1
|
Penkov B, Niedzwiecki D, Lari N, Drndić M, Shepard K. Time-domain event detection using single-instruction, multiple-thread gpGPU architectures in single-molecule biophysical data. COMPUTER PHYSICS COMMUNICATIONS 2024; 300:109191. [PMID: 38737416 PMCID: PMC11086699 DOI: 10.1016/j.cpc.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Discrete amplitude levels in ordered, time-domain data often represent different underlying latent states of the system that is being interrogated. Analysis and feature extraction from these data sets generally require considering the order of each individual point; this approach cannot take advantage of contemporary general-purpose graphics processing units (gpGPU) and single-instruction multiple-data (SIMD) instruction set architectures. Two sources of such data from single-molecule biological measurements are nanopores and single-molecule field effect transistor (smFET) nanotube devices; both generate streams of time-ordered current or voltage data, typically sampled near 1 MS/s, with run times of minutes, yielding terabyte-scale datasets. Here, we present three gpGPU-based algorithms to overcome limitations associated with serial event detection in time series data, resulting in a 250× improvement in the rate with which we can detect salient features in nanopore and smFET datasets. The code is freely available.
Collapse
Affiliation(s)
- Boyan Penkov
- Department of Electrical Engineering, Columbia University, New York, NY, 10027
| | - David Niedzwiecki
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Nicolae Lari
- Department of Electrical Engineering, Columbia University, New York, NY, 10027
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kenneth Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, 10027
| |
Collapse
|
2
|
Park J, Won YH, Han Y, Kim HM, Jang E, Kim D. Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105492. [PMID: 34889031 DOI: 10.1002/smll.202105492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Isotropic InP/ZnSe/ZnS quantum dots (QDs) are prepared at a high reaction temperature, which facilitates ZnSe shell growth on random facets of the InP core. Fast crystal growth enables stacking faults elimination, which induces anisotropic growth, and as a result, improves the photoluminescence (PL) quantum yield by nearly 20%. Herein, the effect of the QD morphology on photophysical properties is investigated by observing the PL blinking and ultrafast charge carrier dynamics. It is found that hot hole trapping is considerably suppressed in isotropic InP QDs, indicating that the stacking faults in the anisotropic InP/ZnSe structures act as defects for luminescence. These results highlight the importance of understanding the correlation between QD shapes and hot carrier dynamics, and present a way to design highly luminescent QDs for further promising display applications.
Collapse
Affiliation(s)
- Jumi Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yu-Ho Won
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Yongseok Han
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyun-Mi Kim
- Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Eunjoo Jang
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Dongho Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Chen W, Gan Z, Green MA, Jia B, Wen X. Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time-Resolved Microspectroscopy. SMALL METHODS 2021; 5:e2000731. [PMID: 34927806 DOI: 10.1002/smtd.202000731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Indexed: 06/14/2023]
Abstract
Halide perovskites are promising candidate materials for the next generation high-efficiency optoelectronic devices. Since perovskites are electronic-ionic mixed conductors, ion dynamics have a critical impact on the performance and stability of perovskite-based applications. However, comprehensively understanding ionic dynamics is challenging, particularly on nanoscale imaging of ionic dynamics in perovskites. In this review, mobile ion dynamics in halide perovskites investigated via luminescence spectroscopy combined with confocal microscopy are discussed, including mobile ion induced fluorescence quenching, phase segregation in mixed halide hybrid perovskite, and mobile ion accumulation at the interface in perovskite devices. Steady-state and time-resolved luminescence imaging techniques, combined with confocal microscopy, are unique tools for probing ionic dynamics in perovskites, providing invaluable insights on ionic dynamics in nanoscale resolution, along with a wide temporal range from picoseconds to hours. The works in this review are not only for understanding mobile ions to improve the design of perovskite-based devices but also foster the development of microspectroscopic methodologies in a broader solid-state physics context of investigating ionic transports in polycrystalline materials.
Collapse
Affiliation(s)
- Weijian Chen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Kensington, NSW, 2052, Australia
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Martin A Green
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Kensington, NSW, 2052, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
4
|
Mukherjee A, Ray KK, Phadnis C, Layek A, Bera S, Chowdhury A. Insights on heterogeneity in blinking mechanisms and non-ergodicity using sub-ensemble statistical analysis of single quantum-dots. J Chem Phys 2019; 151:084701. [PMID: 31470698 DOI: 10.1063/1.5095870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Photo-luminescence (P-L) intermittency (or blinking) in semiconductor nanocrystals (NCs), a phenomenon ubiquitous to single-emitters, is generally considered to be temporally random intensity fluctuations between "bright" ("On") and "dark" ("Off") states. However, individual quantum-dots (QDs) rarely exhibit such telegraphic signals, and yet, a vast majority of single-NC blinking data are analyzed using a single fixed threshold which generates binary trajectories. Furthermore, while blinking dynamics can vary dramatically over NCs in the ensemble, the extent of diversity in the exponents (mOn/Off) of single-particle On-/Off-time distributions (P(tOn/Off)), often used to validate mechanistic models of blinking, remains unclear due to a lack of statistically relevant data sets. Here, we subclassify an ensemble of QDs based on the emissivity of each emitter and subsequently compare the (sub)ensembles' behaviors. To achieve this, we analyzed a large number (>1000) of blinking trajectories for a model system, Mn+2 doped ZnCdS QDs, which exhibits diverse blinking dynamics. An intensity histogram dependent thresholding method allowed us to construct distributions of relevant blinking parameters (such as mOn/Off). Interestingly, we find that single QD P(tOn/Off)s follow either truncated power law or power law, and their relative proportion varies over subpopulations. Our results reveal a remarkable variation in mOn/Off amongst as well as within subensembles, which implies multiple blinking mechanisms being operational amongst various QDs. We further show that the mOn/Off obtained via cumulative single-particle P(tOn/Off) is distinct from the weighted mean value of all single-particle mOn/Off, evidence for the lack of ergodicity. Thus, investigation and analyses of a large number of QDs, albeit for a limited time span of a few decades, are crucial to characterize the spatial heterogeneity in possible blinking mechanisms.
Collapse
Affiliation(s)
- Amitrajit Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Korak Kumar Ray
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chinmay Phadnis
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arunasish Layek
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Soumya Bera
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
5
|
Pietryga JM, Park YS, Lim J, Fidler AF, Bae WK, Brovelli S, Klimov VI. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem Rev 2017; 116:10513-622. [PMID: 27677521 DOI: 10.1021/acs.chemrev.6b00169] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminescent solar concentrators; and control of intraband relaxation for enhanced carrier multiplication in advanced QD photovoltaics. We examine the considerable recent progress on these multiple fronts of nanocrystal research, which has resulted in the first commercialized QD technologies. These successes explain the continuing appeal of this field to a broad community of scientists and engineers, which in turn ensures even more exciting results to come from future exploration of this fascinating class of materials.
Collapse
Affiliation(s)
- Jeffrey M Pietryga
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Young-Shin Park
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States.,Center for High Technology Materials, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Jaehoon Lim
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andrew F Fidler
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Wan Ki Bae
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology , Seoul 02792, Korea
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , I-20125 Milano, Italy
| | - Victor I Klimov
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
6
|
Haddadian EJ, Zhang H, Freed KF, Douglas JF. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles. Sci Rep 2017; 7:41671. [PMID: 28176808 PMCID: PMC5296861 DOI: 10.1038/srep41671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to 'surface-melted' inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a 'glassy' state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations ('colored' or 'pink' noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string-like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains.
Collapse
Affiliation(s)
- Esmael J Haddadian
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL 60637, USA
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta, T6G 1H9 Canada
| | - Karl F Freed
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
7
|
|
8
|
Miller JB, Dandu N, Velizhanin KA, Anthony RJ, Kortshagen UR, Kroll DM, Kilina S, Hobbie EK. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates. ACS NANO 2015; 9:9772-9782. [PMID: 26348831 DOI: 10.1021/acsnano.5b02676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from "bright" nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.
Collapse
Affiliation(s)
- Joseph B Miller
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Naveen Dandu
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Kirill A Velizhanin
- Theoretical Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Rebecca J Anthony
- University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Uwe R Kortshagen
- University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel M Kroll
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Svetlana Kilina
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- North Dakota State University , Fargo, North Dakota 58108, United States
| |
Collapse
|
9
|
Whitcomb KJ, Geisenhoff JQ, Ryan DP, Gelfand MP, Van Orden A. Photon Antibunching in Small Clusters of CdSe/ZnS Core/Shell Quantum Dots. J Phys Chem B 2015; 119:9020-8. [PMID: 25232642 DOI: 10.1021/jp5083856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coincident photon histogram measurements of fluorescence antibunching via confocal microscopy correlated with atomic force microscopy were carried out on (i) individual CdSe/ZnS core/shell quantum dots (QDs), (ii) several well separated QDs, and (iii) clusters of QDs. Individual QDs and well separated QDs showed the expected degree of antibunching for a single emitter and several independent emitters, respectively. The degree of antibunching in small, compact clusters was more characteristic of a single emitter than multiple emitters. The antibunching in clusters provides strong evidence of nonradiative energy transfer between QDs in a cluster. A minimal phenomenological model of energy transfer gives reasonable quantitative agreement with the experimental results.
Collapse
Affiliation(s)
- Kevin J Whitcomb
- †Department of Chemistry and ‡Department of Physics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jessica Q Geisenhoff
- †Department of Chemistry and ‡Department of Physics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Duncan P Ryan
- †Department of Chemistry and ‡Department of Physics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin P Gelfand
- †Department of Chemistry and ‡Department of Physics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alan Van Orden
- †Department of Chemistry and ‡Department of Physics, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
10
|
Wen X, Ho-Baillie A, Huang S, Sheng R, Chen S, Ko HC, Green MA. Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. NANO LETTERS 2015; 15:4644-9. [PMID: 26086568 DOI: 10.1021/acs.nanolett.5b01405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organic-inorganic halide perovskite has emerged as a very promising material for solar cells due to its excellent photovoltaic enabling properties resulting in rapid increase in device efficiency over the last 3 years. Extensive knowledge and in-depth physical understanding in the excited state carrier dynamics are urgently required. Here we investigate the fluorescence intermittency (also known as blinking) in vapor-assisted fabricated CH3NH3PbBr3 perovskite. The evident fluorescence blinking is observed in a dense CH3NH3PbBr3 perovskite film that is composed of nanoparticles in close contact with each other. In the case of an isolated nanoparticle no fluorescence blinking is observed. The "ON" probability of fluorescence is dependent on the excitation intensity and exhibits a similar power rule to semiconductor quantum dots at higher excitation intensity. As the vapor-assisted fabricated CH3NH3PbBr3 perovskite film is a cluster of nanoparticles forming a dense film, it facilitates mobile charge migration between the nanoparticles and charge accumulation at the surface or at the boundary of the nanoparticles. This leads to enhanced Auger-like nonradiative recombination contributing to the fluorescence intermittency observed. This finding provides unique insight into the charge accumulation and migration and thus is of crucial importance for device design and improvement.
Collapse
Affiliation(s)
- Xiaoming Wen
- †Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
| | - Anita Ho-Baillie
- †Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
| | - Shujuan Huang
- †Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
| | - Rui Sheng
- †Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sheng Chen
- †Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
| | - Hsien-chen Ko
- ‡Institute of Physics, Academia Sinica, Nankang, Taipei, 105, Taiwan
| | - Martin A Green
- †Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
11
|
Si J, Volkán-Kacsó S, Eltom A, Morozov Y, McDonald MP, Kuno M, Jankó B. Heterogeneous Fluorescence Intermittency in Single Layer Reduced Graphene Oxide. NANO LETTERS 2015; 15:4317-4321. [PMID: 26057349 DOI: 10.1021/acs.nanolett.5b00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We provide, for the first time, direct experimental evidence for heterogeneous blinking in reduced graphene oxide (rGO) during photolysis. The spatially resolved intermittency originates from regions within individual rGO sheets and shows 1/f-like power spectral density. We describe the evolution of rGO blinking using the multiple recombination center (MRC) model that captures common features of nanoscale blinking. Our results illustrate the universal nature of blinking and suggest a common microscopic origin for the effect.
Collapse
Affiliation(s)
- Jixin Si
- †Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sándor Volkán-Kacsó
- §Noyes Laboratory of Chemical Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Ahmed Eltom
- ‡Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yurii Morozov
- ‡Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew P McDonald
- ‡Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Masaru Kuno
- ‡Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Boldizsár Jankó
- †Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Frantsuzov PA, Volkán-Kacsó S, Jankó B. Universality of the fluorescence intermittency in nanoscale systems: experiment and theory. NANO LETTERS 2013; 13:402-408. [PMID: 23272638 DOI: 10.1021/nl3035674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A variety of optically active nanoscale objects show extremely long correlations in the fluctuations of fluorescence intensity (blinking). Here we performed a systematic study to quantitatively estimate the power spectral density (PSD) of the fluorescence trajectories of colloidal and self-assembled quantum dots (QDs), nanorods (NRs), nanowires (NWs), and organic molecules. We report for the first time a statistically correct method of PSD estimation suitable for these systems. Our method includes a detailed analysis of the confidence intervals. The striking similarity in the spectra of these nanoscale systems, including even a "nonblinking" quantum dot investigated by Wang and collaborators (Nature2009, 459, 685-689), is powerful evidence for the existence of a universal physical mechanism underlying the blinking phenomenon in all of these fluorophores (Frantsuzov et al. Nat. Phys.2008, 4, 519-522). In this paper we show that the features of this universal mechanism can be captured phenomenologically by the multiple recombination center model (MRC) we suggested recently for explaining single colloidal QD intermittency. Within the framework of the MRCs we qualitatively explain all of the important features of fluorescence intensity fluctuations for a broad spectrum of nanoscale emitters.
Collapse
Affiliation(s)
- Pavel A Frantsuzov
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
13
|
Zhang H, Douglas JF. Glassy Interfacial Dynamics of Ni Nanoparticles: Part I Colored Noise, Dynamic Heterogeneity and Collective Atomic Motion. SOFT MATTER 2013; 9:1254-1265. [PMID: 25170342 PMCID: PMC4144362 DOI: 10.1039/c2sm26789f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most condensed materials exhibit a significant fraction of atoms, molecules or particles that are strongly interacting with each other, while being configured geometrically at any instant of time in an 'amorphous' state having a relatively uniform density. Recently, both simulations and experiments have revealed that the dynamics of diverse condensed amorphous materials is generally characterized by significant heterogeneity in the local mobility and by progressively increasing collective motion upon cooling that takes the form of string-like collective particle rearrangements. The direct experimental observation of this type of collective motion, which has been directly linked to the growing relaxation times of glass-forming materials, and its quantification under different thermodynamic conditions, has so far been restricted to colloidal and driven granular fluids. The present work addresses the fundamental problem of how to determine the scale of this type of collective motion in materials composed of molecules or atoms. The basic premise of our work is that large scale dynamic particle clustering in amorphous materials must give rise to large fluctuations in particle mobility so that transport properties, especially those related to particle mobility, should naturally exhibit noise related to the cooperative motion scale. In our initial exploratory study seeking a relationship of this kind, we find 1/fα or 'colored noise', in both potential energy and particle displacements fluctuations of the atoms within the glassy interfacial layer of Ni nanoparticles (NPs). A direct relation between the particle displacement (mobility) noise exponent α and the average polymerization index of the string-like collective motion L is observed for a range of NP sizes, temperatures and for surface doping of the NPs with other metal atoms (Ag, Au, Pt) to change of fragility of the glassy interfacial layer at the surface of the Ni NPs. We also introduce a successful analytic model to understand this relationship between α and L.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, AB T6G 2V4 Canada
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 USA
| |
Collapse
|
14
|
Kang H, Clarke ML, Lacerda SHDP, Karim A, Pease LF, Hwang J. Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms. BIOMEDICAL OPTICS EXPRESS 2012; 3:1312-25. [PMID: 22741078 PMCID: PMC3370972 DOI: 10.1364/boe.3.001312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 05/04/2023]
Abstract
Understanding the optical properties of clustered quantum dots (QDs) is essential to the design of QD-based optical phantoms for molecular imaging. Single and clustered core/shell colloidal QDs of dimers, trimers, and tetramers are self-assembled, separated, and preferentially collected using electrospray differential mobility analysis (ES-DMA) with electrostatic deposition. Multimodal optical characterization and analysis of their dynamical photoluminescence (PL) properties enables the long-term evaluation of the physicochemical and optical properties of QDs in a single or a clustered state. A multimodal time-correlated spectroscopic confocal microscope capable of simultaneously measuring the time evolution of PL intensity fluctuation, PL lifetime, and emission spectra reveals the long-term dynamic optical properties of interacting QDs in individual dimeric clusters of QDs. This new method will benefit research into the quantitative interpretation of fluorescence intensity and lifetime results in QD-based molecular imaging techniques. The process of photooxidation leads to coupling of the QDs in a dimer, leading to unique optical properties when compared to an isolated QD. These results guide the design and evaluation of QD-based phantom materials for the validation of the PL measurements for quantitative molecular imaging of biological samples labeled with QD probes.
Collapse
Affiliation(s)
- HyeongGon Kang
- Radiation and Biomolecular Physics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Matthew L. Clarke
- Radiation and Biomolecular Physics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Silvia H. De Paoli Lacerda
- Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Bethesda, MD 20892, USA
| | - Alamgir Karim
- Poymers Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
- Current Address: College of Polymer Science and Polymer Engineering, Goodyear Polymer Center, The University of Akron, Akron, OH 44325, USA
| | - Leonard F. Pease
- Departments of Chemical Engineering, Pharmaceutics & Pharmaceutical Chemistry, and Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeeseong Hwang
- Radiation and Biomolecular Physics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| |
Collapse
|
15
|
Riley EA, Hess CM, Whitham PJ, Reid PJ. Beyond power laws: A new approach for analyzing single molecule photoluminescence intermittency. J Chem Phys 2012; 136:184508. [DOI: 10.1063/1.4717618] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Abramson J, Palma M, Wind SJ, Hone J. Quantum dot nanoarrays: self-assembly with single-particle control and resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2207-2211. [PMID: 22431200 DOI: 10.1002/adma.201104216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/12/2012] [Indexed: 05/31/2023]
Abstract
The develpoment of a highly selective immobilization strategy for the self-assembly of quantum dots (QDs) from solution on lithographically defined, biochemically functionalized metal nanopatterns is presented. Nanosale control is achieved for the formation of predominantly single-particle structures consisting of a QD coupled to a metal nanoparticle, and assembled into an ordered nanoarray.
Collapse
Affiliation(s)
- J Abramson
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
17
|
Yang H. Change-Point Localization and Wavelet Spectral Analysis of Single-Molecule Time Series. SINGLE-MOLECULE BIOPHYSICS 2011. [DOI: 10.1002/9781118131374.ch9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Song N, Zhu H, Jin S, Lian T. Hole transfer from single quantum dots. ACS NANO 2011; 5:8750-8759. [PMID: 21962001 DOI: 10.1021/nn202713x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Photoinduced hole transfer dynamics from single CdSe/CdS(3ML)/CdZnS(2ML)/ZnS(2ML) core/multishell quantum dots (QDs) to phenothiazine (PTZ) molecules were studied by single QD fluorescence spectroscopy to investigate the static and dynamic heterogeneities of the hole transfer process as well as its effect on the blinking dynamics of QDs. Ensemble-averaged transient absorption and fluorescence decay measurements show that excitons in QDs dissociate by transferring the valence band hole to PTZ with a time constant of 50 ns for the 1:1 PTZ-QD complex, and the subsequent charge recombination process (i.e., electron transfer from the conduction band of the reduced QD to oxidized PTZ to regenerate the complex in the ground state) occurs mainly on the 100 to 1000 ns time scale. Single QD-PTZ complexes show pronounced correlated fluctuations of fluorescence intensity and lifetime with time. In addition to the dynamic fluctuation, there are considerable heterogeneities of average hole transfer rate among different QD-PTZ complexes. The hole transfer process has little effect on the statistics of the off-states, which is often believed to be positively charged QDs with a valence band hole. Instead, it increases the probability of weakly emissive or "gray" states.
Collapse
Affiliation(s)
- Nianhui Song
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
19
|
Myalitsin A, Strelow C, Wang Z, Li Z, Kipp T, Mews A. Diameter scaling of the optical band gap in individual CdSe nanowires. ACS NANO 2011; 5:7920-7927. [PMID: 21859079 DOI: 10.1021/nn202199f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The diameter dependence of the optical band gap of single CdSe nanowires (NWs) is investigated by a combination of atomic force microscopy, scanning fluorescence microscopy, and transmission electron microscopy. We find a good congruence of the experimental data to calculations within the effective mass approximation taking into account quantization, exciton Coulomb interaction, and dielectric mismatch. The experimental data are furthermore compared to different theoretical approaches. We discuss the influence of alternating wurtzite and zinc blende segments along the NWs on their optical properties.
Collapse
Affiliation(s)
- Anton Myalitsin
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Collective fluorescence enhancement in nanoparticle clusters. Nat Commun 2011; 2:364. [DOI: 10.1038/ncomms1357] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/19/2011] [Indexed: 11/09/2022] Open
|
21
|
Layek A, De S, Thorat R, Chowdhury A. Spectrally Resolved Photoluminescence Imaging of ZnO Nanocrystals at Single-Particle Levels. J Phys Chem Lett 2011; 2:1241-1247. [PMID: 26295417 DOI: 10.1021/jz200370s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The intrinsic spectral line widths of defect-related transitions in quantum-confined semiconductor nanocrystals are often difficult to estimate using ensemble measurements because the extent of inhomogeneous broadening due to particle size distributions is not known precisely. To address this problem, we performed spectrally resolved photoluminescence (PL) microscopy of individual ZnO NC by directly populating the defects states using low-energy laser excitation. The temporal evolution of PL intensities shows discrete blinking behaviors, suggesting that the NCs are detected near single-particle levels. The transition energies of individual NCs are found to fluctuate around their mean position (2.25 eV) by ∼0.130 eV, which is attributed to particle size distribution and defects densities associated with each NC. The spectral line width associated with defect emission envelope of ZnO NCs is found to be inherently broad (200-400 meV), which further establishes the presence of multiple closely spaced defect energy levels within every ZnO NC.
Collapse
Affiliation(s)
- Arunasish Layek
- Department of Chemistry and National Center for Photovoltaic Research and Education (NCPRE), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suman De
- Department of Chemistry and National Center for Photovoltaic Research and Education (NCPRE), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ruhi Thorat
- Department of Chemistry and National Center for Photovoltaic Research and Education (NCPRE), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry and National Center for Photovoltaic Research and Education (NCPRE), Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
22
|
Krüger TPJ, Ilioaia C, van Grondelle R. Fluorescence Intermittency from the Main Plant Light-Harvesting Complex: Resolving Shifts between Intensity Levels. J Phys Chem B 2011; 115:5071-82. [DOI: 10.1021/jp201609c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tjaart P. J. Krüger
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Cristian Ilioaia
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Ruan G, Winter JO. Alternating-color quantum dot nanocomposites for particle tracking. NANO LETTERS 2011; 11:941-945. [PMID: 21322589 DOI: 10.1021/nl103233b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Because of their extraordinary brightness and photostability, quantum dots (QDs) have tremendous potential for long-term, particle tracking in heterogeneous systems (e.g., living cells, microfluidic flow). However, one of their major limitations is blinking, an intermittent loss of fluorescence, characteristic of individual and small clusters of QDs, that interrupts particle tracking. Recently, several research groups have reported "nonblinking QDs". However, blinking is the primary method used to confirm nanoparticle aggregation status in situ, and single or small clusters of nanoparticles with continuous fluorescence emission are difficult to discern from large aggregates. Here, we describe a new class of quantum dot-based composite nanoparticles that solve these two seemingly irreconcilable problems by exhibiting near-continuous, alternating-color fluorescence, which permits aggregation status discrimination by observable color changes even during motion across the focal plane. These materials will greatly enhance particle tracking in cell biology, biophysics, and fluid mechanics.
Collapse
Affiliation(s)
- Gang Ruan
- Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
24
|
Volkán-Kacsó S, Frantsuzov PA, Jankó B. Correlations between subsequent blinking events in single quantum dots. NANO LETTERS 2010; 10:2761-2765. [PMID: 20698587 DOI: 10.1021/nl100253r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We explain the long-range correlations found by Stefani and his co-workers between blinking times of single colloidal quantum dot emission. Our explanation is based on the multiple recombination center model we recently suggested. The model produces positive correlations between subsequent on--on and off--off times and negative on--off correlations, as observed in the experiment. We also reproduce qualitatively the dependence of correlations between subsequent on--on, on-off, and off--off times on the number of switching events separating them.
Collapse
|
25
|
Ruan G, Vieira G, Henighan T, Chen A, Thakur D, Sooryakumar R, Winter JO. Simultaneous magnetic manipulation and fluorescent tracking of multiple individual hybrid nanostructures. NANO LETTERS 2010; 10:2220-2224. [PMID: 20450169 DOI: 10.1021/nl1011855] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Controlled transport of multiple individual nanostructures is crucial for nanoassembly and nanodelivery but is challenging because of small particle size. Although atomic force microscopy and optical and magnetic tweezers can control single particles, it is extremely difficult to scale these technologies for multiple structures. Here, we demonstrate a "nano-conveyer-belt" technology that permits simultaneous transport and tracking of multiple individual nanospecies in a selected direction. The technology consists of two components: nanocontainers, which encapsulate the nanomaterials transported, and nanoconveyer arrays, which use magnetic force to manipulate individual or aggregate nanocontainers. This technology is extremely versatile. For example, nanocontainers encapsulate quantum dots or rods and superparamagnetic iron oxide nanoparticles in <100 nm nanocontainers, the smallest magnetic composites to have been simultaneously moved and optically tracked. Similarly, the nanoconveyers consist of patterned microdisks or zigzag nanowires, whose dimensions can be controlled through micropatterning. The nanoconveyer belt technology could impact multiple fields, including nanoassembly, biomechanics, nanomedicine, and nanofluidics.
Collapse
Affiliation(s)
- Gang Ruan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Crouch CH, Sauter O, Wu X, Purcell R, Querner C, Drndic M, Pelton M. Facts and artifacts in the blinking statistics of semiconductor nanocrystals. NANO LETTERS 2010; 10:1692-1698. [PMID: 20364845 DOI: 10.1021/nl100030e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Since its initial discovery just over a decade ago, blinking of semiconductor nanocrystals has typically been described in terms of probability distributions for durations of bright, or "on," states and dark, or "off," states. These distributions are obtained by binning photon counts in order to construct a time series for emission intensity and then applying a threshold to distinguish on states from off states. By examining experimental data from CdSe/ZnS core/shell nanocrystals and by simulating this data according to a simple, two-state blinking model, we find that the apparent truncated power-law distributions of on times can depend significantly on the choices of binning time and threshold. For example, increasing the binning time by a factor of 10 can double the apparent truncation time and change the apparent power-law exponent by 30%, even though the binning time is only 3% of the truncation time. Our findings indicate that stringent experimental conditions are needed to accurately determine blinking-time probability distributions. Similar considerations should apply to any phenomenon characterized by time series data that displays telegraph noise.
Collapse
Affiliation(s)
- Catherine H Crouch
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Frantsuzov PA, Volkán-Kacsó S, Jankó B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. PHYSICAL REVIEW LETTERS 2009; 103:207402. [PMID: 20366010 DOI: 10.1103/physrevlett.103.207402] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Indexed: 05/25/2023]
Abstract
We present a new physical model resolving a long-standing mystery of the power-law distributions of the blinking times in single colloidal quantum dot fluorescence. The model considers the nonradiative relaxation of the exciton through multiple recombination centers. Each center is allowed to switch between two quasistationary states. We point out that the conventional threshold analysis method used to extract the exponents of the distributions for the on times and off times has a serious flaw: the qualitative properties of the distributions strongly depend on the threshold value chosen for separating the on and off states. Our new model explains naturally this threshold dependence, as well as other key experimental features of the single quantum dot fluorescence trajectories, such as the power-law power spectrum (1/f noise).
Collapse
Affiliation(s)
- Pavel A Frantsuzov
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|