1
|
Kikuchi M, Hara M, Nagano S, Ebe H, Matsui J. Order-Order Transition in Statistical Copolymer Thin Film Induced by LCST-Type Behavior. J Phys Chem B 2024. [PMID: 39046872 DOI: 10.1021/acs.jpcb.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this paper, we describe the formation of an ordered structure in a copolymer thin film through hydration, which subsequently transitions to a different ordered structure upon dehydration. A statistical copolymer of poly(N-octadecyl acrylamide-stat-hydroxymethyl acrylamide) with a comonomer content ratio of 1:1, denoted as p(ODA50/HEAm50), was synthesized via free radical copolymerization. We prepared a thin film of this copolymer on a solid substrate and annealed it at 60 °C under humid conditions. This treatment formed a side-chain segregated lamellar (SCSegL) structure, in which the ODA and HEAm units are oriented perpendicularly to the polymer backbone and opposite each other. Increasing the annealing temperature to 90 °C led to a transition to a side-chain mixed lamellar (SCMixL) structure, where the ODA and HEAm units are also oriented perpendicularly to the polymer backbone but in both directions. The quartz crystal microbalance (QCM) data indicate that p(ODA50/HEAm50) exhibits LCST-like behavior with a transition temperature of approximately 50 °C. We conclude that the formation of the SCSegL structure at 60 °C is due to pronounced segregation between the water-adsorbed HEAm groups and the hydrophobic ODA. Conversely, dehydration at 90 °C reduces the segregation forces, forming the SCMixL structure, which exhibits lower strain. These results demonstrate that the p(ODA50/HEAm50) film undergoes an order-to-order transition driven by the hydration-dehydration process. Additionally, we found that changes in the lamellar structure significantly alter the swelling properties of the film.
Collapse
Affiliation(s)
- Mao Kikuchi
- Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| | - Mitsuo Hara
- Faculty of Engineering and Design, Kagawa University, Hayashi-Cho, Takamatsu, Kagawa 761-0396, Japan
| | - Shusaku Nagano
- College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Hinako Ebe
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| | - Jun Matsui
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| |
Collapse
|
2
|
Magruder BR, Morse DC, Ellison CJ, Dorfman KD. Boundary Frustration in Double-Gyroid Thin Films. ACS Macro Lett 2024; 13:382-388. [PMID: 38478981 DOI: 10.1021/acsmacrolett.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Self-consistent field theory for thin films of AB diblock polymers in the double-gyroid phase reveals that in the absence of preferential wetting of monomer species at the film boundaries, films with the (211) plane oriented parallel to the boundaries are more stable than other orientations, consistent with experimental results. This preferred orientation is explained in the context of boundary frustration. Specifically, the angle of intersection between the A/B interface and the film boundary, the wetting angle, is thermodynamically restricted to a narrow range of values. Most termination planes in the double gyroid cannot accommodate this narrow range of wetting angles without significant local distortion relative to the bulk morphology; the (211)-oriented termination plane with the "double-wave" pattern produces relatively minimal distortion, making it the least frustrated boundary. The principle of boundary frustration provides a framework to understand the relative stability of termination planes for complex ordered block polymer phases confined between flat, nonpreferential boundaries.
Collapse
Affiliation(s)
- Benjamin R Magruder
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - David C Morse
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Sun YS, Jian YQ, Yang ST, Wang HF, Junisu BA, Chen CY, Lin JM. Epitaxial Growth of Surface Perforations on Parallel Cylinders in Terraced Films of Block Copolymer/Homopolymer Blends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7680-7691. [PMID: 38551605 PMCID: PMC11008238 DOI: 10.1021/acs.langmuir.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Due to incommensurability between initial thickness and interdomain distance, thermal annealing inevitably produces relief surface terraces (islands and holes) of various morphologies in thin films of block copolymers. We have demonstrated three kinds of surface terraces in blend films: polygrain terraces with diffuse edges, polygrain terraces with step edges, and pseudo-monograin terraces with island coarsening. The three morphologies were obtained by three different thermal histories, respectively. The thermal histories were imposed on blend films, which were prepared by mixing a homopolystyrene (hPS, 6.1 kg/mol) with a weakly segregated, symmetry polystyrene-block poly(methyl methacrylate) (PS-b-PMMA, 42 kg/mol) followed by spin coating. At a given weight-fraction ratio of PS-b-PMMA/hPS = 75/25, the interior of the blend films forms parallel cylinders. Nevertheless, the surface of the blend films is always dominated by a skin layer of perforations, which epitaxially grow on top of parallel cylinders. By oxygen plasma etching at various time intervals to probe interior nanodomains, the epitaxial relationship between surface perforations and parallel cylinders has been identified by a scanning electron microscope.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Yi-Qing Jian
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Shin-Tung Yang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Hsiao-Fang Wang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Belda Amelia Junisu
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Chun-Yu Chen
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
4
|
Weisbord I, Segal-Peretz T. Revealing the 3D Structure of Block Copolymers with Electron Microscopy: Current Status and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58003-58022. [PMID: 37338172 DOI: 10.1021/acsami.3c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Block copolymers (BCPs) are considered model systems for understanding and utilizing self-assembly in soft matter. Their tunable nanometric structure and composition enable comprehensive studies of self-assembly processes as well as make them relevant materials in diverse applications. A key step in developing and controlling BCP nanostructures is a full understanding of their three-dimensional (3D) structure and how this structure is affected by the BCP chemistry, confinement, boundary conditions, and the self-assembly evolution and dynamics. Electron microscopy (EM) is a leading method in BCP 3D characterization owing to its high resolution in imaging nanosized structures. Here we discuss the two main 3D EM methods: namely, transmission EM tomography and slice and view scanning EM tomography. We present each method's principles, examine their strengths and weaknesses, and discuss ways researchers have devised to overcome some of the challenges in BCP 3D characterization with EM- from specimen preparation to imaging radiation-sensitive materials. Importantly, we review current and new cutting-edge EM methods such as direct electron detectors, energy dispersive X-ray spectroscopy of soft matter, high temporal rate imaging, and single-particle analysis that have great potential for expanding the BCP understanding through EM in the future.
Collapse
Affiliation(s)
- Inbal Weisbord
- Chemical Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Segal-Peretz
- Chemical Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Lee TL, Lin JW, Ho RM. Controlled Self-Assembly of Polystyrene- block-Polydimethylsiloxane for Fabrication of Nanonetwork Silica Monoliths. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54194-54202. [PMID: 36404593 DOI: 10.1021/acsami.2c15078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, this work aims to carry out controlled self-assembly of single-composition block copolymer for the fabrication of various nanonetwork silica monoliths. With the use of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS), nanonetwork-structured films could be fabricated by solvent annealing using a PS-selective solvent (chloroform). By simply tuning the flow rate of nitrogen purge to the PS-selective solvent for the controlled self-assembly of the PS-b-PDMS, gyroid- and diamond-structured monoliths can be formed due to the difference in the effective volume of PS in the PS-b-PDMS during solvent annealing. As a result, well-ordered nanonetwork SiO2 (silica) monoliths can be fabricated by templated sol-gel reaction using hydrofluoric acid etched PS-b-PDMS film as a template followed by the removal of the PS. This bottom-up approach for the fabrication of nanonetwork materials through templated synthesis is appealing to create nanonetwork materials for various applications.
Collapse
Affiliation(s)
- Tsung-Lun Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jheng-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| |
Collapse
|
6
|
Park J, Staiger A, Mecking S, Winey KI. Ordered Nanostructures in Thin Films of Precise Ion-Containing Multiblock Copolymers. ACS CENTRAL SCIENCE 2022; 8:388-393. [PMID: 35350601 PMCID: PMC8949628 DOI: 10.1021/acscentsci.1c01594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 05/05/2023]
Abstract
We demonstrate that ionic functionality in a multiblock architecture produces highly ordered and sub-3 nm nanostructures in thin films, including bicontinuous double gyroids. At 40 °C, precise ion-containing multiblock copolymers of poly(ethylene-b-lithium sulfosuccinate ester) n (PESxLi, x = 12 or 18) exhibit layered ionic assemblies parallel to the substrate. These ionic layers are separated by crystalline polyethylene blocks with the polymer backbones perpendicular to the substrate. Notably, above the melting temperature (T m) of the polyethylene blocks, layered PES18Li thin films transform into a highly oriented double-gyroid morphology with the (211) plane (d 211 = 2.5 nm) aligned parallel to the substrate. The cubic lattice parameter (a gyr) of the double gyroid is 6.1 nm. Upon heating further above T m, the double-gyroid morphology in PES18Li transitions into hexagonally packed cylinders with cylinders parallel to the substrate. These layered, double-gyroid, and cylinder nanostructures form epitaxially and spontaneously without secondary treatment, such as interfacial layers and solvent vapor annealing. When the film thickness is less than ∼3a gyr, double gyroids and cylinders coexist due to the increased confinement. For PES12Li above T m, the layered ionic assemblies simply transform into disordered morphology. Given the chemical tunability of ion-functionalized multiblock copolymers, this study reveals a versatile pathway to fabricating ordered nanostructures in thin films.
Collapse
Affiliation(s)
- Jinseok Park
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department
of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department
of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular
Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Hong JW, Chang JH, Hung HH, Liao YP, Jian YQ, Chang ICY, Huang TY, Nelson A, Lin IM, Chiang YW, Sun YS. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene- block-poly(methyl methacrylate). Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Jung-Hong Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - I-Ming Lin
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
8
|
Hong JW, Jian YQ, Liao YP, Hung HH, Huang TY, Nelson A, Tsao IY, Wu CM, Sun YS. Distributions of Deuterated Polystyrene Chains in Perforated Layers of Blend Films of a Symmetric Polystyrene -block-poly(methyl methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13046-13058. [PMID: 34696591 DOI: 10.1021/acs.langmuir.1c02132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have examined the spatial distributions of polymer chains in blend films of weakly segregated polystyrene-block-poly(methyl methacrylate) [P(S-b-MMA)] and deuterated polystyrene (dPS). By fine-tuning the composition (ϕPS+dPS = 63.8 vol %) of the total PS/dPS component and annealing temperature (230 and 270 °C), P(S-b-MMA)/dPS blend films mainly form perforated layers with a parallel orientation (hereafter PLs//). The distributions of dPS in PLs// were probed by grazing-incidence small-angle neutron scattering (GISANS) and time-of-flight neutron reflectivity (ToF-NR). GISANS and ToF-NR results offer evidence that dPS chains preferentially locate at the free surface and within the PS layers for blend films that were annealed at 230 °C. Upon annealing at 270 °C, dPS chains distribute within PS layers and perforated PMMA layers. Nevertheless, dPS chains still retain a surface preference for thin films. In contrast, such surface segregation of dPS chains is prohibited for thick films when annealed at 270 °C.
Collapse
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - I-Yu Tsao
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
9
|
Hong JW, Chang JH, Chang ICY, Sun YS. Phase behavior in thin films of weakly segregated block copolymer/homopolymer blends. SOFT MATTER 2021; 17:9189-9197. [PMID: 34586138 DOI: 10.1039/d1sm01005k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have demonstrated the phase behavior of substrate-supported films of a symmetric weakly segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer and its blends with homopolymer polystyrene (PS) at different compositions. Upon increasing the content of added PS in the blends, lamellae (L), perforated layers (PL), double gyroid (DG) and cylinders (C) are obtained in sequence for films. Among these nanodomains, PL and DG only exist in a narrow ϕPS region (ϕPS denotes the volume fraction of PS). At ϕPS = 64%, tuning film thickness and annealing temperature can produce parallel PL or DG with {121}DG lattice planes being parallel to the substrate surface. The effects of annealing temperature and film thickness on the formation of PL and DG are examined. In thin films with n ≈ 3 (n denotes the ratio of initial film thickness to inter-domain spacing), the PL phase solely exists regardless of temperature. However, for thick films with n ≈ 6 and 10, thermal annealing at the most accessible temperature produces films containing both PL and DG of various fractions, but a low temperature tends to favor a greater fraction of PL. The PL phase becomes the only discernible phase if thick films are shortly annealed at 230 °C.
Collapse
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Jung-Hong Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
10
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
11
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021; 60:8710-8716. [DOI: 10.1002/anie.202016384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
12
|
Ogawa H, Takenaka M, Miyazaki T. Molecular Weight Effect on the Transition Processes of a Symmetric PS- b-P2VP during Spin-Coating. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Tsukasa Miyazaki
- Comprehensive Research Organization for Science and Society, Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
13
|
Hampu N, Werber JR, Chan WY, Feinberg EC, Hillmyer MA. Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS NANO 2020; 14:16446-16471. [PMID: 33315381 DOI: 10.1021/acsnano.0c07883] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliable and equitable access to safe drinking water is a major and growing challenge worldwide. Membrane separations represent one of the most promising strategies for the energy-efficient purification of potential water sources. In particular, porous membranes are used for the ultrafiltration (UF) of water to remove contaminants with nanometric sizes. However, despite exhibiting excellent water permeability and solution processability, existing UF membranes contain a broad distribution of pore sizes that limit their size selectivity. To maximize the potential utility of UF membranes and allow for precise separations, improvements in the size selectivity of these systems must be achieved. Block polymers represent a potentially transformative solution, as these materials self-assemble into well-defined domains of uniform size. Several different strategies have been reported for integrating block polymers into UF membranes, and each strategy has its own set of materials and processing considerations to ensure that uniform and continuous pores are generated. This Review aims to summarize and critically analyze the chemistries, processing techniques, and properties required for the most common methods for producing porous membranes from block polymers, with a particular focus on the fundamental mechanisms underlying block polymer self-assembly and pore formation. Critical structure-property-performance metrics will be analyzed for block polymer UF membranes to understand how these membranes compare to commercial UF membranes and to identify key research areas for continued improvements. This Review is intended to inform readers of the capabilities and current challenges of block polymer UF membranes, while stimulating critical thought on strategies to advance these technologies.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wui Yarn Chan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Feinberg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Mahalik JP, Li W, Savici AT, Hahn S, Lauter H, Ambaye H, Sumpter BG, Lauter V, Kumar R. Dispersity-Driven Stabilization of Coexisting Morphologies in Asymmetric Diblock Copolymer Thin Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jyoti P. Mahalik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916, United States
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Wei Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Andrei T. Savici
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Steven Hahn
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hans Lauter
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Haile Ambaye
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valeria Lauter
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Dispersity effects on phase behavior and structural evolution in ultrathin films of a deuterated polystyrene-block-poly(methyl methacrylate) diblock copolymer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Yu JY, Landis S, Fontaine P, Daillant J, Guenoun P. Oriented thick films of block copolymer made by multiple successive coatings: perforated lamellae versus oriented lamellae. SOFT MATTER 2020; 16:8179-8186. [PMID: 32761014 DOI: 10.1039/d0sm00603c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Building 3D ordered nanostructures by copolymer deposition on a substrate implies a full control beyond the thin film regime. We have used here block copolymers (BCPs) forming bulk lamellar phases to form thick, i.e. much thicker than the lamellar period, structured films on a substrate. Films are formed by a simple method of multiple successive coatings. The film structure is controlled using the combined action of surface templating and annealing time. Sections of the thick layers were characterized by scanning electron microscopy (SEM) after etching of one of the BCP moieties. We show that perfect hexagonally perforated films (HPL) with lamellae parallel to the substrate are formed for a wide thickness range up to 300 nm. Grazing incidence small angle X-ray scattering (GISAXS) confirms such an organization by revealing that perforations sit on a hexagonal lattice. A lamellar organization perpendicular to the substrate is shown to take over for thicker films. A scenario consistent with our observations is proposed, where the sequence of phases results from the balance between surface and stretching energy effects.
Collapse
Affiliation(s)
- Jian-Yuan Yu
- Université Paris-Saclay, CEA, CNRS, NIMBE, Lions, 91191, Gif-sur-Yvette, France. and R&D division, Niching Industrial Corp., Chupei City, Hsinchu County, Taiwan
| | - Stefan Landis
- CEA, LETI, Minatec, 17 Rue des Martyrs, F-38054, Grenoble Cedex 9, France
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, Lions, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Jo S, Kim Y, Jo S, Kim K, Ryu DY. Stacked Layer to Gyroid Structures in Partially Fluorinated PS-<i>b</i>-P<i>t</i>BMA Copolymer Films. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seongjun Jo
- Department of Chemical and Biomolecular Engineering, Yonsei University
| | - Yeongsik Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University
| | - Seungyun Jo
- Department of Chemical and Biomolecular Engineering, Yonsei University
| | - Kyungkon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University
| |
Collapse
|
18
|
Ji S, Zhang R, Zhang L, Yuan Y, Lin J. Self‐assembled nanostructures of diblock copolymer films under homopolymer topcoats. POLYM INT 2020. [DOI: 10.1002/pi.6009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siyu Ji
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| | - Runrong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| | - Yuan Yuan
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai China
| |
Collapse
|
19
|
Guliyeva A, Vayer M, Warmont F, Takano A, Matsushita Y, Sinturel C. Transition Pathway between Gyroid and Cylindrical Morphology in Linear Triblock Terpolymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aynur Guliyeva
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Marylène Vayer
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Fabienne Warmont
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Atsushi Takano
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603 Nagoya, Japan
| | - Yushu Matsushita
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603 Nagoya, Japan
| | - Christophe Sinturel
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| |
Collapse
|
20
|
Lee J, Park J, Jung J, Lee D, Chang T. Phase Behavior of Polystyrene- b-polyisoprene- b-poly(methyl methacrylate) Triblock Terpolymer upon Solvent Vapor Annealing. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Self-Assembly Investigations of Sulfonated Poly(methyl methacrylate-block-styrene) Diblock Copolymer Thin Films. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/4375838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(methyl methacrylate-block-styrene) block copolymers (BCs) of low dispersity were selectively sulfonated on the styrenic segment. Several combinations of degree of polymerization and volume fraction of each block were investigated to access different self-assembled morphologies. Thin films of the sulfonated block copolymers were prepared by spin-coating and exposed to solvent vapor (SVA) or thermal annealing (TA) to reach equilibrium morphologies. Atomic force microscopy (AFM) was employed for characterizing the films, which exhibited a variety of nanometric equilibrium and nonequilibrium morphologies. Highly sulfonated samples revealed the formation of a honeycomb-like morphology obtained in solution rather than by the self-assembly of the BC in the solid state. The described morphologies may be employed in applications such as templates for nanomanufacturing and as cover and binder of catalytic particles in fuel cells.
Collapse
|
22
|
Wen T, Wang HF, Georgopanos P, Avgeropoulos A, Ho RM. Three-dimensional visualization of phase transition in polystyrene-block-polydimethylsiloxane thin film. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Yang Q, Loos K. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects. Polymers (Basel) 2017; 9:E525. [PMID: 30965824 PMCID: PMC6418618 DOI: 10.3390/polym9100525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/26/2022] Open
Abstract
Solvent vapor annealing of block copolymer (BCP) thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for nanolithography and hybrid materials preparation. However, precise control of the arising morphologies is essential, but in most cases difficult to achieve. In this work, we investigated the solvent and thickness effects on the morphology of poly(styrene-b-2 vinyl pyridine) (PS-b-P2VP) thin films with a film thickness range from 0.4 L₀ up to 0.8 L₀. Ordered perpendicular structures were achieved. One of the main merits of our work is that the phase behavior of the ultra-high molecular weight BCP thin films, which hold a 100-nm sized domain distance, can be easily monitored via current available techniques, such as scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM). Systematic monitoring of the self-assembly behavior during solvent vapor annealing can thus provide an experimental guideline for the optimization of processing conditions of related BCP films systems.
Collapse
Affiliation(s)
- Qiuyan Yang
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
24
|
Hsu CH, Yue K, Wang J, Dong XH, Xia Y, Jiang Z, Thomas EL, Cheng SZD. Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | | | - Zhang Jiang
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Edwin L. Thomas
- Department
of Materials Science and Nano Engineering and Department of Chemical
and Biomolecular Engineering, Brown School of Engineering, Rice University, Houston, Texas 77251, United States
| | | |
Collapse
|
25
|
Aissou K, Mumtaz M, Portale G, Brochon C, Cloutet E, Fleury G, Hadziioannou G. Templated Sub-100-nm-Thick Double-Gyroid Structure from Si-Containing Block Copolymer Thin Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603777. [PMID: 28383179 DOI: 10.1002/smll.201603777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/30/2017] [Indexed: 05/21/2023]
Abstract
The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films.
Collapse
Affiliation(s)
- Karim Aissou
- Laboratoire de Chimie des Polymères Organiques, CNRS - ENSCPB - Université de Bordeaux, 16 Avenue Pey-Berland, F-33607, Pessac Cedex, France
| | - Muhammad Mumtaz
- Laboratoire de Chimie des Polymères Organiques, CNRS - ENSCPB - Université de Bordeaux, 16 Avenue Pey-Berland, F-33607, Pessac Cedex, France
| | - Giuseppe Portale
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, Nijenborgh 4, NL-9747, AG, Groningen, The Netherlands
| | - Cyril Brochon
- Laboratoire de Chimie des Polymères Organiques, CNRS - ENSCPB - Université de Bordeaux, 16 Avenue Pey-Berland, F-33607, Pessac Cedex, France
| | - Eric Cloutet
- Laboratoire de Chimie des Polymères Organiques, CNRS - ENSCPB - Université de Bordeaux, 16 Avenue Pey-Berland, F-33607, Pessac Cedex, France
| | - Guillaume Fleury
- Laboratoire de Chimie des Polymères Organiques, CNRS - ENSCPB - Université de Bordeaux, 16 Avenue Pey-Berland, F-33607, Pessac Cedex, France
| | - Georges Hadziioannou
- Laboratoire de Chimie des Polymères Organiques, CNRS - ENSCPB - Université de Bordeaux, 16 Avenue Pey-Berland, F-33607, Pessac Cedex, France
| |
Collapse
|
26
|
Block copolymer thin films: Characterizing nanostructure evolution with in situ X-ray and neutron scattering. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Orientation and relaxation behaviors of lamellar microdomains of poly(methyl methacrylate)-b-poly(n-butyl acrylate) thin films as revealed by grazing-incidence small-angle X-ray scattering. Polym J 2016. [DOI: 10.1038/pj.2016.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Shelton CK, Epps TH. Mapping Substrate Surface Field Propagation in Block Polymer Thin Films. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cameron K. Shelton
- Department of Chemical
and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department of Chemical
and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Saito I, Miyazaki T, Yamamoto K. Depth-Resolved Structure Analysis of Cylindrical Microdomain in Block Copolymer Thin Film by Grazing-Incidence Small-Angle X-ray Scattering Utilizing Low-Energy X-rays. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Itsuki Saito
- Department
of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tsukasa Miyazaki
- Nitto Denko Corporation, 1-1-2, Shimohozumi,
Ibaraki, Osaka 567-8680, Japan
| | - Katsuhiro Yamamoto
- Department
of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
30
|
Shelton CK, Epps TH. Decoupling Substrate Surface Interactions in Block Polymer Thin Film Self-Assembly. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00833] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Cameron K. Shelton
- Department of Chemical & Biomolecular Engineering and ‡Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department of Chemical & Biomolecular Engineering and ‡Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
31
|
Jung J, Lee J, Park HW, Chang T, Sugimori H, Jinnai H. Epitaxial Phase Transition between Double Gyroid and Cylinder Phase in Diblock Copolymer Thin Film. Macromolecules 2014. [DOI: 10.1021/ma5020275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jueun Jung
- Division
of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Junyoung Lee
- Division
of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Hae-Woong Park
- Division
of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Taihyun Chang
- Division
of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Hidekazu Sugimori
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Hiroshi Jinnai
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- Institute
for Materials Chemistry and Engineering (IMCE), CE80, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
32
|
Zhao Q, Feng Y, Zhang C, Du Z, Tian M, Mi J. Extension of integral equation theory to microphase separation of block copolymers. Mol Phys 2014. [DOI: 10.1080/00268976.2014.985754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Cai XJ, Genzer J, Spontak RJ. Evolution of homopolymer thin-film instability on surface-anchored diblock copolymers varying in composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11689-11695. [PMID: 25259655 DOI: 10.1021/la503046n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The stability of molecularly thin polymer films deposited on various material substrates is of critical importance to many contemporary nanotechnologies involving functional coatings and nano/micropatterned surfaces, in which case the causes responsible for film destabilization must be fully understood. Previous experimental studies report that factors such as film thickness and polymer molecular weight play significant roles in governing the rate, as well as mechanism, of destabilization. Complementary theoretical predictions reveal that surface heterogeneities can likewise induce (and regulate the process of) destabilization. In this study, we investigate the destabilization rate and mechanism of homopolystyrene (PS) films differing in thickness on top of poly(styrene-b-methyl methacrylate) (SM) diblock copolymer monolayers varying in chemical composition anchored to flat silica-like substrates to examine the effect of surface constitution on PS stability. Copolymers with a long M block consistently promote PS dewetting by nucleation and growth, wherein the linear dewetting rate decreases monotonically with increasing PS molecular weight, film thickness, and S fraction in the SM copolymer. In analogous studies involving a copolymer with a relatively short M block, however, PS dewetting proceeds instead by spinodal dewetting that evolves gradually into nucleation and growth as the film thickness is increased.
Collapse
Affiliation(s)
- Xiao-Jing Cai
- Departments of Chemical & Biomolecular Engineering and ‡Materials Science & Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
34
|
Knychała P, Banaszak M. Simulations on a swollen gyroid nanostructure in thin films relevant to systems of ionic block copolymers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:23. [PMID: 25080175 DOI: 10.1140/epje/i2014-14067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/09/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Self-assembly of symmetric A/S-B copolymer melt to gyroid nanostructure, partitioning space into interpenetrating nano-labyrinths (channels), in thin films, is investigated using a minimal lattice model with short-range interactions. This model is relevant to poly(styrenesulfonate)-b -polymethylbutylene melt consisting of three types of segments, A, B and S, corresponding to styrene, methylbutylene and styrenesulfonate, respectively. A single sequence of A, B, and S is used in simulations and the fraction of S segments is fixed at p = 0.647 which corresponds to experimental data. The film thickness, L(z), is restricted to nine values (L(z) = 17 , 22, 26, 30, 34, 42, 51, 60, and 68 in units of the underlying lattice constant). The gyroid nanostructure is found to be stable if the film thickness is equal to or greater than the bulk period of the nanophase. The observed gyroid is referred to as swollen since the volume fraction of two continuous networks made of the B segments is anomalous with respect to that of conventional diblock copolymers. In contrast to bulk state, we do not directly observe the order-disorder transition to the gyroid nanophase for thin films. In this case, however, simulations indicate a direct order-disorder transition to a lamellar phase and the order-disorder transition temperature is higher than that in the bulk state, varying strongly with the film thickness.
Collapse
Affiliation(s)
- P Knychała
- Faculty of Physics, A. Mickiewicz University, ul. Umultowska 85, 61-614, Poznan, Poland
| | | |
Collapse
|
35
|
Li Destri G, Miano F, Marletta G. Structure-rheology relationship in weakly amphiphilic block copolymer Langmuir monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3345-3353. [PMID: 24650052 DOI: 10.1021/la4043777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The linear viscoelastic behavior in the low-frequency regime at the water/air interface of three different polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) copolymer monolayers, with block length ratio varying from 66-33 to 50-50 and 25-75 in molecular units, was studied and related to the interfacial behavior, characterized by means of Langmuir isotherms, and their structure, characterized by means of the atomic force microscopy technique. The two monolayers with the highest PMMA amount showed a single phase transition at about 12 mN/m, the viscoelastic behavior changing from a predominantly elastic to a viscoelastic one. This change in the viscoelastic properties was ascribed to the beginning of entanglement among the PMMA coronas of the predominantly circular quasi-2D micelles formed by the two copolymer systems. Conversely, the polymer with the lowest PMMA amount, despite having the same PMMA block length of the PS-PMMA 50-50 block copolymer, was found to behave as a viscoelastic system at any surface pressure value. This characteristic behavior cannot therefore be simply related to the molecular weight difference, but it has been put in connection to the irregular micelle structure observed in this case, consisting of a mixture of spherical and wormlike micelles, and to the different conformation adopted by the PMMA block. By blending this copolymer with an immiscible elastic homopolymer, namely poly(2-vinylpyridine), it was possible to tune the micelle nanostructure, obtaining regular circular quasi-2D micelles, with viscoelastic properties as expected for the PMMA-rich copolymer monolayers. To the best of our knowledge, this study shows for the first time the explicit dependence upon the relative block length and, in turn, upon the nanostructure of the quasi-2D micelles, of the viscoelastic properties of Langmuir monolayers and suggests that molecular weight and intermolecular interactions are not the only parameters governing the polymer conformation and, in turn, the polymer rheology and dynamics in quasi-2D confined systems.
Collapse
Affiliation(s)
- Giovanni Li Destri
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI , V.le A Doria 6, 95125 Catania, Italy
| | | | | |
Collapse
|
36
|
Kipnusu WK, Elmahdy MM, Tress M, Fuchs M, Mapesa EU, Smilgies DM, Zhang J, Papadakis CM, Kremer F. Molecular Order and Dynamics of Nanometric Thin Layers of Poly(styrene-b-1,4-isoprene) Diblock Copolymers. Macromolecules 2013. [DOI: 10.1021/ma4019334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wycliffe K. Kipnusu
- Institute of Experimental Physics I, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Mahdy M. Elmahdy
- Institute of Experimental Physics I, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
- Department of Physics, Mansoura University, Mansoura 35516, Egypt
| | - Martin Tress
- Institute of Experimental Physics I, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Markus Fuchs
- Institute of Experimental Physics I, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Emmanuel U. Mapesa
- Institute of Experimental Physics I, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Detlef-M. Smilgies
- Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Jianqi Zhang
- Technische Universität München, Physik-Department, Physik weicher Materie, James-Franck-Straße 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Technische Universität München, Physik-Department, Physik weicher Materie, James-Franck-Straße 1, 85748 Garching, Germany
| | - Friedrich Kremer
- Institute of Experimental Physics I, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| |
Collapse
|
37
|
Deviations from bulk morphologies in thin films of block copolymer/additive binary blends. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Wang XB, Lo TY, Hsueh HY, Ho RM. Double and Single Network Phases in Polystyrene-block-poly(l-lactide) Diblock Copolymers. Macromolecules 2013. [DOI: 10.1021/ma400264v] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xin-Bo Wang
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Materials Science
and Engineering, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Ting-Ya Lo
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Yu Hsueh
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Rong-Ming Ho
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
39
|
Lo TY, Ho RM, Georgopanos P, Avgeropoulos A, Hashimoto T. Direct Visualization of Order-Order Transitions in Silicon-Containing Block Copolymers by Electron Tomography. ACS Macro Lett 2013; 2:190-194. [PMID: 35581880 DOI: 10.1021/mz300653g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we aim to comprehend the mechanism of the order-order transition (OOT) from nonequilibrium, metastable phase to equilibrium phase. Polystyrene-block-polydimethylsiloxane (PS-PDMS) block copolymer (BCP) bulks with metastable cylinder (C) and double gyroid (G) phases can be obtained from lamellae (L) forming PS-PDMS by simply tuning the selectivity of casting solvent. The recovery of the intrinsic L phase can be achieved by thermal annealing through OOT. Time-resolved small-angle X-ray scattering (SAXS) experiments are carried out to reveal the variation of the structural evolution in reciprocal space during annealing. The structural evolution in real space is directly visualized by using electron tomography (i.e., 3D transmission electron microscopy (TEM)). As a result, combining the time-resolved scattering experiments and the morphological observations from electron tomography offers new insights into the phase behaviors of the OOT of BCPs.
Collapse
Affiliation(s)
- Ting-Ya Lo
- Department of Chemical
Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Rong-Ming Ho
- Department of Chemical
Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Prokopios Georgopanos
- Department of Materials
Science and Engineering, University of Ioannina, University Campus Ioannina 45110, Greece
| | - Apostolos Avgeropoulos
- Department of Materials
Science and Engineering, University of Ioannina, University Campus Ioannina 45110, Greece
| | - Takeji Hashimoto
- Quantum Beam Science
Directorate, Japan Atomic Energy Agency, Tokai-Mura, Ibaraki Pref. 319-1195, Japan
| |
Collapse
|
40
|
Ahn H, Lee Y, Lee H, Kim Y, Ryu DY, Lee B. Substrate interaction effects on order to disorder transition behavior in block copolymer films. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Burt TM, Jordan AM, Korley LTJ. Investigating Interfacial Contributions on the Layer-Thickness-Dependent Mechanical Response of Confined Self-Assembly via Forced Assembly. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Tsarkova L. Distortion of a Unit Cell versus Phase Transition to Nonbulk Morphology in Frustrated Films of Cylinder-Forming Polystyrene-b-polybutadiene Diblock Copolymers. Macromolecules 2012. [DOI: 10.1021/ma301487e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Larisa Tsarkova
- DWI an der RWTH Aachen e.V., Forckenbeckstr. 50, 52056 Aachen,
Germany
| |
Collapse
|
43
|
Wadley ML, Hsieh IF, Cavicchi KA, Cheng SZD. Solvent Dependence of the Morphology of Spin-Coated Thin Films of Polydimethylsiloxane-Rich Polystyrene-block-Polydimethylsiloxane Copolymers. Macromolecules 2012. [DOI: 10.1021/ma300044d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maurice L. Wadley
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United
States
| | - I-Fan Hsieh
- Department of Polymer
Science, The University of Akron, Akron,
Ohio 44325-3909, United States
| | - Kevin A. Cavicchi
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United
States
| | - Stephen Z. D. Cheng
- Department of Polymer
Science, The University of Akron, Akron,
Ohio 44325-3909, United States
| |
Collapse
|
44
|
Destri GL, Keller TF, Catellani M, Punzo F, Jandt KD, Marletta G. Interfacial free energy driven nanophase separation in poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester thin films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5257-5266. [PMID: 22352830 DOI: 10.1021/la300229u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The nanostructure of thermally annealed thin films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends on hydrophobic and hydrophilic substrates was studied to unravel the relationship between the substrate properties and the phase structure of polymer blends in confined geometry. Indeed, the nature of the employed substrates was found to affect the extent of phase separation, the PCBM aggregation state and the texture of the whole system. In particular, annealing below the melting temperature of the polymer yielded the formation of PCBM nanometric crystallites on the hydrophobic substrates, while mostly amorphous microscopic aggregates were formed on the hydrophilic ones. Moreover, while an enhanced in-plane orientation of P3HT lamellae was promoted on hydrophobic substrates, a markedly tilted geometry was produced on the hydrophilic ones. The observed effects were interpreted in terms of a simple model connecting the interface free energy for the blend films to the different polymer chain mobility and diffusion velocity of PCBM molecules on the different substrates.
Collapse
Affiliation(s)
- Giovanni Li Destri
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Catania, Italy
| | | | | | | | | | | |
Collapse
|
45
|
JINNAI H. Recent Advances in Multi-Scale Tomographic Techniques in Polymer Research. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
|
47
|
Li S, Chen P, Zhang L, Liang H. Geometric frustration phases of diblock copolymers in nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5081-5089. [PMID: 21417241 DOI: 10.1021/la200379h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The geometric frustration phases are investigated for diblock copolymers in nanoparticles with neutral surfaces using real-space self-consistent field theory. First, a rich variety of geometric frustration phases with specific symmetries are observed in the polymer nanoparticles with invariable diameters by constructing the phase diagrams arranged as the volume fraction and Flory-Huggins interaction parameter. Most of the space in the phase diagram is filled with phases with strong symmetries, such as spherical or cubic symmetries, while a number of asymmetric or axisymmetric phases are located in a narrow space in the diagram. Then the geometric frustration phases are examined systematically for the diblock copolymers with special polymer parameters, and a rich variety of novel frustration phases with multilayered structures are observed by varying the diameters of the nanoparticles. Furthermore, the investigations on the free energies indicate that the transitions between these frustrated phases are first-order, and the formation mechanism of the frustration phases is reasonably elucidated.
Collapse
Affiliation(s)
- Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | | | | | | |
Collapse
|
48
|
Li Destri G, Keller TF, Catellani M, Punzo F, Jandt KD, Marletta G. Crystalline Monolayer Ordering at Substrate/Polymer Interfaces in Poly(3-hexylthiophene) Ultrathin Films. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201000753] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Abstract
Block copolymers (BCs) are well-known building blocks for the creation of a large variety of nanostructured materials or objects through a dynamic assembly stage which can be either autonomous or guided by an external force. Today's nanotechnologies require sharp control of the overall architecture from the nanoscale to the macroscale. BCs enable this dynamic assembly through all the scales, from few aggregated polymer chains to large bulk polymer materials. Since the discovery of controlled methods to polymerize monomers with different functionalities, a broad diversity of BCs exists, giving rise to many different nanoobjects and nanostructured materials. This chapter will explore the potentialities of block copolymer chains to be assembled through dynamic interactions either in solution or in bulk.
Collapse
|