufficient to describe such multiple-state systems. To meet this challenge, we have developed a coarse grained triple-basin structure-based model with implicit ligand. Based on our model, the constructed functional landscape is sufficiently sampled by the brute-force molecular dynamics simulation. We explored maltose-binding protein (MBP) which undergoes large-scale domain motion between open, apo-closed (partially closed) and holo-closed (fully closed) states responding to ligand binding. We revealed an underlying mechanism whereby major induced fit and minor population shift pathways co-exist by quantitative flux analysis. We found that the hinge regions play an important role in the functional dynamics as well as that increases in its flexibility promote population shifts. This finding provides a theoretical explanation of the mechanistic discrepancies in PBP protein family. We also found a functional “backtracking” behavior that favors conformational change. We further explored the underlying folding landscape in response to ligand binding. Consistent with earlier experimental findings, the presence of ligand increases the cooperativity and stability of MBP. This work provides the first study to explore the folding dynamics and functional dynamics under the same theoretical framework using our triple-basin functional model. A central goal of biology is to understand the function of the organism and its constituent parts at each of its scales of complexity. Function at the molecular level is often realized by changes in conformation. Unfortunately, experimental explorations of global motions critical for functional conformational changes are still challenging. In the present work, we developed a coarse grained triple-well structure-based model to explore the underlying functional landscape of maltose-binding protein (MBP). By quantitative flux analysis, we uncover the underlying mechanism by which the major induced fit and minor population shift pathways co-exist. Though we have previously lent credence to the assertion that dynamical equilibrium between open and minor closed conformations exist for all the free PBPs, the generality of this rule is still a matter of open debate. We found that the hinge flexibility is favorable to population shift mechanism. This finding provides a theoretical explanation of the mechanism discrepancies in PBP protein family. We also simulated the folding dynamics using this functional multi-basin model which successfully reproduced earlier protein melting experiment. This represents an exciting opportunity to characterize the interplay between folding and function, which is a long-standing question in the community. The theoretical approach employed in this study is general and can be applied to other systems.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Chun Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- * E-mail: (EW); (JW)
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- College of Physics, Jilin University, Changchun, Jilin, China
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- * E-mail: (EW); (JW)
| |
Collapse
|
8
|
Acevedo-Vélez C, Andre G, Dufrêne YF, Gellman SH, Abbott NL. Single-Molecule Force Spectroscopy of β-Peptides That Display Well-Defined Three-Dimensional Chemical Patterns. J Am Chem Soc 2011; 133:3981-8. [DOI: 10.1021/ja1089183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Claribel Acevedo-Vélez
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Guillaume Andre
- Institute of Condensed Matter and Nanosciences-Bio & Soft Matter, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F. Dufrêne
- Institute of Condensed Matter and Nanosciences-Bio & Soft Matter, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Staii C, Viesselman C, Ballweg J, Hart S, Williams JC, Dent EW, Coppersmith SN, Eriksson M. Controlling Neuronal Growth on Au Surfaces by Directed Assembly of Proteins. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-1236-ss01-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractStudying how individual neuronal cells grow and interact with each other is of fundamental importance for understanding the functions of the nervous system. However, the mechanism of axonal navigation to their target region and their specific interactions with guidance factors such as membrane-bound proteins, chemical and temperature gradients, mechanical guidance cues, etc. are not well understood. Here we describe a new approach for controlling the adhesion, growth and interconnectivity of cortical neurons on Au surfaces. Specifically, we use Atomic Force Microscopy (AFM) nanolithography to immobilize growth-factor proteins at well-defined locations on Au surfaces. These surface-immobilized proteins act as a) adhesion proteins for neuronal cells (i.e. well-defined locations where the cells “stick” to the surface), and b) promoters/inhibitors for the growth of neurites. Our results show that protein patterns can be used to confine neuronal cells and to control their growth and interconnectivity on Au surfaces. We also show that AFM nanolithography presents unique advantages for this type of work, such as high degree of control over location and shape of the protein patterns, and application of proteins in aqueous solutions (protein buffers), such that the proteins are very likely to retain their folding conformation/bioactivity.
Collapse
|
10
|
Staii C, Viesselmann C, Ballweg J, Williams JC, Dent EW, Coppersmith SN, Eriksson MA. Distance dependence of neuronal growth on nanopatterned gold surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:233-9. [PMID: 21121598 DOI: 10.1021/la102331x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Understanding network development in the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. The mechanisms of axonal navigation to target regions and the specific interactions with guidance factors such as membrane-bound proteins, chemical gradients, mechanical guidance cues, etc., are largely unknown. A current limitation for the study of neural network formation is the ability to control precisely the connectivity of small groups of neurons. A first step in designing such networks is to understand the "rules" central nervous system (CNS) neurons use to form functional connections with one another. Here we begin to delineate novel rules for growth and connectivity of small numbers of neurons patterned on Au substrates in simplified geometries. These studies yield new insights into the mechanisms determining the organizational features present in intact systems. We use a previously reported atomic force microscopy (AFM) nanolithography method to control precisely the location and growth of neurons on these surfaces. By examining a series of systems with different geometrical parameters, we quantitatively and systematically analyze how neuronal growth depends on these parameters.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sanavio B, Scaini D, Grunwald C, Legname G, Scoles G, Casalis L. Oriented immobilization of prion protein demonstrated via precise interfacial nanostructure measurements. ACS NANO 2010; 4:6607-6616. [PMID: 20958083 DOI: 10.1021/nn101872w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanopatterning of biomolecules on functionalized surfaces offers an excellent route for ultrasensitive protein immobilization, for interaction measurements, and for the fabrication of devices such as protein nanoarrays. An improved understanding of the physics and chemistry underlying the device properties and the recognition process is necessary for performance optimization. This is especially important for the recognition and immobilization of intrinsically disordered proteins (IDPs), like the prion protein (PrP), a partial IDP, whose folding and stability may be influenced by local environment and confinement. Atomic force microscopy allows for both highly controllable nanolithography and for sensitive and accurate direct detection, via precise topographic measurements on ultraflat surfaces, of protein interactions in a liquid environment, thus different environmental parameters affecting the biorecognition phenomenon can be investigated in situ. Using nanografting, a tip-induced lithographic technique, and an affinity immobilization strategy based on two different histidine tagged antibodies, with high nM affinity for two different regions of PrP, we successfully demonstrated the immobilization of recombinant mouse PrP onto nanostructured surfaces, in two different orientations. Clear discrimination of the two molecular orientations was shown by differential height (i.e., topographic) measurements, allowing for the estimation of binding parameters and the full characterization of the nanoscale biorecognition process. Our work opens the way to several high sensitivity diagnostic applications and, by controlling PrP orientation, allows for the investigation of unconventional interactions with partially folded proteins, and may serve as a platform for protein misfolding and refolding studies on PrP and other thermodynamically unstable, fibril forming, proteins.
Collapse
Affiliation(s)
- Barbara Sanavio
- SISSA/ELETTRA NanoInnovation Laboratory, Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Rosa LG, Liang J. Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:483001. [PMID: 21832507 DOI: 10.1088/0953-8984/21/48/483001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) has been widely employed as a nanoscopic lithography technique. In this review, we summarize the current state of research in this field. We introduce the various forms of the technique, such as nanoshaving, nanografting and dip-pen nanolithography, which we classify according to the different interactions between the AFM probe and the substrate during the nanolithography fabrication process. Mechanical force, applied by the tip to the substrate, is the variable that can be controlled with good precision in AFM and it has been utilized in patterning self-assembled monolayers. In such applications, the AFM tip can break some relatively weak chemical bonds inside the monolayer. In general, the state of the art for AFM nanolithography demonstrates the power, resolution and versatility of the technique.
Collapse
Affiliation(s)
- Luis G Rosa
- Department of Physics and Electronics, University of Puerto Rico-Humacao, 100 Road 908 CUH Station, Humacao, PR 00791, USA. The Institute for Functional Nanomaterials, University of Puerto Rico, Facundo Bueso Building, Rio Piedras, PR 00931, USA
| | | |
Collapse
|
13
|
Staii C, Viesselmann C, Ballweg J, Shi L, Liu GY, Williams JC, Dent EW, Coppersmith SN, Eriksson MA. Positioning and guidance of neurons on gold surfaces by directed assembly of proteins using Atomic Force Microscopy. Biomaterials 2009; 30:3397-404. [PMID: 19342092 DOI: 10.1016/j.biomaterials.2009.03.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
We demonstrate that Atomic Force Microscopy nanolithography can be used to control effectively the adhesion, growth and interconnectivity of cortical neurons on Au surfaces. We demonstrate immobilization of neurons at well-defined locations on Au surfaces using two different types of patterned proteins: 1) poly-d-lysine (PDL), a positively charged polypeptide used extensively in tissue culture and 2) laminin, a component of the extracellular matrix. Our results show that both PDL and laminin patterns can be used to confine neuronal cells and to control their growth and interconnectivity on Au surfaces, a significant step towards the engineering of artificial neuronal assemblies with well-controlled neuron position and connections.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics, University of Wisconsin-Madison, 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|