1
|
Generalova AN, Oleinikov VA, Khaydukov EV. One-dimensional necklace-like assemblies of inorganic nanoparticles: Recent advances in design, preparation and applications. Adv Colloid Interface Sci 2021; 297:102543. [PMID: 34678536 DOI: 10.1016/j.cis.2021.102543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/12/2023]
Abstract
One-dimensional (1D) necklace-like assembly of inorganic nanoparticles exhibits unique collective properties, which are critical to open up new and remarkable opportunities in the field of nanotechnology. This review focuses on the recent advances in the production of these types of assemblies employing two strategies: colloidal synthesis and self-assembly procedures. After a brief description of the forces guiding nanoparticles towards the assembly, the main features of both strategies are discussed. Examples of approaches, typically involved in colloidal synthesis, are highlighted. The peculiar properties of 1D nanostructures are strictly associated with the nanoparticle arrangement in the form of highly ordered assemblies, which are attained during the synthesis both in the solution and using a template, as well as under the action of an external force. The various 1D necklace-like structures, created through nanoparticle self-assembly, demonstrate aligned, oriented nanoparticle organization. Diverse nature, size and shape of preformed particles as building blocks, along with utilizing different linkers, templates or external field lead to fabrication of 1D chain nanostructures with properties responsible for their wide applications. The unique structure-property relationship, both in colloidal synthesis, and self-assembly, offers broad spectrum of 1D necklace-like nanostructure implementations, illustrated by their use in photonics, electronics, electrocatalysis, magnetics.
Collapse
|
2
|
Chabloz NG, Perry HL, Yoon IC, Coulson AJ, White AJP, Stasiuk GJ, Botnar RM, Wilton-Ely JDET. Combined Magnetic Resonance Imaging and Photodynamic Therapy Using Polyfunctionalised Nanoparticles Bearing Robust Gadolinium Surface Units. Chemistry 2020; 26:4552-4566. [PMID: 31981387 DOI: 10.1002/chem.201904757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 12/12/2022]
Abstract
A robust dithiocarbamate tether allows novel gadolinium units based on DOTAGA (q=1) to be attached to the surface of gold nanoparticles (2.6-4.1 nm diameter) along with functional units offering biocompatibility, targeting and photodynamic therapy. A dramatic increase in relaxivity (r1 ) per Gd unit from 5.01 mm-1 s-1 in unbound form to 31.68 mm-1 s-1 (10 MHz, 37 °C) is observed when immobilised on the surface due to restricted rotation and enhanced rigidity of the Gd complex on the nanoparticle surface. The single-step synthetic route provides a straightforward and versatile way of preparing multifunctional gold nanoparticles, including examples with conjugated zinc-tetraphenylporphyrin photosensitizers. The lack of toxicity of these materials (MTT assays) is transformed on irradiation of HeLa cells for 30 minutes (PDT), leading to 75 % cell death. In addition to passive targeting, the inclusion of units capable of actively targeting overexpressed folate receptors illustrates the potential of these assemblies as targeted theranostic agents.
Collapse
Affiliation(s)
- Nicolas G Chabloz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Hannah L Perry
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK.,Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Il-Chul Yoon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Andrew J Coulson
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Graeme J Stasiuk
- School of Life Sciences, Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - René M Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK.,London Centre for Nanotechnology (LCN), London, UK
| |
Collapse
|
3
|
Wang LS, Gopalakrishnan S, Rotello VM. Tailored Functional Surfaces Using Nanoparticle and Protein "Nanobrick" Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10993-11006. [PMID: 30543751 DOI: 10.1021/acs.langmuir.8b03235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface properties are an essential feature in a wide range of functional materials. In this article, we summarize strategies developed in our group that employ nanoparticles and proteins as nanobricks to create thin-film coatings on surfaces. These coatings contain tailorable surface functionality based on the properties of the predesigned nanobricks, parlaying both the chemical and structural features of the precursor particles and proteins. This strategy is versatile, providing the rapid generation of both uniform and patterned coatings that provide "plug-and-play" customizable surfaces for materials and biomedical applications.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Sanjana Gopalakrishnan
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
4
|
Chabloz NG, Wenzel MN, Perry HL, Yoon IC, Molisso S, Stasiuk GJ, Elson DS, Cass AEG, Wilton-Ely JDET. Polyfunctionalised Nanoparticles Bearing Robust Gadolinium Surface Units for High Relaxivity Performance in MRI. Chemistry 2019; 25:10895-10906. [PMID: 31127668 DOI: 10.1002/chem.201901820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/16/2019] [Indexed: 12/19/2022]
Abstract
The first example of an octadentate gadolinium unit based on DO3A (hydration number q=1) with a dithiocarbamate tether has been designed and attached to the surface of gold nanoparticles (around 4.4 nm in diameter). In addition to the superior robustness of this attachment, the restricted rotation of the Gd complex on the nanoparticle surface leads to a dramatic increase in relaxivity (r1 ) from 4.0 mm-1 s-1 in unbound form to 34.3 mm-1 s-1 (at 10 MHz, 37 °C) and 22±2 mm-1 s-1 (at 63.87 MHz, 25 °C) when immobilised on the surface. The one-pot synthetic route provides a straightforward and versatile way of preparing a range of multifunctional gold nanoparticles. The incorporation of additional surface units for biocompatibility (PEG and thioglucose units) and targeting (folic acid) leads to little detrimental effect on the high relaxivity observed for these non-toxic multifunctional materials. In addition to the passive targeting attributed to gold nanoparticles, the inclusion of a unit capable of targeting the folate receptors overexpressed by cancer cells, such as HeLa cells, illustrates the potential of these assemblies.
Collapse
Affiliation(s)
- Nicolas G Chabloz
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Margot N Wenzel
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Hannah L Perry
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Il-Chul Yoon
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Susannah Molisso
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Graeme J Stasiuk
- School of Life Sciences, Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, UK
| | - Anthony E G Cass
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK.,Institute of Biomedical Engineering, Imperial College London, UK.,London Centre for Nanotechnology (LCN), UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK.,London Centre for Nanotechnology (LCN), UK
| |
Collapse
|
5
|
Tang N, Jiang Y, Qu H, Duan X. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography. NANOTECHNOLOGY 2017; 28:485301. [PMID: 28968225 DOI: 10.1088/1361-6528/aa905b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Resistive devices composed of one-dimensional nanostructures are promising candidates for the next generation of gas sensors. However, the large-scale fabrication of nanowires is still challenging, which restricts the commercialization of such devices. Here, we report a highly efficient and facile approach to fabricating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive gas sensors by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate, which facilitates device integration. The nanowire chemiresistive gas sensor is demonstrated for NH3 and NO2 detection at room temperature and shows a limit of detection at ppb level, which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with the conventional lithography technique. In comparison with PEDOT:PSS thin-film gas sensors, the nanowire gas sensor exhibits higher sensitivity and a much faster response to gas molecules.
Collapse
Affiliation(s)
- Ning Tang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
6
|
Hurtubise VL, McArdle JM, Naeem S, Toscani A, White AJP, Long NJ, Wilton-Ely JDET. Multimetallic Complexes and Functionalized Nanoparticles Based on Unsymmetrical Dithiocarbamate Ligands with Allyl and Propargyl Functionality. Inorg Chem 2014; 53:11740-8. [DOI: 10.1021/ic502015c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Venesia L. Hurtubise
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - James M. McArdle
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Saira Naeem
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anita Toscani
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Nicholas J. Long
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - James D. E. T. Wilton-Ely
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Naeem S, Serapian SA, Toscani A, White AJP, Hogarth G, Wilton-Ely JDET. Ring-Closing Metathesis and Nanoparticle Formation Based on Diallyldithiocarbamate Complexes of Gold(I): Synthetic, Structural, and Computational Studies. Inorg Chem 2014; 53:2404-16. [DOI: 10.1021/ic402048a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Saira Naeem
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Stefano A. Serapian
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Anita Toscani
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Graeme Hogarth
- Department of Chemistry, University College London, 20 Gordon
Street, London WC1H 0AJ, U.K
| | | |
Collapse
|
8
|
Jiang X, Wu Y, Su B, Xie R, Yang W, Jiang L. Using micro to manipulate nano. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:258-264. [PMID: 23922285 DOI: 10.1002/smll.201301494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/27/2013] [Indexed: 06/02/2023]
Abstract
A "Micro to nano" dewetting strategy is presented to generate multi-direction-controlled, precise-positioning 1D assemblies of conductive silver (Ag) NPs based on a superhydrophobicity-directed assembly strategy. Electrons can transport along linear NP assemblies and their behavior is sustained by coating a coaxial protecting layer outside the nanostructures. This new concept might open new routes for NP-based nanoelectronic circuit fabrication.
Collapse
Affiliation(s)
- Xiangyu Jiang
- State Key Laboratory of Supramolecular, Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| | | | | | | | | | | |
Collapse
|
9
|
Lukach A, Liu K, Therien-Aubin H, Kumacheva E. Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers. J Am Chem Soc 2012; 134:18853-9. [DOI: 10.1021/ja309475e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ariella Lukach
- Department of Chemistry, University of Toronto, 80 Saint George
Street, Toronto, Ontario M5S 3H6, Canada
| | - Kun Liu
- Department of Chemistry, University of Toronto, 80 Saint George
Street, Toronto, Ontario M5S 3H6, Canada
| | - Heloise Therien-Aubin
- Department of Chemistry, University of Toronto, 80 Saint George
Street, Toronto, Ontario M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George
Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical
Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5,
Canada
- The Institute
of Biomaterials
and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9,
Canada
| |
Collapse
|
10
|
Farcau C, Sangeetha NM, Moreira H, Viallet B, Grisolia J, Ciuculescu-Pradines D, Ressier L. High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS NANO 2011; 5:7137-43. [PMID: 21819134 DOI: 10.1021/nn201833y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
High-sensitivity strain gauges based on single wires of close-packed 14 nm colloidal gold nanoparticles are obtained by a novel variant of convective self-assembly (CSA). This CSA mode named stop-and-go CSA enables the fabrication of nanoparticle wires only a few micrometers wide, separated by distances that can be easily tuned over tens to hundreds of micrometers. Nanoparticle wires are obtained in a single step by direct deposition of nanoparticles from suspensions onto flexible polyethylene terephthalate films, without any lithographic prepatterning. When connected between two electrodes, such single nanoparticle wires function as miniature resistive strain gauges. The high sensitivity, repeatability, and robustness demonstrated by these single-wire strain gauges make them extremely promising for integration into micro-electromechanical systems or for high-resolution strain mapping.
Collapse
Affiliation(s)
- Cosmin Farcau
- Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 Avenue de Rangueil, Toulouse, 31077, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Moonen PF, Yakimets I, Péter M, Meinders ER, Huskens J. Double-layer imprint lithography on wafers and foils from the submicrometer to the millimeter scale. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1041-1048. [PMID: 21395235 DOI: 10.1021/am101187n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, a thermal imprint technique, double-layer nanoimprint lithography (dlNIL), is introduced, allowing complete filling of features in the dimensional range of submicrometer to millimeter. The imprinting and filling quality of dlNIL was studied on Si substrates as a model system and compared to results obtained with regular NIL (NIL) and reverse NIL (rNIL). Wavy foils were imprinted with NIL, rNIL and dlNIL and the patterning results compared and discussed. With dlNIL, a new application possibility was introduced in which two different resists having, for example, a different etch resistance to a certain plasma were combined within one imprint step. dlNIL allows extension to many resist combinations for tailored nanostructure fabrication.
Collapse
Affiliation(s)
- Pieter F Moonen
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Nandwana V, Subramani C, Yeh YC, Yang B, Dickert S, Barnes MD, Tuominen MT, Rotello VM. Direct patterning of quantum dot nanostructures via electron beam lithography. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11782c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|