1
|
Carpenter J, Kim H, Suarez J, van der Zande A, Miljkovic N. The Surface Energy of Hydrogenated and Fluorinated Graphene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2429-2436. [PMID: 36563177 DOI: 10.1021/acsami.2c18329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The surface energy of graphene and its chemical derivatives governs fundamental interfacial interactions like molecular assembly, wetting, and doping. However, quantifying the surface energy of supported two-dimensional (2D) materials, such as graphene, is difficult because (1) they are so thin that electrostatic interactions emanating from the underlying substrate are not completely screened, (2) the contribution from the monolayer is sensitive to its exact chemical state, and (3) the adsorption of airborne contaminants, as well as contaminants introduced during transfer processing, screens the electrostatic interactions from the monolayer and underlying substrate, changing the determined surface energy. Here, we determine the polar and dispersive surface energy of bare, fluorinated, and hydrogenated graphene through contact angle measurements with water and diiodomethane. We accounted for many contributing factors, including substrate surface energies and combating adsorption of airborne contaminants. Hydrogenating graphene raises its polar surface energy with little effect on its dispersive surface energy. Fluorinating graphene lowers its dispersive surface energy with a substrate-dependent effect on its polar surface energy. These results unravel how changing the chemical structure of graphene modifies its surface energy, with applications for hybrid nanomaterials, bioadhesion, biosensing, and thin-film assembly.
Collapse
Affiliation(s)
- James Carpenter
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jules Suarez
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Arend van der Zande
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Narayanam PK, Vishwakarma RK, Polaki S. Fabrication of Free Standing Graphene Oxide Membranes for Efficient Adsorptive Removal of Cationic Dyes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Bognár Z, de Jonge MI, Gyurcsányi RE. In situ silver nanoparticle coating of virions for quantification at single virus level. NANOSCALE 2022; 14:2296-2303. [PMID: 35081610 DOI: 10.1039/d1nr07607h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ labelling and encapsulation of biological entities, such as of single viruses, may provide a versatile approach to modulate their functionality and facilitate their detection at single particle level. Here, we introduce a novel virus metallization approach based on in situ coating of viruses in solution with silver nanoparticles (AgNP) in a two-step synthetic process, i.e. surface activation with a tannic acid - Sn(II) coordination complex, which subsequently induces silver ion (I) reduction. The metalic coating on the virus surface opens the opportunity for electrochemical quantification of the AgNP-tagged viruses by nano-impact electrochemistry on a microelectrode with single particle sensitivity, i.e. enable the detection of particles oherwise undetectable. We show that the silver coating of the virus particles impacting the electrode can be oxidized to produce distinct current peaks the frequency of which show a linear correlation with the virus count. The proof of the concept was done with inactivated Influenza A (H3N2) viruses resulting in their quantitation down to the femtomolar concentrations (ca. 5 × 107 particles per mL) using 50 s counting sequences.
Collapse
Affiliation(s)
- Zsófia Bognár
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Philips van Leydenlaan 15, 6525 EX Nijmegen, The Netherlands
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
4
|
Wei H, Yang XY, van der Mei HC, Busscher HJ. X-Ray Photoelectron Spectroscopy on Microbial Cell Surfaces: A Forgotten Method for the Characterization of Microorganisms Encapsulated With Surface-Engineered Shells. Front Chem 2021; 9:666159. [PMID: 33968904 PMCID: PMC8100684 DOI: 10.3389/fchem.2021.666159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Encapsulation of single microbial cells by surface-engineered shells has great potential for the protection of yeasts and bacteria against harsh environmental conditions, such as elevated temperatures, UV light, extreme pH values, and antimicrobials. Encapsulation with functionalized shells can also alter the surface characteristics of cells in a way that can make them more suitable to perform their function in complex environments, including bio-reactors, bio-fuel production, biosensors, and the human body. Surface-engineered shells bear as an advantage above genetically-engineered microorganisms that the protection and functionalization added are temporary and disappear upon microbial growth, ultimately breaking a shell. Therewith, the danger of creating a "super-bug," resistant to all known antimicrobial measures does not exist for surface-engineered shells. Encapsulating shells around single microorganisms are predominantly characterized by electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, particulate micro-electrophoresis, nitrogen adsorption-desorption isotherms, and X-ray diffraction. It is amazing that X-ray Photoelectron Spectroscopy (XPS) is forgotten as a method to characterize encapsulated yeasts and bacteria. XPS was introduced several decades ago to characterize the elemental composition of microbial cell surfaces. Microbial sample preparation requires freeze-drying which leaves microorganisms intact. Freeze-dried microorganisms form a powder that can be easily pressed in small cups, suitable for insertion in the high vacuum of an XPS machine and obtaining high resolution spectra. Typically, XPS measures carbon, nitrogen, oxygen and phosphorus as the most common elements in microbial cell surfaces. Models exist to transform these compositions into well-known, biochemical cell surface components, including proteins, polysaccharides, chitin, glucan, teichoic acid, peptidoglycan, and hydrocarbon like components. Moreover, elemental surface compositions of many different microbial strains and species in freeze-dried conditions, related with zeta potentials of microbial cells, measured in a hydrated state. Relationships between elemental surface compositions measured using XPS in vacuum with characteristics measured in a hydrated state have been taken as a validation of microbial cell surface XPS. Despite the merits of microbial cell surface XPS, XPS has seldom been applied to characterize the many different types of surface-engineered shells around yeasts and bacteria currently described in the literature. In this review, we aim to advocate the use of XPS as a forgotten method for microbial cell surface characterization, for use on surface-engineered shells encapsulating microorganisms.
Collapse
Affiliation(s)
- Hao Wei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- School of Engineering and Applied Science, Harvard University, Cambridge, MA, United States
| | - Henny C. van der Mei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| |
Collapse
|
5
|
Wang L, Li Y, Yang XY, Zhang BB, Ninane N, Busscher HJ, Hu ZY, Delneuville C, Jiang N, Xie H, Van Tendeloo G, Hasan T, Su BL. Single-cell yolk-shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. Natl Sci Rev 2021; 8:nwaa097. [PMID: 34691605 PMCID: PMC8288456 DOI: 10.1093/nsr/nwaa097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 01/30/2023] Open
Abstract
Like nanomaterials, bacteria have been unknowingly used for centuries. They hold significant economic potential for fuel and medicinal compound production. Their full exploitation, however, is impeded by low biological activity and stability in industrial reactors. Though cellular encapsulation addresses these limitations, cell survival is usually compromised due to shell-to-cell contacts and low permeability. Here, we report ordered packing of silica nanocolloids with organized, uniform and tunable nanoporosities for single cyanobacterium nanoencapsulation using protamine as an electrostatic template. A space between the capsule shell and the cell is created by controlled internalization of protamine, resulting in a highly ordered porous shell-void-cell structure formation. These unique yolk-shell nanostructures provide long-term cell viability with superior photosynthetic activities and resistance in harsh environments. In addition, engineering the colloidal packing allows tunable shell-pore diameter for size-dependent permeability and introduction of new functionalities for specific molecular recognition. Our strategy could significantly enhance the activity and stability of cyanobacteria for various nanobiotechnological applications.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bo-Bo Zhang
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium
| | - Nöelle Ninane
- Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur B-5000, Belgium
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, Groningen 9713 AV, The Netherlands
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China
| | - Cyrille Delneuville
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium
| | - Nan Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Hao Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Gustaaf Van Tendeloo
- Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp B-2020, Belgium
| | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium
| |
Collapse
|
6
|
Li P, Jiang Y, Song RB, Zhang JR, Zhu JJ. Layer-by-layer assembly of Au and CdS nanoparticles on the surface of bacterial cells for photo-assisted bioanodes in microbial fuel cells. J Mater Chem B 2021; 9:1638-1646. [PMID: 33480952 DOI: 10.1039/d0tb02642e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface modification of exoelectrogens with photoelectric materials is a promising way for achieving photo-assisted microbial fuel cells (MFCs). However, the poor conductivity of most photoelectric materials inevitably hampers the electron transfer inside bacterial biofilms. Herein, by utilizing the electrostatic layer-by-layer assembly strategy, the conductive Au nanoparticles (NPs) and photo-responsive CdS NPs were alternatively modified onto the surface of Escherichia coli for photo-assisted bioanodes in MFCs. The CdS layer was found to protect the bacterial cells from light illumination-induced inactivation. When the CdS layer coexisted with an outer layer of Au NPs, the modification of the CdS layers can generate photocurrent without any loss of biocurrent, because the outer Au layer could serve as a conductive channel for the photoelectron and bioelectron transfer between each bacterium. But the increase of CdS layers failed to further improve the photocurrent, implying that the light was inaccessible to the inner CdS layer. This work brings a universal way to fabricate conductive and photo-responsive bacteria, which would deepen the application of cell-surface modification technology in photo-assisted MFCs.
Collapse
Affiliation(s)
- Pingping Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yujing Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Rong-Bin Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. and School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. and School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing 210089, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
7
|
Yue H, Ma G. Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Laguna-Teno F, Suarez-Diez M, Tamayo-Ramos JA. Commonalities and Differences in the Transcriptional Response of the Model Fungus Saccharomyces cerevisiae to Different Commercial Graphene Oxide Materials. Front Microbiol 2020; 11:1943. [PMID: 32849484 PMCID: PMC7431627 DOI: 10.3389/fmicb.2020.01943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Graphene oxide has become a very appealing nanomaterial during the last years for many different applications, but its possible impact in different biological systems remains unclear. Here, an assessment to understand the toxicity of different commercial graphene oxide nanomaterials on the unicellular fungal model organism Saccharomyces cerevisiae was performed. For this task, an RNA purification protocol was optimized to avoid the high nucleic acid absorption capacity of graphene oxide. The developed protocol is based on a sorbitol gradient separation process for the isolation of adequate ribonucleic acid levels (in concentration and purity) from yeast cultures exposed to the carbon derived nanomaterial. To pinpoint potential toxicity mechanisms and pathways, the transcriptome of S. cerevisiae exposed to 160 mg L-1 of monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) was studied and compared. Both graphene oxide products induced expression changes in a common group of genes (104), many of them related to iron homeostasis, starvation and stress response, amino acid metabolism and formate catabolism. Also, a high number of genes were only differentially expressed in either GO (236) or GOC (1077) exposures, indicating that different commercial products can induce specific changes in the physiological state of the fungus.
Collapse
Affiliation(s)
- Felix Laguna-Teno
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
10
|
Wu X, Han Q. Thermal conductivity of defective graphene: an efficient molecular dynamics study based on graphics processing units. NANOTECHNOLOGY 2020; 31:215708. [PMID: 32032004 DOI: 10.1088/1361-6528/ab73bc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The exceptional thermal transport properties of graphene are affected due to the presence of various topological defects, which include single vacancy, double vacancies and Stone-Wales defects. The present article is intended to study on thermal transport properties of defective graphene by comparing the effects of topological defects on the thermal conductivity of graphene. This study developed a program for constructing defective graphene models with customizable defect concentrations and distribution types. The efficient molecular dynamics method based on graphics processing units is applied, which can achieve efficient and accurate calculation of material thermal conductivity. It is revealed that the existence of topological defects has a considerable reduce on the thermal conductivity of graphene, and the declining rate of the value get less with increasing defects concentration. At the same concentration, the weakening effect of SW defects on the thermal conductivity of graphene is evidently less than the other two defects. We also explored the effect of temperature on the thermal conductivity of graphene with different defects. These findings were discussed from the phonon perspective that elucidate the atomic level mechanisms, which provide guidance for thermal management of graphene devices.
Collapse
Affiliation(s)
- Xin Wu
- Department of Engineering Mechanics, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | | |
Collapse
|
11
|
Development of a conductive biocomposite combining graphene and amniotic membrane for replacement of the neuronal network of tissue-engineered urinary bladder. Sci Rep 2020; 10:5824. [PMID: 32242027 PMCID: PMC7118107 DOI: 10.1038/s41598-020-62197-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
Tissue engineering allows to combine biomaterials and seeded cells to experimentally replace urinary bladder wall. The normal bladder wall however, includes branched neuronal network propagating signals which regulate urine storage and voiding. In this study we introduced a novel biocomposite built from amniotic membrane (Am) and graphene which created interface between cells and external stimuli replacing neuronal network. Graphene layers were transferred without modifying Am surface. Applied method allowed to preserve the unique bioactive characteristic of Am. Tissue engineered constructs composed from biocomposite seeded with smooth muscle cells (SMC) derived from porcine detrusor and porcine urothelial cells (UC) were used to evaluate properties of developed biomaterial. The presence of graphene layer significantly increased electrical conductivity of biocomposite. UCs and SMCs showed an organized growth pattern on graphene covered surfaces. Electrical filed stimulation (EFS) applied in vitro led additionally to increased SMCs growth and linear arrangement. 3D printed chamber equipped with 3D printed graphene based electrodes was fabricated to deliver EFS and record pressure changes caused by contracting SMCs seeded biocomposite. Observed contractile response indicated on effective SMCs stimulation mediated by graphene layer which constituted efficient cell to biomaterial interface.
Collapse
|
12
|
Suarez-Diez M, Porras S, Laguna-Teno F, Schaap PJ, Tamayo-Ramos JA. Toxicological response of the model fungus Saccharomyces cerevisiae to different concentrations of commercial graphene nanoplatelets. Sci Rep 2020; 10:3232. [PMID: 32094381 PMCID: PMC7039959 DOI: 10.1038/s41598-020-60101-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Graphene nanomaterials have attracted a great interest during the last years for different applications, but their possible impact on different biological systems remains unclear. Here, an assessment to understand the toxicity of commercial polycarboxylate functionalized graphene nanoplatelets (GN) on the unicellular fungal model Saccharomyces cerevisiae was performed. While cell proliferation was not negatively affected even in the presence of 800 mg L-1 of the nanomaterial for 24 hours, oxidative stress was induced at a lower concentration (160 mg L-1), after short exposure periods (2 and 4 hours). No DNA damage was observed under a comet assay analysis under the studied conditions. In addition, to pinpoint the molecular mechanisms behind the early oxidative damage induced by GN and to identify possible toxicity pathways, the transcriptome of S. cerevisiae exposed to 160 and 800 mg L-1 of GN was studied. Both GN concentrations induced expression changes in a common group of genes (337), many of them related to the fungal response to reduce the nanoparticles toxicity and to maintain cell homeostasis. Also, a high number of genes were only differentially expressed in the GN800 condition (3254), indicating that high GN concentrations can induce severe changes in the physiological state of the yeast.
Collapse
Affiliation(s)
- Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneg, 4 6708WE, Wageningen, The Netherlands
| | - Santiago Porras
- Departamento de Economía Aplicada, University of Burgos, Plaza Infanta Doña Elena, s/n, 09001, Burgos, Spain
| | - Felix Laguna-Teno
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneg, 4 6708WE, Wageningen, The Netherlands
| | - Juan A Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
13
|
Liu Y, Han Y, Dong H, Wei X, Shi D, Li Y. Ca 2+-Mediated Surface Polydopamine Engineering to Program Dendritic Cell Maturation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4163-4173. [PMID: 31891476 DOI: 10.1021/acsami.9b20997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineering of cell surfaces holds promise in manipulating cellular activities in a physicochemical route as a complement to the biological approach. Mediated by Ca2+, a quick and convenient yet cytocompatible method is used to achieve surface engineering, by which polydopamine nanostructures can be in situ grown onto dendritic cell (DC) surfaces within 10 min. Ca2+, as the physical bridge between the negative cell surface and polydopamine, avoids the direct chemical polymerization of polydopamine onto the cell surface, critically important to maintain the cell viability. As a proof of concept in potential applications, this cell surface engineering shows a good control toward DC maturation. Upon surface polydopamine engineering, bone-marrow-derived DC exhibits a unique bidirectional control of maturation. The polydopamine structure enables effective suppression of DC activation by acting as an efficient scavenger of reactive oxygen species, a key signal during maturation. Conversely, an 808 nm laser irradiation can remotely relieve the suppressed state and effectively activate DC maturation by the photoheat effect of polydopamine (39 °C). The work provides an easily implemented, straightforward approach to achieve cell surface engineering, through which the DC maturation can be controlled.
Collapse
Affiliation(s)
- Yiqiong Liu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Yi Han
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Haiqing Dong
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , China
| | - Donglu Shi
- The Materials Science & Engineering Program, Department of Mechanical & Materials Engineering, College of Engineering & Applied Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| |
Collapse
|
14
|
Pokrajac L, Nazar L, Chen Z, Mitra S. The Waterloo Institute for Nanotechnology: Societal Impact and a Sustainable Future. ACS NANO 2019; 13:12247-12253. [PMID: 31770861 DOI: 10.1021/acsnano.9b08356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
15
|
Rai DK, Gurusaran M, Urban V, Aran K, Ma L, Li P, Qian S, Narayanan TN, Ajayan PM, Liepmann D, Sekar K, Álvarez-Cao ME, Escuder-Rodríguez JJ, Cerdán ME, González-Siso MI, Viswanathan S, Paulmurugan R, Renugopalakrishnan V. Structural determination of Enzyme-Graphene Nanocomposite Sensor Material. Sci Rep 2019; 9:15519. [PMID: 31664095 PMCID: PMC6820869 DOI: 10.1038/s41598-019-51882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/28/2019] [Indexed: 11/09/2022] Open
Abstract
State-of-the-art ultra-sensitive blood glucose-monitoring biosensors, based on glucose oxidase (GOx) covalently linked to a single layer graphene (SLG), will be a valuable next generation diagnostic tool for personal glycemic level management. We report here our observations of sensor matrix structure obtained using a multi-physics approach towards analysis of small-angle neutron scattering (SANS) on graphene-based biosensor functionalized with GOx under different pH conditions for various hierarchical GOx assemblies within SLG. We developed a methodology to separately extract the average shape of GOx molecules within the hierarchical assemblies. The modeling is able to resolve differences in the average GOx dimer structure and shows that treatment under different pH conditions lead to differences within the GOx at the dimer contact region with SLG. The coupling of different analysis methods and modeling approaches we developed in this study provides a universal approach to obtain detailed structural quantifications, for establishing robust structure-property relationships. This is an essential step to obtain an insight into the structure and function of the GOx-SLG interface for optimizing sensor performance.
Collapse
Affiliation(s)
- Durgesh K Rai
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, 14853, USA.
| | - Manickam Gurusaran
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne-NE1 7RU, UK
| | - Volker Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA.
| | - Kiana Aran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94709, USA
| | - Lulu Ma
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas, 77005, USA
| | - Pingzuo Li
- Center for Life Sciences, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Tharangattu N Narayanan
- Tata Institute of Fundamental Research - Center for Interdisciplinary Sciences, Hyderabad, 500107, India
| | - Pulickel M Ajayan
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas, 77005, USA
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94709, USA
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - María-Efigenia Álvarez-Cao
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - Juan-José Escuder-Rodríguez
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - María-Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - María-Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - Sowmya Viswanathan
- Newton Wellesley Hospital/Partners Healthcare System, Newton, Massachusetts, 02462, USA
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Dept. of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California, 94304, USA
| | - Venkatesan Renugopalakrishnan
- Center for Life Sciences, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
16
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Regulations of organism by materials: a new understanding of biological inorganic chemistry. J Biol Inorg Chem 2019; 24:467-481. [DOI: 10.1007/s00775-019-01673-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
18
|
Zhang X, Sun S, Liu X. Amino functionalized carbon nanotubes as hole transport layer for high performance polymer solar cells. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1813-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Goldsmith BR, Locascio L, Gao Y, Lerner M, Walker A, Lerner J, Kyaw J, Shue A, Afsahi S, Pan D, Nokes J, Barron F. Digital Biosensing by Foundry-Fabricated Graphene Sensors. Sci Rep 2019; 9:434. [PMID: 30670783 PMCID: PMC6342992 DOI: 10.1038/s41598-019-38700-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/31/2018] [Indexed: 01/17/2023] Open
Abstract
The prevailing philosophy in biological testing has been to focus on simple tests with easy to interpret information such as ELISA or lateral flow assays. At the same time, there has been a decades long understanding in device physics and nanotechnology that electrical approaches have the potential to drastically improve the quality, speed, and cost of biological testing provided that computational resources are available to analyze the resulting complex data. This concept can be conceived of as "the internet of biology" in the same way miniaturized electronic sensors have enabled "the internet of things." It is well established in the nanotechnology literature that techniques such as field effect biosensing are capable of rapid and flexible biological testing. Until now, access to this new technology has been limited to academic researchers focused on bioelectronic devices and their collaborators. Here we show that this capability is retained in an industrially manufactured device, opening access to this technology generally. Access to this type of production opens the door for rapid deployment of nanoelectronic sensors outside the research space. The low power and resource usage of these biosensors enables biotech engineers to gain immediate control over precise biological and environmental data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Deng Pan
- Cardea Bio Inc., San Diego, CA, USA
| | | | | |
Collapse
|
21
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
22
|
Dai B, Wang L, Wang Y, Yu G, Huang X. Single-Cell Nanometric Coating Towards Whole-Cell-Based Biodevices and Biosensors. ChemistrySelect 2018. [DOI: 10.1002/slct.201800963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bing Dai
- School of Technology; Harbin University; Harbin 150086 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Yan Wang
- Departament de Química Inorgànica; Facultat de Química; Universitat de Barcelona, C/Martí i Franquès 1-11; Barcelona 08028 Spain
| | - Guangbin Yu
- School of Mechanical and Power Engineering; Harbin University of Science and Technology; Harbin 150080 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
23
|
Jiang N, Ying GL, Yetisen AK, Montelongo Y, Shen L, Xiao YX, Busscher HJ, Yang XY, Su BL. A bilayered nanoshell for durable protection of single yeast cells against multiple, simultaneous hostile stimuli. Chem Sci 2018; 9:4730-4735. [PMID: 29910923 PMCID: PMC5982223 DOI: 10.1039/c8sc01130c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Single cell surface engineering provides the most efficient, non-genetic strategy to enhance cell stability. However, it remains a huge challenge to improve cell stability in complex artificial environments. Here, a soft biohybrid interfacial layer is fabricated on individual living-cell surfaces by their exposure to a suspension of gold nanoparticles and l-cysteine to form a protecting functional layer to which porous silica layers were bound yielding pores with a diameter of 3.9 nm. The living cells within the bilayered nanoshells maintained high viability (96 ± 2%) as demonstrated by agar plating, even after five cycles of simultaneous exposure to high temperature (40 °C), lyticase and UV light. Moreover, yeast cells encapsulated in bilayered nanoshells were more recyclable than native cells due to nutrient storage in the shell.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , Wuhan , 430070 , China .
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , USA .
| | - Guo-Liang Ying
- School of Materials Science and Engineering , Wuhan Institute of Technology , Wuhan , 430205 , China
- Division of Engineering in Medicine , Brigham and Women's Hospital , Harvard Medical School , Cambridge , Massachusetts 02139 , USA
| | - Ali K Yetisen
- School of Chemical Engineering , University of Birmingham , Birmingham B15 2TT , UK
| | | | - Ling Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , Wuhan , 430070 , China .
| | - Yu-Xuan Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , Wuhan , 430070 , China .
| | - Henk J Busscher
- University of Groningen , University Medical Center Groningen , Department of Biomedical Engineering , Antonius Deusinglaan 1 , 9713 AV , Groningen , The Netherlands
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , Wuhan , 430070 , China .
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , USA .
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , Wuhan , 430070 , China .
- Laboratory of Inorganic Materials Chemistry , University of Namur , 61, rue de Bruxelles , 5000 Namur , Belgium .
| |
Collapse
|
24
|
Optoelectronics Based Dynamic Advancement of Graphene: Characteristics and Applications. CRYSTALS 2018. [DOI: 10.3390/cryst8040171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Geng W, Wang L, Jiang N, Cao J, Xiao YX, Wei H, Yetisen AK, Yang XY, Su BL. Single cells in nanoshells for the functionalization of living cells. NANOSCALE 2018; 10:3112-3129. [PMID: 29393952 DOI: 10.1039/c7nr08556g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired by the characteristics of cells in live organisms, new types of hybrids have been designed comprising live cells and abiotic materials having a variety of structures and functionalities. The major goal of these studies is to uncover hybridization approaches that promote cell stabilization and enable the introduction of new functions into living cells. Single-cells in nanoshells have great potential in a large number of applications including bioelectronics, cell protection, cell therapy, and biocatalysis. In this review, we discuss the results of investigations that have focused on the synthesis, structuration, functionalization, and applications of these single-cells in nanoshells. We describe synthesis methods to control the structural and functional features of single-cells in nanoshells, and further develop their applications in sustainable energy, environmental remediation, green biocatalysis, and smart cell therapy. Perceived limitations of single-cells in nanoshells have been also identified.
Collapse
Affiliation(s)
- Wei Geng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins. J Proteomics 2018; 172:76-81. [DOI: 10.1016/j.jprot.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022]
|
27
|
Park W, Cho S, Huang X, Larson AC, Kim DH. Branched Gold Nanoparticle Coating of Clostridium novyi-NT Spores for CT-Guided Intratumoral Injection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201602722. [PMID: 27862936 PMCID: PMC5288294 DOI: 10.1002/smll.201602722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/26/2016] [Indexed: 05/03/2023]
Abstract
Branched gold nanoparticle (BGNP)-coated Clostridium novyi-NT (C. novyi-NT) spores are developed for computed tomography (CT)-guided bacteriolytic tumor therapy. The BGNP-coated spores are successfully injected into a tumor site under CT image guidance. As a result, a strong antitumor effect is observed in a PC3 prostate tumor-bearing mouse model.
Collapse
Affiliation(s)
- Wooram Park
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Soojeong Cho
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaoke Huang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrew C Larson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
- International Institute of Nanotechnology (IIN), Northwestern University, Evanston, IL, 60208, USA
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA
| |
Collapse
|
28
|
Fu W, Jiang L, van Geest EP, Lima LMC, Schneider GF. Sensing at the Surface of Graphene Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603610. [PMID: 27896865 DOI: 10.1002/adma.201603610] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Recent research trends now offer new opportunities for developing the next generations of label-free biochemical sensors using graphene and other two-dimensional materials. While the physics of graphene transistors operated in electrolyte is well grounded, important chemical challenges still remain to be addressed, namely the impact of the chemical functionalizations of graphene on the key electrical parameters and the sensing performances. In fact, graphene - at least ideal graphene - is highly chemically inert. The functionalizations and chemical alterations of the graphene surface - both covalently and non-covalently - are crucial steps that define the sensitivity of graphene. The presence, reactivity, adsorption of gas and ions, proteins, DNA, cells and tissues on graphene have been successfully monitored with graphene. This review aims to unify most of the work done so far on biochemical sensing at the surface of a (chemically functionalized) graphene field-effect transistor and the challenges that lie ahead. The authors are convinced that graphene biochemical sensors hold great promise to meet the ever-increasing demand for sensitivity, especially looking at the recent progresses suggesting that the obstacle of Debye screening can be overcome.
Collapse
Affiliation(s)
- Wangyang Fu
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lin Jiang
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Erik P van Geest
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lia M C Lima
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Grégory F Schneider
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| |
Collapse
|
29
|
Zhang P, Bookstaver ML, Jewell CM. Engineering Cell Surfaces with Polyelectrolyte Materials for Translational Applications. Polymers (Basel) 2017; 9:E40. [PMID: 30970718 PMCID: PMC6431965 DOI: 10.3390/polym9020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
Engineering cell surfaces with natural or synthetic materials is a unique and powerful strategy for biomedical applications. Cells exhibit more sophisticated migration, control, and functional capabilities compared to nanoparticles, scaffolds, viruses, and other engineered materials or agents commonly used in the biomedical field. Over the past decade, modification of cell surfaces with natural or synthetic materials has been studied to exploit this complexity for both fundamental and translational goals. In this review we present the existing biomedical technologies for engineering cell surfaces with one important class of materials, polyelectrolytes. We begin by introducing the challenges facing the cell surface engineering field. We then discuss the features of polyelectrolytes and how these properties can be harnessed to solve challenges in cell therapy, tissue engineering, cell-based drug delivery, sensing and tracking, and immune modulation. Throughout the review, we highlight opportunities to drive the field forward by bridging new knowledge of polyelectrolytes with existing translational challenges.
Collapse
Affiliation(s)
- Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MA 20742, USA.
| | - Michelle L Bookstaver
- Fischell Department of Bioengineering, University of Maryland, College Park, MA 20742, USA.
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MA 20742, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MA 21201, USA.
- United States Department of Veterans Affairs, Baltimore, MA 21201, USA.
| |
Collapse
|
30
|
Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu JB, Ruoff RS, Zhu H. The physics and chemistry of graphene-on-surfaces. Chem Soc Rev 2017; 46:4417-4449. [DOI: 10.1039/c7cs00256d] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review describes the major “graphene-on-surface” structures and examines the roles of their properties in governing the overall performance for specific applications.
Collapse
Affiliation(s)
- Guoke Zhao
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Xinming Li
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Meirong Huang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Zhen Zhen
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Yujia Zhong
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Qiao Chen
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Xuanliang Zhao
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Yijia He
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Ruirui Hu
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Tingting Yang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Rujing Zhang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Changli Li
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Jing Kong
- Department of Electrical Engineering and Computer Sciences
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Jian-Bin Xu
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Rodney S. Ruoff
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), and Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
31
|
Mao S, Chang J, Pu H, Lu G, He Q, Zhang H, Chen J. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem Soc Rev 2017; 46:6872-6904. [DOI: 10.1039/c6cs00827e] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review highlights the recent progress in graphene-, 2D transition metal dichalcogenide-, and 2D black phosphorus-based FET sensors for detecting gases, biomolecules, and water contaminants.
Collapse
Affiliation(s)
- Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Jingbo Chang
- Department of Mechanical Engineering
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| | - Haihui Pu
- Department of Mechanical Engineering
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| | | | - Qiyuan He
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Hua Zhang
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Junhong Chen
- Department of Mechanical Engineering
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| |
Collapse
|
32
|
DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.09.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Intercalated water layers promote thermal dissipation at bio-nano interfaces. Nat Commun 2016; 7:12854. [PMID: 27659484 PMCID: PMC5036148 DOI: 10.1038/ncomms12854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
The increasing interest in developing nanodevices for biophysical and biomedical applications results in concerns about thermal management at interfaces between tissues and electronic devices. However, there is neither sufficient knowledge nor suitable tools for the characterization of thermal properties at interfaces between materials of contrasting mechanics, which are essential for design with reliability. Here we use computational simulations to quantify thermal transfer across the cell membrane–graphene interface. We find that the intercalated water displays a layered order below a critical value of ∼1 nm nanoconfinement, mediating the interfacial thermal coupling, and efficiently enhancing the thermal dissipation. We thereafter develop an analytical model to evaluate the critical value for power generation in graphene before significant heat is accumulated to disturb living tissues. These findings may provide a basis for the rational design of wearable and implantable nanodevices in biosensing and thermotherapic treatments where thermal dissipation and transport processes are crucial. Thermal management is important for designing bio-nano interfaces for biosensing and thermotherapic applications. Here the authors perform simulations showing that nm-thick water layers between graphene and cell membranes display layered ordering, promoting interfacial thermal coupling and thermal dissipation.
Collapse
|
34
|
Park JH, Hong D, Lee J, Choi IS. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells. Acc Chem Res 2016; 49:792-800. [PMID: 27127837 DOI: 10.1021/acs.accounts.6b00087] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (<100 nm) but durable shell on a "non-spore-forming" cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example, bacterial endospores. Bioinspired silicification and phenolics-based coatings are, so far, the main approaches to the formation of cytoprotective cell-in-shell hybrids, because they ensure cell viability during encapsulations and also generate durable nanoshells on cell surfaces. The resulting cell-in-shell hybrids extrinsically possess enhanced resistance to external aggressors, and more intriguingly, the encapsulation alters their metabolic activity, exemplified by retarded or suppressed cell cycle progression. In addition, recent developments in the field have further advanced the synthetic tools available to the stage of chemical sporulation and germination of mammalian cells, where cytoprotective shells are formed on labile mammalian cells and broken apart on demand. For example, individual HeLa cells are coated with a metal-organic complex of ferric ion and tannic acid, and cellular adherence and proliferation are controlled by the programmed shell formation and degradation. Based on these demonstrations, the (degradable) cell-in-shell hybrids are anticipated to find their applications in various biomedical and bionanotechnological areas, such as cytotherapeutics, high-throughput screening, sensors, and biocatalysis, as well as providing a versatile research platform for single-cell biology.
Collapse
Affiliation(s)
- Ji Hun Park
- Center for Cell-Encapsulation
Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Daewha Hong
- Center for Cell-Encapsulation
Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Juno Lee
- Center for Cell-Encapsulation
Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation
Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
35
|
Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A, Gao H, Koski K, Hurt R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 2016; 45:1750-80. [PMID: 26923057 PMCID: PMC4820079 DOI: 10.1039/c5cs00914f] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials.
Collapse
Affiliation(s)
| | | | | | - Xin Yi
- School of Engineering, USA.
| | | | - Agnes Kane
- Department of Pathology and Laboratory Medicine, USA. and Institute for Molecular and Nanoscale Innovation, USA
| | | | - Kristie Koski
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Robert Hurt
- School of Engineering, USA. and Institute for Molecular and Nanoscale Innovation, USA
| |
Collapse
|
36
|
Valentini L, Bittolo Bon S, Signetti S, Pugno NM. Graphene-Based Bionic Composites with Multifunctional and Repairing Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7607-7612. [PMID: 26971362 DOI: 10.1021/acsami.6b02530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, a novel bionic composite inspired by the concept of yeast fermentation has been proposed. It was observed that the addition of graphene nanoplatelets during the fermentation of extract of Saccharomyces cerevisiae fungi allows coupling of the graphene sheets to the yeast cell wall. This process resulted in the formation of a composite film with improved mechanical and electrical properties along with the capability of converting the light stimulus in the electrical signal. The mechanical properties of the prepared composites, namely, the fracture strength and Young's modulus, were studied via numerical simulations and are related to the properties of the constituent phases via rules of mixture. Finally, it was observed that graphene nanoplatelets, added to the nutrient broth, were able to reassemble onto the stressed cell surface and repair the surface cracking, partially restoring the pristine electrical and mechanical properties. The method reported here may find potential application in the development of self-healable bioelectronic devices and microorganism-based strain and chemical biosensors.
Collapse
Affiliation(s)
- L Valentini
- Dipartimento di Ingegneria Civile e Ambientale, Università di Perugia , UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy
| | - S Bittolo Bon
- Dipartimento di Ingegneria Civile e Ambientale, Università di Perugia , UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy
| | - S Signetti
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento , via Mesiano 77, I-38123 Trento, Italy
| | - N M Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento , via Mesiano 77, I-38123 Trento, Italy
- Centre for Materials and Microsystems, Fondazione Bruno Kessler , via Sommarive 18, I-38123 Povo, Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, E1 4NS London, United Kingdom
| |
Collapse
|
37
|
Huang PJJ, Pautler R, Shanmugaraj J, Labbé G, Liu J. Inhibiting the VIM-2 Metallo-β-Lactamase by Graphene Oxide and Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9898-9903. [PMID: 25897818 DOI: 10.1021/acsami.5b01954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metallo-β-lactamases (MBLs) degrade a broad spectrum of antibiotics including the latest carbapenems. So far, limited success has been achieved in developing its inhibitors using small organic molecules. VIM-2 is one of the most studied and important MBLs. In this work, we screened 10 nanomaterials, covering a diverse range of surface properties including charge, hydrophobicity, and specific chemical bonding. Among these, graphene oxide and carbon nanotubes are the most potent inhibitors, while most other materials do not show much inhibition effect. The inhibition is noncompetitive and is attributed to the hydrophobic interaction with the enzyme. Adsorption of VIM-2 was further probed using protein displacement assays where it cannot displace or be displaced by bovine serum albumin (BSA). This information is useful for rational design inhibitors for MBLs and more specific inhibition might be achieved by further surface modifications on these nanocarbons.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Rachel Pautler
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Jenitta Shanmugaraj
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Geneviève Labbé
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
38
|
Graphene quantum dots interfaced with single bacterial spore for bio-electromechanical devices: a graphene cytobot. Sci Rep 2015; 5:9138. [PMID: 25774962 PMCID: PMC4360738 DOI: 10.1038/srep09138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/16/2015] [Indexed: 11/28/2022] Open
Abstract
The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation.
Collapse
|
39
|
Yi X, Gao H. Cell interaction with graphene microsheets: near-orthogonal cutting versus parallel attachment. NANOSCALE 2015; 7:5457-5467. [PMID: 25732111 DOI: 10.1039/c4nr06170e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent experiments indicate that graphene microsheets can either undergo a near-orthogonal cutting or a parallel attachment mode of interaction with cell membranes. Here we perform a theoretical analysis to characterize the deformed membrane microstructure and investigate how these two interaction modes are influenced by the splay, tilt, compression, tension, bending and adhesion energies of the membrane. Our analysis indicates that, driven by the membrane splay and tension energies, a two-dimensional microsheet such as graphene would adopt a near-perpendicular configuration with respect to the membrane in the transmembrane penetration mode, whereas the membrane bending and tension energies would lead to parallel attachment in the absence of cross membrane penetration. These interaction modes may have broad implications in applications involving drug delivery, cell encapsulation and protection, and the measurement of the dynamic cell response.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
40
|
Becton M, Zhang L, Wang X. On the crumpling of polycrystalline graphene by molecular dynamics simulation. Phys Chem Chem Phys 2015; 17:6297-304. [DOI: 10.1039/c4cp05813e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By employing molecular dynamics simulation, this work unravels the crumpling process of polycrystalline graphene and its relevant mechanical properties.
Collapse
Affiliation(s)
| | - Liuyang Zhang
- College of Engineering
- University of Georgia
- Athens
- USA
| | - Xianqiao Wang
- College of Engineering
- University of Georgia
- Athens
- USA
| |
Collapse
|
41
|
Zappacosta R, Di Giulio M, Ettorre V, Bosco D, Hadad C, Siani G, Di Bartolomeo S, Cataldi A, Cellini L, Fontana A. Liposome-induced exfoliation of graphite to few-layer graphene dispersion with antibacterial activity. J Mater Chem B 2015; 3:6520-6527. [DOI: 10.1039/c5tb00798d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liposome-induced exfoliation of graphite allowed to obtain few-layer graphene homogeneous in size and hydrophilic due to the non-covalent functionalization with phospholipids. The corresponding dispersions are stable for 48 h and demonstrate antimicrobial activity.
Collapse
Affiliation(s)
- R. Zappacosta
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| | - M. Di Giulio
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| | - V. Ettorre
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| | - D. Bosco
- Istituto di Genetica Molecolare
- CNR unità di Chieti
- I-66100 Chieti
- Italy
| | - C. Hadad
- Center of Excellence for Nanostructured Materials (CENMAT)
- INSTM
- Unit of Trieste
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università di Trieste
| | - G. Siani
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| | - S. Di Bartolomeo
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| | - A. Cataldi
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| | - L. Cellini
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| | - A. Fontana
- Dipartimento di Farmacia
- Università ‘G. d'Annunzio’
- 66100 Chieti
- Italy
| |
Collapse
|
42
|
High resolution scanning electron microscopy of cells using dielectrophoresis. PLoS One 2014; 9:e104109. [PMID: 25089528 PMCID: PMC4121316 DOI: 10.1371/journal.pone.0104109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/08/2014] [Indexed: 12/02/2022] Open
Abstract
Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment.
Collapse
|
43
|
Park JH, Yang SH, Lee J, Ko EH, Hong D, Choi IS. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2001-2010. [PMID: 24452932 DOI: 10.1002/adma.201304568] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Indexed: 06/03/2023]
Abstract
The chronological progresses in single-cell nanocoating are described. The historical developments in the field are divided into biotemplating, cytocompatible nanocoating, and cells in nano-nutshells, depending on the main research focuses. Each subfield is discussed in conjunction with the others, regarding how and why to manipulate living cells by nanocoating at the single-cell level.
Collapse
Affiliation(s)
- Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry KAIST, Daejeon, 305-701, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
As the deformation of 2D materials can strongly affect properties such as diffusion, electrical conductivity, and mechanical performance, it is worthwhile to explore the potentiality of crumpling as a method to tailor the properties of 2D materials while maintaining the surface area.
Collapse
Affiliation(s)
| | - Liuyang Zhang
- College of Engineering
- University of Georgia
- Athens, USA
| | - Xianqiao Wang
- College of Engineering
- University of Georgia
- Athens, USA
| |
Collapse
|
45
|
Jiang N, Ying GL, Liu SY, Shen L, Hu J, Dai LJ, Yang XY, Tian G, Su BL. Amino acid-based biohybrids for nano-shellization of individual desulfurizing bacteria. Chem Commun (Camb) 2014; 50:15407-10. [DOI: 10.1039/c4cc06323f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino acid-based biohybrid nanoshells endow individual desulfurizing bacteria with reusability and post-functionalization such as enhanced desulfurizing activity and magnetic separation.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Guo-Liang Ying
- School of Material Science and Engineering
- Wuhan Institute of Technology
- Wuhan, China
| | - Shao-Yin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Ling Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Jie Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Ling-Jun Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
- Laboratory of Inorganic Materials Chemistry
| |
Collapse
|
46
|
Wang B, Liu P, Liu Z, Pan H, Xu X, Tang R. Biomimetic construction of cellular shell by adjusting the interfacial energy. Biotechnol Bioeng 2013; 111:386-95. [DOI: 10.1002/bit.25016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Ben Wang
- Center for Biomaterials and Biopathways, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
- Institute for Translational Medicine and The Second Affiliated Hospital of Zhejiang University; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Peng Liu
- Center for Biomaterials and Biopathways, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Zhaoming Liu
- Center for Biomaterials and Biopathways, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Haihua Pan
- Center for Biomaterials and Biopathways, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Xurong Xu
- Center for Biomaterials and Biopathways, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang University; Hangzhou Zhejiang 310027 China
| |
Collapse
|
47
|
Ip ACF, Liu B, Huang PJJ, Liu J. Oxidation level-dependent zwitterionic liposome adsorption and rupture by graphene-based materials and light-induced content release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1030-1035. [PMID: 23239613 DOI: 10.1002/smll.201202710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 06/01/2023]
Abstract
Liposomes may be stably adsorbed or ruptured on graphene-based materials, depending on the oxidation state of graphene. IR-induced liposome leakage is achieved, since graphene oxide does not induce liposome leakage spontaneously.
Collapse
Affiliation(s)
- Alexander C-F Ip
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario,Canada
| | | | | | | |
Collapse
|
48
|
“On-off” switchable electrochemical affinity nanobiosensor based on graphene oxide for ultrasensitive glucose sensing. Biosens Bioelectron 2013; 41:430-5. [DOI: 10.1016/j.bios.2012.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/21/2012] [Accepted: 09/02/2012] [Indexed: 11/23/2022]
|
49
|
Yang SH, Hong D, Lee J, Ko EH, Choi IS. Artificial spores: cytocompatible encapsulation of individual living cells within thin, tough artificial shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:178-186. [PMID: 23124994 DOI: 10.1002/smll.201202174] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Indexed: 06/01/2023]
Abstract
Cells are encapsulated individually within thin and tough shells in a cytocompatible way, by mimicking the structure of bacterial endospores that survive under hostile conditions. The 3D 'cell-in-shell' structures-coined as 'artificial spores'-enable modulation and control over cellular metabolism, such as control of cell division, resistance to external stresses, and surface-functionalizability, providing a useful platform for applications, including cell-based sensors, cell therapy, regenerative medicine, as well as for fundamental studies on cellular metabolism at the single-cell level and cell-to-cell communications. This Concept focuses on chemical approaches to single-cell encapsulation with artificial shells for creating artificial spores, including cross-linked layer-by-layer assembly, bioinspired mineralization, and mussel-inspired polymerization. The current status and future prospects of this emerging field are also discussed.
Collapse
Affiliation(s)
- Sung Ho Yang
- Department of Chemistry Education, Korea National University of Education, Chungbuk 363-791, Korea
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental
Criteria (Ministry of Education), College of Environmental Science
and Engineering, Nankai University, Tianjin
300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental
Criteria (Ministry of Education), College of Environmental Science
and Engineering, Nankai University, Tianjin
300071, China
| |
Collapse
|