1
|
Freixas VM, Wilhelm P, Nelson T, Hinderer F, Höger S, Tretiak S, Lupton JM, Fernandez-Alberti S. Excitation Energy Transfer between bodipy Dyes in a Symmetric Molecular Excitonic Seesaw. J Phys Chem A 2021; 125:8404-8416. [PMID: 34542292 DOI: 10.1021/acs.jpca.1c06332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examine the redistribution of energy between electronic and vibrational degrees of freedom that takes place between a π-conjugated oligomer, a phenylene-butadiynylene, and two identical boron-dipyrromethene (bodipy) end-caps using femtosecond transient absorption spectroscopy, single-molecule spectroscopy, and nonadiabatic excited-state molecular dynamics (NEXMD) modeling techniques. The molecular structure represents an excitonic seesaw in that the excitation energy on the oligomer backbone can migrate to either one end-cap or the other, but not to both. The NEXMD simulations closely reproduce the characteristic time scale for redistribution of electronic and vibrational energy of 2.2 ps and uncover the vibrational modes contributing to the intramolecular relaxation. The calculations indicate that the dihedral angle between the bodipy dye and the oligomer change upon excitation of the oligomer. Single-molecule experiments reveal a difference in photoluminescence lifetime of the bodipy dyes depending on whether they are excited by direct absorption or by redistribution of energy from the backbone. This difference in lifetime may be attributed to the difference in dihedral angle. The simulations also suggest that a strong coupling can occur between the two end-caps, giving rise to a reversible shuttling of excitation energy between them. Strong coupling should lead to a pronounced loss in polarization memory of the fluorescence since the oligomer backbone tends to be slightly distorted and the two bodipy transition dipoles have different orientations. A sensitive single-molecule technique is presented to test for such coupling. However, although redistribution of electronic and vibrational energy between the end-caps can occur, it appears to be unidirectional and irreversible, suggesting that an additional localization mechanism is at play which is, as yet, not fully accounted for in the simulations.
Collapse
Affiliation(s)
- Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Philipp Wilhelm
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Tammie Nelson
- Theoretical Division and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Florian Hinderer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John M Lupton
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | |
Collapse
|
2
|
Alfonso-Hernandez L, Oldani N, Athanasopoulos S, Lupton JM, Tretiak S, Fernandez-Alberti S. Photoinduced Energy Transfer in Linear Guest-Host Chromophores: A Computational Study. J Phys Chem A 2021; 125:5303-5313. [PMID: 34106721 DOI: 10.1021/acs.jpca.1c02644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymer-based guest-host systems represent a promising class of materials for efficient light-emitting diodes. The energy transfer from the polymer host to the guest is the key process in light generation. Therefore, microscopic descriptions of the different mechanisms involved in the energy transfer can contribute to enlighten the basis of the highly efficient light harvesting observed in this kind of materials. Herein, the nature of intramolecular energy transfer in a dye-end-capped conjugated polymer is explored by using atomistic nonadiabatic excited-state molecular dynamics. Linear perylene end-capped (PEC) polyindenofluorenes (PIF), consisting of n (n = 2, 4, and 6) repeat units, i.e., PEC-PIFn oligomers, are considered as model systems. After photoexcitation at the oligomer absorption maximum, an initial exciton becomes self-trapped on one of the monomer units (donors). Thereafter, an efficient ultrafast through-space energy transfer from this unit to the perylene acceptor takes place. We observe that this energy transfer occurs equally well from any monomer unit on the chain. Effective specific vibronic couplings between each monomer and the acceptor are identified. These oligomer → end-cap energy transfer steps do not match with the rates predicted by Förster-type energy transfer. The through-space and through-bond mechanisms are two distinct channels of energy transfer. The former dominates the overall process, whereas the through-bond energy transfer between indenofluorene monomer units along the oligomer backbone only makes a minor contribution.
Collapse
Affiliation(s)
- L Alfonso-Hernandez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - N Oldani
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - S Athanasopoulos
- Departamento de Física, Universidad Carlos III de Madrid, Avenida Universidad 30, 28911 Leganés, Madrid, Spain
| | - J M Lupton
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - S Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S Fernandez-Alberti
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| |
Collapse
|
3
|
Hofmann FJ, Bodnarchuk MI, Dirin DN, Vogelsang J, Kovalenko MV, Lupton JM. Energy Transfer from Perovskite Nanocrystals to Dye Molecules Does Not Occur by FRET. NANO LETTERS 2019; 19:8896-8902. [PMID: 31646869 DOI: 10.1021/acs.nanolett.9b03779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single formamidinium lead bromide (FAPbBr3) perovskite nanocubes, approximately 10 nm in size, have extinction cross sections orders of magnitude larger than single dye molecules and can therefore be used to photoexcite one single dye molecule within their immediate vicinity by means of excitation-energy transfer (EET). The rate of photon emission by the single dye molecule is increased by 2 orders of magnitude under excitation by EET compared to direct excitation at the same laser fluence. Because the dye cannot accommodate biexcitons, NC biexcitons are filtered out by EET, giving rise to up to an order-of-magnitude improvement in the fidelity of photon antibunching. We demonstrate here that, contrary to expectation, energy transfer from the nanocrystal to dye molecules does not depend on the spectral line widths of the donor and acceptor and is therefore not governed by Förster's theory of resonance energy transfer (FRET). Two different cyanine dye acceptors with substantially different spectral overlaps with the nanocrystal donor show a similar light-harvesting capability. Cooling the sample from room temperature to 5 K reduces the average transition line widths 25-fold but has no apparent effect on the number of molecules emitting, i.e., on the spatial density of single dye molecules being photoexcited by single nanocrystals. Narrow zero-phonon lines are identified for both donor and acceptor, with an energetic separation of over 40 times the line width, implying a complete absence of spectral overlap-even though EET is evident. Both donor and acceptor exhibit spectral fluctuations, but no correlation is apparent between the jitter, which controls spectral overlap, and the overall light harvesting. We conclude that the energy transfer process is fundamentally nonresonant, implying effective energy dissipation in the perovskite donor because of strong electron-phonon coupling of the carriers comprising the exciton. The work highlights the importance of performing cryogenic spectroscopy to reveal the underlying mechanisms of energy transfer in complex donor-acceptor systems.
Collapse
Affiliation(s)
- Felix J Hofmann
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Maryna I Bodnarchuk
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129 , CH-8600 Dübendorf , Switzerland
| | - Dmitry N Dirin
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129 , CH-8600 Dübendorf , Switzerland
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Maksym V Kovalenko
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129 , CH-8600 Dübendorf , Switzerland
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| |
Collapse
|
4
|
Camacho R, Täuber D, Scheblykin IG. Fluorescence Anisotropy Reloaded-Emerging Polarization Microscopy Methods for Assessing Chromophores' Organization and Excitation Energy Transfer in Single Molecules, Particles, Films, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805671. [PMID: 30721532 DOI: 10.1002/adma.201805671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Fluorescence polarization is widely used to assess the orientation/rotation of molecules, and the excitation energy transfer between closely located chromophores. Emerging since the 1990s, single molecule fluorescence spectroscopy and imaging stimulate the application of light polarization for studying molecular organization and energy transfer beyond ensemble averaging. Here, traditional fluorescence polarization and linear dichroism methods used for bulk samples are compared with techniques specially developed for, or inspired by, single molecule fluorescence spectroscopy. Techniques for assessing energy transfer in anisotropic samples, where the traditional fluorescence anisotropy framework is not readily applicable, are discussed in depth. It is shown that the concept of a polarization portrait and the single funnel approximation can lay the foundation for alternative energy transfer metrics. Examples ranging from fundamental studies of photoactive materials (conjugated polymers, light-harvesting aggregates, and perovskite semiconductors) to Förster resonant energy transfer (FRET)-based biomedical imaging are presented. Furthermore, novel uses of light polarization for super-resolution optical imaging are mentioned as well as strategies for avoiding artifacts in polarization microscopy.
Collapse
Affiliation(s)
- Rafael Camacho
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Daniela Täuber
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
- Biopolarisation, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745, Jena, Germany
- Institute of Solid State Physics, FSU Jena, Helmholtzweg 3, D-07743, Jena, Germany
| | - Ivan G Scheblykin
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| |
Collapse
|
5
|
Dong B, Li B, Cao Y, Meng X, Yan H, Ge S, Lu Y. Conjugated oligomers with thiophene and indole moieties: Synthesis, photoluminescence and electrochromic performances. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Liquid-Crystal-Enabled Active Plasmonics: A Review. MATERIALS 2014; 7:1296-1317. [PMID: 28788515 PMCID: PMC5453087 DOI: 10.3390/ma7021296] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/01/2014] [Accepted: 02/12/2014] [Indexed: 01/20/2023]
Abstract
Liquid crystals are a promising candidate for development of active plasmonics due to their large birefringence, low driving threshold, and versatile driving methods. We review recent progress on the interdisciplinary research field of liquid crystal based plasmonics. The research scope of this field is to build the next generation of reconfigurable plasmonic devices by combining liquid crystals with plasmonic nanostructures. Various active plasmonic devices, such as switches, modulators, color filters, absorbers, have been demonstrated. This review is structured to cover active plasmonic devices from two aspects: functionalities and driven methods. We hope this review would provide basic knowledge for a new researcher to get familiar with the field, and serve as a reference for experienced researchers to keep up the current research trends.
Collapse
|
7
|
Liu S, Schmitz D, Jester SS, Borys NJ, Höger S, Lupton JM. Coherent and Incoherent Interactions between Cofacial Π-Conjugated Oligomer Dimers in Macrocycle Templates. J Phys Chem B 2012; 117:4197-203. [DOI: 10.1021/jp301903u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Su Liu
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Daniela Schmitz
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - Stefan-S. Jester
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - Nicholas J. Borys
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sigurd Höger
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - John M. Lupton
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
- Institut für Experimentelle
und Angewandte Physik, Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Lupton JM. Chromophores in Conjugated Polymers-All Straight? Chemphyschem 2011; 13:901-7. [DOI: 10.1002/cphc.201100770] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 11/10/2022]
|
9
|
Habuchi S, Onda S, Vacha M. Molecular weight dependence of emission intensity and emitting sites distribution within single conjugated polymer molecules. Phys Chem Chem Phys 2011; 13:1743-53. [DOI: 10.1039/c0cp01729a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Lupton JM. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:1689-721. [PMID: 20496402 DOI: 10.1002/adma.200902306] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.
Collapse
Affiliation(s)
- John M Lupton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Walter MJ, Lupton JM. Unraveling the inhomogeneously broadened absorption spectrum of conjugated polymers by single-molecule light-harvesting action spectroscopy. PHYSICAL REVIEW LETTERS 2009; 103:167401. [PMID: 19905721 DOI: 10.1103/physrevlett.103.167401] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 05/28/2023]
Abstract
The distribution of chromophores in single polymer chains is revealed by photoluminescence excitation spectroscopy under excitation of the backbone and detection of emission from an end cap. Spectral broadening in excitation exceeds that in emission. An increase in vibronic coupling for shorter (higher energy) chromophores is resolved, leading to intrinsic spectral broadening and making higher energy units more effective donors. The results suggest routes to increasing absorption breadth while minimizing disorder as required for efficient photovoltaics.
Collapse
Affiliation(s)
- Manfred J Walter
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
12
|
Fückel B, Hinze G, Nolde F, Müllen K, Basché T. Control of the electronic energy transfer pathway between two single fluorophores by dual pulse excitation. PHYSICAL REVIEW LETTERS 2009; 103:103003. [PMID: 19792302 DOI: 10.1103/physrevlett.103.103003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Indexed: 05/22/2023]
Abstract
We report on the control of the energy transfer pathway in individual donor-acceptor dyads by proper timing of light pulses matching the donor and acceptor transition frequencies, respectively. Excitation of both chromophores at virtually the same time induces efficient singlet-singlet annihilation, whereby excitation energy effectively flows from the acceptor to the donor. The dual pulse excitation scheme implemented here allows for all-optical switching of the fluorescence intensity at the single-molecule level. The population of higher excited states at the donor site was found to significantly increase the photobleaching probability.
Collapse
Affiliation(s)
- Burkhard Fückel
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|