1
|
Luo J, Tong X, Yue S, Wu K, Li X, Zhao H, Wang B, Li Z, Liu X, Wang ZM. Tailored Environment-Friendly Reverse Type-I Colloidal Quantum Dots for a Near-Infrared Optical Synapse and Artificial Vision System. ACS NANO 2024; 18:29991-30003. [PMID: 39431329 DOI: 10.1021/acsnano.4c10795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Colloidal quantum dots (QDs) are emerging as potential candidates for constructing near-infrared (NIR) photodetectors (PDs) and artificial optoelectronic synapses due to solution processability and a tunable bandgap. However, most of the current NIR QDs-optoelectronic devices are still fabricated using QDs with incorporated harmful heavy metals of lead (Pb) and mercury (Hg), showing potential health and environment risks. In this work, we tailored eco-friendly reverse type-I ZnSe/InP QDs by copper (Cu) doping and extended the photoresponse from the visible to NIR region. Transient absorption spectroscopy analysis revealed the presence of Cu dopant states in ZnSe/InP:Cu QDs that facilitated the extraction of photogenerated charge carriers, leading to an enhanced photodetection performance. Specifically, under 400 nm illumination, the Cu-doped ZnSe/InP QDs-based PDs presented a broadband photodetection ranging from ultraviolet (UV) to NIR, with a responsivity of 70.5 A W-1 and detectivity of 2.8 × 1011 Jones, surpassing those of the undoped ZnSe/InP QDs-based PDs (49.4 A W-1 and 1.9 × 1011 Jones, respectively). More importantly, the ZnSe/InP:Cu QDs-PDs demonstrated various synapse-like characteristics of short-term plasticity (STP), long-term plasticity (LTP), and learning-forging-relearning under NIR light illumination, which were further used to construct PD array devices for simulating the artificial visual system that is available in prospective optical neuromorphic applications.
Collapse
Affiliation(s)
- Jingying Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University, Kunming 650091, China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu 641419, China
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xin Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hongyang Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Binyu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhuojian Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu 641419, China
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Wang K, Tao Y, Tang Z, Xu X, Benetti D, Vidal F, Zhao H, Rosei F, Sun X. Efficient Photoelectrochemical Hydrogen Generation Based on Core Size Effect of Heterostructured Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306453. [PMID: 38032174 DOI: 10.1002/smll.202306453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Colloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H2) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood. Here, by regulating four types of CdSe/CdS core/shell QDs with different core sizes (diameter of 2.8, 3.1, 3.5, and 4.8 nm) while the thickness of CdS shell remains the same (thickness of 2.0 ± 0.1 nm), the Type II, Quasi-Type II, and Type I core/shell architecture are successfully formed. Among these, the optimized CdSe/CdS/TiO2 photoelectrode with core size of 3.5 nm can achieve the saturated photocurrent density (Jph) of 17.4 mA cm-2 under standard one sun irradiation. When such cores are further optimized by capping alloyed shells, the Jph can reach values of 22 mA cm2 which is among the best-performed electrodes based on colloidal QDs.
Collapse
Affiliation(s)
- Kanghong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, Québec, J3×1P7, Canada
- Suzhou Institute for Advanced Research, University of Science and Technology China, Suzhou, Jiangsu, 215123, P. R. China
| | - Yi Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zikun Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaolan Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Daniele Benetti
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, Québec, J3×1P7, Canada
| | - François Vidal
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, Québec, J3×1P7, Canada
| | - Haiguang Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles & College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Federico Rosei
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, Québec, J3×1P7, Canada
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
3
|
Guo Z, Yao J, Qi D, Ding P, Jin C, He Y, Xu N, Zhang Z, Yao Y, Deng L, Wang Z, Sun Z, Zhang S. Flexible and accurate total variation and cascaded denoisers-based image reconstruction algorithm for hyperspectrally compressed ultrafast photography. OPTICS EXPRESS 2023; 31:43989-44003. [PMID: 38178481 DOI: 10.1364/oe.506723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Hyperspectrally compressed ultrafast photography (HCUP) based on compressed sensing and time- and spectrum-to-space mappings can simultaneously realize the temporal and spectral imaging of non-repeatable or difficult-to-repeat transient events with a passive manner in single exposure. HCUP possesses an incredibly high frame rate of tens of trillions of frames per second and a sequence depth of several hundred, and therefore plays a revolutionary role in single-shot ultrafast optical imaging. However, due to ultra-high data compression ratios induced by the extremely large sequence depth, as well as limited fidelities of traditional algorithms over the image reconstruction process, HCUP suffers from a poor image reconstruction quality and fails to capture fine structures in complex transient scenes. To overcome these restrictions, we report a flexible image reconstruction algorithm based on a total variation (TV) and cascaded denoisers (CD) for HCUP, named the TV-CD algorithm. The TV-CD algorithm applies the TV denoising model cascaded with several advanced deep learning-based denoising models in the iterative plug-and-play alternating direction method of multipliers framework, which not only preserves the image smoothness with TV, but also obtains more priori with CD. Therefore, it solves the common sparsity representation problem in local similarity and motion compensation. Both the simulation and experimental results show that the proposed TV-CD algorithm can effectively improve the image reconstruction accuracy and quality of HCUP, and may further promote the practical applications of HCUP in capturing high-dimensional complex physical, chemical and biological ultrafast dynamic scenes.
Collapse
|
4
|
Najm AS, Al-Ghamdi A, Amin MT, Al Ghamdi A, Moria H, Holi AM, Abed AM, Al-Zahrani AA, Sopian K, Bais B, Sultan AJ. Towards a promising systematic approach to the synthesis of CZTS solar cells. Sci Rep 2023; 13:15418. [PMID: 37723193 PMCID: PMC10507019 DOI: 10.1038/s41598-023-42641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
This study aims to enhance the CZTS device's overall efficiency, the key research area has been identified in this study is to explore the effects of a novel, low-cost, and simplified, deposition method to improve the optoelectronic properties of the buffer layer in the fabrication of CZTS thin film solar cells. Herein, an effective way of addressing this challenge is through adjusting the absorbers' structure by the concept of doping, sensitized CdS thin film by the bi-functional linker, and an environmentally friendly catalytic green agent. The Linker Assisted and Chemical Bath Deposition (LA-CBD) method was introduced as an innovative and effective hybrid sensitization approach. In the one-step synthesis process, Salvia dye, Ag, and 3-Mercaptopropionic acid (MPA) were used. Generally, the results for all samples displayed varying bandgap as achieved between (2.21-2.46) eV, hexagonal structure with considerably decreased strain level, broader grain size, and dramatically enhanced crystalline property. Hence, the rudimentary CdS/CZTS solar cell devices were fabricated for the application of these novel CdS films. Preliminary CZTS thin film solar cell fabrication results in the highest conversion efficiency of 0.266% obtained CdS + Salvia dye, indicating the potential use of the CdS films as a buffer layer for CZTS photovoltaic devices.
Collapse
Affiliation(s)
- A S Najm
- Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
- Petroleum Research and Development Center, Ministry of Oil, Baghdad, Iraq.
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq.
| | - Azza Al-Ghamdi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Renewable and Sustainable Energy Unit, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Majdi T Amin
- Department of Mechanical Engineering Technology, Yanbu Industrial College, 41912, Yanbu Al-Sinaiyah City, Saudi Arabia
| | - Ahmed Al Ghamdi
- Department of Chemical Engineering Technology, Yanbu Industrial College, 41912, Yanbu Al-Sinaiyah City, Saudi Arabia
| | - Hazim Moria
- Department of Mechanical Engineering Technology, Yanbu Industrial College, 41912, Yanbu Al-Sinaiyah City, Saudi Arabia
| | - Araa Mebdir Holi
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Al-Qadisiyah, 58002, Iraq
| | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University, Babylon, Iraq
| | | | - K Sopian
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Badariah Bais
- Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Abbas J Sultan
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| |
Collapse
|
5
|
Ju S, Zhu Y, Hu H, Liu Y, Xu Z, Zheng J, Mao C, Yu Y, Yang K, Lin L, Guo T, Li F. Dual-function perovskite light-emitting/sensing devices for optical interactive display. LIGHT, SCIENCE & APPLICATIONS 2022; 11:331. [PMID: 36418315 PMCID: PMC9684532 DOI: 10.1038/s41377-022-01036-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Interactive display devices integrating multiple functions have become a development trend of display technology. The excellent luminescence properties of perovskite quantum dots (PQDs) make it an ideal luminescent material for the next generation of wide-color gamut displays. Here we design and fabricate dual-function light-sensing/displaying light-emitting devices based on PQDs. The devices can display information as an output port, and simultaneously sense outside light signals as an input port and modulate the display information in a non-contact mode. The dual functions were attributed to the device designs: (1) the hole transport layer in the devices also acts as the light-sensing layer to absorb outside light signals; (2) the introduced hole trapping layer interface can trap holes originating from the light-sensing layer, and thus tune the charge transport properties and the light-emitting intensities. The sensing and display behavior of the device can be further modulated by light signals with different time and space information. This fusion of sensing and display functions has broad prospects in non-contact interactive screens and communication ports.
Collapse
Affiliation(s)
- Songman Ju
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350116, China
| | - Yangbin Zhu
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, China
| | - Hailong Hu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Yang Liu
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Zhongwei Xu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Jinping Zheng
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Chaomin Mao
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Yongshen Yu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Kaiyu Yang
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Lihua Lin
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Tailiang Guo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350116, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350116, China.
| |
Collapse
|
6
|
An in-depth analysis of nucleation and growth mechanism of CdS thin film synthesized by chemical bath deposition (CBD) technique. Sci Rep 2022; 12:15295. [PMID: 36096904 PMCID: PMC9468032 DOI: 10.1038/s41598-022-19340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study is to acquire a deeper understanding of the response mechanism that is associated with the formation of CdS thin films. We presented an effective and new hybrid sensitisation technique, which involved the 1-step linker between the related chemical bath deposition (CBD) process and the traditional doping method during CBD for synthesising high-quality, CdS thin films. The mechanism for the combined synthesis of the films is also describes. CdS films were electrostatically bonded to soda-lime glass, causing the formation of the intermediate complexes [Cd(NH3)4]2+, which aided in the collision of these complexes with a soda-lime glass slide. In the one-step fabrication technique, 3-Mercaptopropionic Acid (MPA) was employed as a second source of sulphur ions and a linker molecule. Optical studies showed that the bandgap ranged between (2.26–2.52) eV. CdS + MPA films exhibited a uniform distribution of spherical molecules based on their morphological properties. After annealing, this approach significantly altered the electrical characteristics of CdS films. The CdS + MPA films displayed the highest carrier concentration whereas the CdS + Ag + MPA films exhibited the lowest resistivity, with a jump of 3 orders of magnitude.
Collapse
|
7
|
Najm AS, Naeem HS, Alabboodi KO, Hasbullah SA, Hasan HA, Holi AM, Al-Zahrani AA, Sopian K, Bais B, Majdi HS, Sultan AJ. New systematic study approach of green synthesis CdS thin film via Salvia dye. Sci Rep 2022; 12:12521. [PMID: 35869261 PMCID: PMC9307632 DOI: 10.1038/s41598-022-16733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we aimed to increase the knowledge regarding the response mechanisms which were associated with the formation of CdS thin films. CdS thin film remains the most appealing alternative for many researchers, as it has been a capable buffer material for effect in film based polycrystalline solar cells (CdTe, CIGSe, CZTS). The Linker Assisted and Chemical Bath Deposition (LA-CBD) technique, which combines the Linker Assisted (LA) technique and the chemical bath deposition (CBD) method for forming high quality CdS thin film, was presented as an efficient and novel hybrid sensitization technique. CdS films were bound to soda lime with the help of electrostatic forces, which led to the formation of the intermediate complexes [Cd (NH3)4]2+ that helped in the collision of these complexes with a soda lime slide. Salvia dye and as a linker molecule 3-Mercaptopropionic acid (MPA) was used in the one step fabrication technique. Optical results showed that the bandgap varied in the range of (2.50 to 2.17) eV. Morphological properties showed a homogeneous distribution of the particles that aspherical in shape in the CdS + MPA + Salvia dye films. This technique significantly affected on the electrical characterizations of CdS films after the annealing process. The CdS + Ag + MPA + Salvia dye films showed the maximum carrier concentration and minimum resistivity, as 5.64 × 10 18 cm-3 and 0.83 Ω cm respectively.
Collapse
Affiliation(s)
- A S Najm
- Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq.
| | | | - Khalid O Alabboodi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Siti Aishah Hasbullah
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Hiba Ali Hasan
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Araa Mebdir Holi
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Al-Qadisiyah, 58002, Iraq
| | | | - K Sopian
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Badariah Bais
- Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Abbas J Sultan
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| |
Collapse
|
8
|
|
9
|
Liu Y, Wang Z, Li L, Gao S, Zheng D, Yu X, Wu Q, Yang Q, Zhu D, Yang W, Xiong Y. Highly efficient quantum-dot-sensitized solar cells with composite semiconductor of ZnO nanorod and oxide inverse opal in photoanode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Wei H, Qiu P, Yu M, Song Y, Li Y, He Y, Peng M, Liu X, Zheng X. Interfacial carrier transport properties of a gallium nitride epilayer/quantum dot hybrid structure. RSC Adv 2022; 12:2276-2281. [PMID: 35425246 PMCID: PMC8979309 DOI: 10.1039/d1ra08680d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Electron transport layers (ETLs) play a key role in the electron transport properties and photovoltaic performance of solar cells. Although the existing ETLs such as TiO2, ZnO and SnO2 have been widely used to fabricate high performance solar cells, they still suffer from several inherent drawbacks such as low electron mobility and poor chemical stability. Therefore, exploring other novel and effective electron transport materials is of great importance. Gallium nitride (GaN) as an emerging candidate with excellent optoelectronic properties attracts our attention, in particular its significantly higher electron mobility and similar conduction band position to TiO2. Here, we mainly focus on the investigation of interfacial carrier transport properties of a GaN epilayer/quantum dot hybrid structure. Benefiting from the quantum effects of QDs, suitable energy level arrangements have formed between the GaN and CdSe QDs. It is revealed that the GaN epilayer exhibits better electron extraction ability and faster interfacial electron transfer than the rutile TiO2 single crystal. Moreover, the corresponding electron transfer rates of 4.44 × 108 s−1 and 8.98 × 108 s−1 have been calculated, respectively. This work preliminarily shows the potential application of GaN in quantum dot solar cells (QDSCs). Carefully tailoring the structure and optoelectronic properties of GaN, in particular realizing the low-temperature deposition of high-quality GaN on various substrates, will significantly promote the construction of highly efficient GaN-ETL based QDSCs. A suitable energy level arrangement is formed between GaN and CdSe QDs, and the GaN epilayer exhibits better electron extraction ability and faster interfacial electron transfer than the rutile TiO2 single crystal.![]()
Collapse
Affiliation(s)
- Huiyun Wei
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 PR China .,School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University Wenzhou 325027 PR China .,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering) Wenzhou 325027 PR China
| | - Peng Qiu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 PR China
| | - Meina Yu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing Beijing 100083 PR China
| | - Yimeng Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 PR China
| | - Ye Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 PR China
| | - Yingfeng He
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 PR China
| | - Mingzeng Peng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 PR China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University Wenzhou 325027 PR China .,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering) Wenzhou 325027 PR China
| | - Xinhe Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 PR China
| |
Collapse
|
11
|
Dong L, Guo J, Liu J, Liu H, Dai C. Optimization of Aeration Performance for Inverted Umbrella Aerator Based on Response Surface Methodology. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.19we212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liang Dong
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
| | - Jinnan Guo
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
| | - Jiawei Liu
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
| | - Houlin Liu
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
| | - Cui Dai
- School of Energy and Power Engineering, Jiangsu University
| |
Collapse
|
12
|
Yu J, Zhang H, Xu W, Liu G, Tang Y, Zhao D. Quantized doping of CdS quantum dots with twelve gold atoms. Chem Commun (Camb) 2021; 57:6448-6451. [PMID: 34096940 DOI: 10.1039/d1cc02460d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Through a bottom-up strategy, CdS quantum dots (QDs) doped with 12 gold atoms in each nanocrystal (NC) were prepared by cation exchange reactions. The (Au12) dopants inside the CdS matrix were directly observed using Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and quantitatively confirmed using the inductively coupled plasma atomic emission spectroscopy (ICP-AES) data. With a photoluminescence quantum yield (PLQY) of 37.5%, the as-prepared (Au12)@CdS QDs emitted light at 635 nm. Due to the injection of excited electrons from the lowest unoccupied molecular orbital (LUMO) of dopants to the conduction band (CB) of CdS, multiple fine peaks were observed in the photoluminescence excitation (PLE) spectra. By using clusters as starting materials, we demonstrate a universal approach for the precise tailoring of dopants and provide a pathway for band energy engineering of doped QDs.
Collapse
Affiliation(s)
- Junlai Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Hui Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Wenhao Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Guangnan Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Yun Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Yao F, Liu Y, Xu Y, Peng J, Gui P, Liang J, Lin Q, Tao C, Fang G. Room-Temperature Diffusion-Induced Extraction for Perovskite Nanocrystals with High Luminescence and Stability. SMALL METHODS 2021; 5:e2001292. [PMID: 34927924 DOI: 10.1002/smtd.202001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Indexed: 06/14/2023]
Abstract
Metal halide perovskite nanocrystals (NCs) serve as a kind of ideal semiconductor for luminescence and display applications. However, the optoelectronic performance and stability of perovskite NCs are mainly subjected to current ligand strategies since these ligands exhibit a highly dynamic binding state, which complicates NC purification and storage. Herein, a method named diffusion-induced extraction is developed for crystallization (DEC) at room temperature, in which silicone oil serves as a medium to separate the solvent from perovskite precursors and diethyl ether promotes the nucleation, leading to highly emissive perovskite NCs. The formation mechanism of NCs using this approach is elucidated, and their optoelectronic properties are fully characterized. The resultant NCs ink exhibits a high photoluminescence quantum yield (PLQY) over 90% with a narrow full width at half maximum of 17 nm. The DEC method strengthens the interaction between ligand and NCs via the hydrophobic silicone oil. Therefore, the NCs maintain almost 95% of their initial PLQYs after aging more than seven months in air. The findings will be of great significance for the continued advancement of high PLQY perovskite NCs through a better understanding of formation dynamics. The DEC strategy presents a major step forward for advancing the field of perovskite semiconductor nanomaterials.
Collapse
Affiliation(s)
- Fang Yao
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yongjie Liu
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yalun Xu
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiali Peng
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Pengbin Gui
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiwei Liang
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Qianqian Lin
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Tao
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Guojia Fang
- Key Lab of Artificial, Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
14
|
Shao X, Zhang T, Li B, Wu Y, Li S, Wang J, Jiang S. Controllable chiral behavior of type-II core/shell quantum dots adjusted by shell thickness and coordinated ligands. Chirality 2021; 33:167-175. [PMID: 33469961 DOI: 10.1002/chir.23298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Chiral semiconductor nanomaterials induced by capped chiral ligands are of great interest for both theoretical studies and advanced applications. In this study, CdTe/CdSe quantum dots (QDs), defined as type-II core/shell nanostructure, with the advantage of a good separation of holes and electrons are imparted chirality with L/D-cysteine and L/D-penicillamine molecules. Circular dichroism (CD) at exciton transitions from cysteine- and penicillamine-capped QDs is different in shape and intensity. CD intensities decrease with increasing shell thickness from three monolayers to six monolayers, indicating a decreased hybridization degree between the holes in CdTe core and the electrons in chiral ligands. Elevated cysteine concentration leads to decreased g-factor, probably due to an altered binding mode from tridentate to bidentate. Our observations provide further insights into the understanding of chiral phenomenon as well as optimized design and applications of chiral nanostructures.
Collapse
Affiliation(s)
- Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Yue Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Siyi Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jingchao Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Lu C, Drichel A, Chen J, Enders F, Rokicińska A, Kuśtrowski P, Dronskowski R, Boldt K, Slabon A. Sensibilization of p-NiO with ZnSe/CdS and CdS/ZnSe quantum dots for photoelectrochemical water reduction. NANOSCALE 2021; 13:869-877. [PMID: 33355569 DOI: 10.1039/d0nr06993k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Core/shell quantum dots (QDs) paired with semiconductor photocathodes for water reduction have rarely been implemented so far. We demonstrate the integration of ZnSe/CdS and CdS/ZnSe QDs with porous p-type NiO photocathodes for water reduction. The QDs demonstrate appreciable enhancement in water-reduction efficiency, as compared with the bare NiO. Despite their different structure, both QDs generate comparable photocurrent enhancement, yielding a 3.8- and 3.2-fold improvement for the ZnSe/CdS@NiO and CdS/ZnSe@NiO system, respectively. Unraveling the carrier kinetics at the interface of these hybrid photocathodes is therefore critical for the development of efficient photoelectrochemical (PEC) proton reduction. In addition to examining the carrier dynamics by the Mott-Schottky technique and electrochemical impedance spectroscopy (EIS), we performed theoretical modelling for the distribution density of the carriers with respect to electron and hole wave functions. The electrons are found to be delocalized through the whole shell and can directly actuate the PEC-related process in the ZnSe/CdS QDs. The holes as the more localized carriers in the core have to tunnel through the shell before injecting into the hole transport layer (NiO). Our results emphasize the role of interfacial effects in core/shell QDs-based multi-heterojunction photocathodes.
Collapse
Affiliation(s)
- Can Lu
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Photosensitive Thin Films Based on Drop Cast and Langmuir-Blodgett Hydrophilic and Hydrophobic CdS Nanoparticles. NANOMATERIALS 2020; 10:nano10122437. [PMID: 33291512 PMCID: PMC7762191 DOI: 10.3390/nano10122437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023]
Abstract
Comparative photoelectrochemical studies of cadmium sulfide (CdS) nanoparticles with either hydrophilic or hydrophobic surface properties are presented. Oleylamine organic shells provided CdS nanoparticles with hydrophobic behavior, affecting the photoelectrochemical properties of such nanostructured semiconductor. Hydrophilic CdS nanoparticles were drop-cast on the electrode, whereas the hydrophobic ones were transferred in a controlled manner with Langmuir-Blodgett technique. The substantial hindrance of photopotential and photocurrent was observed for L-B CdS films as compared to the hydrophilic, uncoated nanoparticles that were drop-cast directly on the electrode surface. The electron lifetime in both hydrophilic and hydrophobic nanocrystalline CdS was determined, revealing longer carrier lifetime for oleylamine coated CdS nanoparticles, ascribed to the trapping of charge at the interface of the organic shell/CdS nanoparticle and to the dominant influence of the resistance of the organic shell against the flux of charges. The “on” transients of the photocurrent responses, observed only for the oleylamine-coated nanoparticles, were resolved, yielding the potential-dependent rate constants of the redox processes occurring at the interface.
Collapse
|
17
|
Yuan Y, Zhu H, Hills-Kimball K, Cai T, Shi W, Wei Z, Yang H, Candler Y, Wang P, He J, Chen O. Stereoselective C-C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr 3 Perovskite Quantum Dots. Angew Chem Int Ed Engl 2020; 59:22563-22569. [PMID: 32852841 DOI: 10.1002/anie.202007520] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Indexed: 01/27/2023]
Abstract
Semiconductor quantum dots (QDs) have attracted tremendous attention in the field of photocatalysis, owing to their superior optoelectronic properties for photocatalytic reactions, including high absorption coefficients and long photogenerated carrier lifetimes. Herein, by choosing 2-(3,4-dimethoxyphenyl)-3-oxobutanenitrile as a model substrate, we demonstrate that the stereoselective (>99 %) C-C oxidative coupling reaction can be realized with a high product yield (99 %) using zwitterionic ligand capped CsPbBr3 perovskite QDs under visible light illumination. The reaction can be generalized to different starting materials with various substituents on the phenyl ring and varied functional moieties, producing stereoselective dl-isomers. A radical mediated reaction pathway has been proposed. Our study provides a new way of stereoselective C-C oxidative coupling via a photocatalytic means using specially designed perovskite QDs.
Collapse
Affiliation(s)
- Yucheng Yuan
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Hua Zhu
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Katie Hills-Kimball
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Tong Cai
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Wenwu Shi
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Zichao Wei
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd., Storrs, CT, 06269, USA
| | - Hanjun Yang
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Yolanda Candler
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Ping Wang
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P.R.China
| | - Jie He
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd., Storrs, CT, 06269, USA
| | - Ou Chen
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| |
Collapse
|
18
|
Yuan Y, Zhu H, Hills‐Kimball K, Cai T, Shi W, Wei Z, Yang H, Candler Y, Wang P, He J, Chen O. Stereoselective C−C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr
3
Perovskite Quantum Dots. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yucheng Yuan
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Hua Zhu
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Katie Hills‐Kimball
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Tong Cai
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Wenwu Shi
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Zichao Wei
- Department of Chemistry University of Connecticut 55 North Eagleville Rd. Storrs CT 06269 USA
| | - Hanjun Yang
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Yolanda Candler
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Ping Wang
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 Jilin P.R.China
| | - Jie He
- Department of Chemistry University of Connecticut 55 North Eagleville Rd. Storrs CT 06269 USA
| | - Ou Chen
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| |
Collapse
|
19
|
Deng J, Li L, Gou Y, Fang J, Feng R, Lei Y, Song X, Yang Z. CdS-derived CdS1−xSex nanocrystals within TiO2 films for quantum dot-sensitized solar cells prepared through hydrothermal anion exchange reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Chen K, Wang C, Peng Z, Qi K, Guo Z, Zhang Y, Zhang H. The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
|
22
|
Sun J, An L, Xue G, Li X. Wavefunction engineering for efficient photoinduced-electron transfer in CuInS 2 quantum dot-sensitized solar cells. NANOTECHNOLOGY 2020; 31:215408. [PMID: 32040949 DOI: 10.1088/1361-6528/ab746c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The high efficiency of quantum dot-sensitized solar cells (QDSSCs) is a benefit of the highly efficient photoinduced-electron transfer (PET) to external electrodes. Here, we investigated how the surface defects and conduction-band (CB) offsets between core and shell materials affect the PET from CuInS2 quantum dots (QDs) by means of time-resolved femtosecond transient absorption and nanosecond photoluminescence spectroscopy. The transfer of 1S excited electrons from CuInS2 QDs to TiO2 films is demonstrated and we find that the surface-electron trapping can significantly reduce the efficiency of the PET. Though the electron trapping can be suppressed after ZnS surface passivation, the PET decreases significantly to a low efficiency of ∼33% from the type I CuInS2/ZnS core/shell QDs because of their low electron density at the surface of the QDs. The surface-electron density is increased with the strategy of wavefunction engineering by reducing the CB offset, which allows us to achieve a quasi-type II carrier confinement in CuInS2/CdS core/shell QDs. The PET efficiency appears to be as high as ∼95% from the CuInS2/CdS core/shell QDs, which is ascribed to synergistic effects of the surface passivation and enhanced delocalization of the electron wavefunction from the CuInS2 core to the CdS shell. Finally, we demonstrate that these new mechanistic understandings of the PET processes are crucial to improving the efficiency of CuInS2 QDSSCs.
Collapse
Affiliation(s)
- Jianhui Sun
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, People's Republic of China. Institute of Physics, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | |
Collapse
|
23
|
Archana T, Vijayakumar K, Subashini G, Nirmala Grace A, Arivanandhan M, Jayavel R. Effect of co-sensitization of InSb quantum dots on enhancing the photoconversion efficiency of CdS based quantum dot sensitized solar cells. RSC Adv 2020; 10:14837-14845. [PMID: 35497140 PMCID: PMC9052098 DOI: 10.1039/c9ra10118g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
The effect of co-sensitization of CdS and InSb Quantum Dots (QDs) on the enhancement of efficiency of Quantum Dots Sensitized Solar Cells (QDSSCs) has been investigated. InSb is synthesized by a facile solvothermal method using indium metal particles and antimony trichloride as precursors. From TEM images the average particle size of InSb was found to be less than 25 nm. The I-V data showed photoconversion efficiency (PCE) of 0.8% using InSb QDs as a sensitizer layer for QDSSC. However, co-sensitization of InSb QDs and CdS QDs on the TiO2 photoanode in QDSSCs showed an enhanced PCE of 4.94% compared to that of CdS sensitized solar cells (3.52%). The InSb QD layer broadens the light absorption range with reduced spectral overlap causing an improvement in light harvesting along with suppression of surface defects which reduced the recombination losses. As a result, co-sensitized TiO2/CdS/InSb QDSSC exhibits a greatly improved PCE of 4.94%, which is 40% higher than that of TiO2/CdS (3.52%) based QDSSCs due to improved light absorption with low recombination losses.
Collapse
Affiliation(s)
- T Archana
- Centre for Nanoscience and Technology, Anna University Chennai-600025 Tamil Nadu India +91 44 22359114
| | - K Vijayakumar
- Centre for Nanoscience and Technology, Anna University Chennai-600025 Tamil Nadu India +91 44 22359114
| | - G Subashini
- Centre for Nanotechnology Research, Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - A Nirmala Grace
- Centre for Nanotechnology Research, Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - M Arivanandhan
- Centre for Nanoscience and Technology, Anna University Chennai-600025 Tamil Nadu India +91 44 22359114
| | - R Jayavel
- Centre for Nanoscience and Technology, Anna University Chennai-600025 Tamil Nadu India +91 44 22359114
| |
Collapse
|
24
|
Purcell-Milton F, Curutchet A, Gun’ko Y. Electrophoretic Deposition of Quantum Dots and Characterisation of Composites. MATERIALS 2019; 12:ma12244089. [PMID: 31817844 PMCID: PMC6947596 DOI: 10.3390/ma12244089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022]
Abstract
Electrophoretic deposition (EPD) is an emerging technique in nanomaterial-based device fabrication. Here, we report an in-depth study of this approach as a means to deposit colloidal quantum dots (CQDs), in a range of solvents. For the first time, we report the significant improvement of EPD performance via the use of dichloromethane (DCM) for deposition of CQDs, producing a corresponding CQD-TiO2 composite with a near 10-fold increase in quantum dot loading relative to more commonly used solvents such as chloroform or toluene. We propose this effect is due to the higher dielectric constant of the solvent relative to more commonly used and therefore the stronger effect of EPD in this medium, though there remains the possibility that changes in zeta potential may also play an important role. In addition, this solvent choice enables the true universality of QD EPD to be demonstrated, via the sensitization of porous TiO2 electrodes with a range of ligand capped CdSe QDs and a range of group II-VI CQDs including CdS, CdSe/CdS, CdS/CdSe and CdTe/CdSe, and group IV-VI PbS QDs.
Collapse
Affiliation(s)
- Finn Purcell-Milton
- School of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
- BEACON, Bioeconomy Research Centre, University College Dublin, Dublin 4, Ireland
- Correspondence: (F.P.M.); (Y.G.)
| | - Antton Curutchet
- School of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
| | - Yurii Gun’ko
- School of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
- BEACON, Bioeconomy Research Centre, University College Dublin, Dublin 4, Ireland
- Correspondence: (F.P.M.); (Y.G.)
| |
Collapse
|
25
|
Maity P, Ghosh HN. Strategies for extending charge separation in colloidal nanostructured quantum dot materials. Phys Chem Chem Phys 2019; 21:23283-23300. [PMID: 31621729 DOI: 10.1039/c9cp03551f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Semiconductor colloidal metal chalcogenides (II-VI) in the form of quantum dots (QDs) and different heterostructures (core/shell, alloys, etc.) are of extensive interest in scientific research for both a fundamental understanding and technological applications because of their quantized size and different optical properties; however, due to their small size, the exciton (bound electron and hole) experiences a strong Coulombic attraction, which has a remarkable impact on the charge separation and photophysical properties of QDs. Thus, to achieve an efficient charge separation, numerous attempts have been made via the formation of different heterostructures, QD/molecular adsorbate (either organic or inorganic) assemblies, etc. These hybrid materials ameliorated the absorption of the incident light as well as charge separation. This article reviews the strategies for extending charge separation in these colloidal nanocrystals (NCs), which is one of the crucial steps to elevate the solar to electrical energy conversion efficiency in a quantum dot-sensitized solar cell (QDSC). The article summarizes the benefits of co-sensitization and experimental shreds of evidence for the multiple charge transfer processes involved in a QDSC. Studies have shown that in the co-sensitization process, prolonged charge separation occurs via the dual behavior of the molecular adsorbate, sensitization (electron injection) and capture of holes from photoexcited QDs. This perspective emphases band edge engineering and control of charge carrier dynamics in various core/shell structures. The impact of colloidal alloy NCs on charge separation and interesting photophysical properties was recapitulated via the steady-state and time-resolved photoluminescence (PL) and femtosecond transient absorption spectroscopic techniques. Finally, the prolonged lifetime and extent of charge separation for these hybrid NCs (or the composites) assisted in the development of a better light harvester as compared to the case of their pure counterparts.
Collapse
Affiliation(s)
- Partha Maity
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai-400085, India.
| | | |
Collapse
|
26
|
Shaikh JS, Shaikh NS, Mali SS, Patil JV, Beknalkar SA, Patil AP, Tarwal NL, Kanjanaboos P, Hong CK, Patil PS. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers. CHEMSUSCHEM 2019; 12:4724-4753. [PMID: 31347771 DOI: 10.1002/cssc.201901505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Quantum dot solar cells (QDSCs) are attractive technology for commercialization, owing to various advantages, such as cost effectiveness, and require relatively simple device fabrication processes. The properties of semiconductor quantum dots (QDs), such as band gap energy, optical absorption, and carrier transport, can be effectively tuned by modulating their size and shape. Two types of architectures of QDSCs have been developed: 1) photoelectric cells (PECs) fabricated from QDs sensitized on nanostructured TiO2 , and 2) photovoltaic cells fabricated from a Schottky junction and heterojunction. Different types of semiconductor QDs, such as a secondary, ternary, quaternary, and perovskite semiconductors, are used for the advancement of QDSCs. The major challenge in QDSCs is the presence of defects in QDs, which lead to recombination reactions and thereby limit the overall performance of the device. To tackle this problem, several strategies, such as the implementation of a passivation layer over the QD layer and the preparation of core-shell structures, have been developed. This review covers aspects of QDSCs that are essential to understand for further improvement in this field and their commercialization.
Collapse
Affiliation(s)
- Jasmin S Shaikh
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004, India
| | - Navajsharif S Shaikh
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sawanta S Mali
- Polymer Energy Materials Laboratory, School of Advanced Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Jyoti V Patil
- Polymer Energy Materials Laboratory, School of Advanced Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Sonali A Beknalkar
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004, India
| | - Akhilesh P Patil
- The School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, India
| | - N L Tarwal
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004, India
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chang Kook Hong
- Polymer Energy Materials Laboratory, School of Advanced Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Pramod S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004, India
- The School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, India
| |
Collapse
|
27
|
Ligand induced switching of the band alignment in aqueous synthesized CdTe/CdS core/shell nanocrystals. Sci Rep 2019; 9:8332. [PMID: 31171820 PMCID: PMC6554334 DOI: 10.1038/s41598-019-44787-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
CdTe/CdS core/shell quantum dots (QDs) are formed in aqueous synthesis via the partial decomposition of hydrophilic thiols, used as surface ligands. In this work, we investigate the influence of the chemical nature (functional group and chain length) of the used surface ligands on the shell formation. Four different surface ligands are compared: 3-mercaptopropionic acid, MPA, thioglycolic acid, TGA, sodium 3-mercaptopropanesulfonate, MPS, and sodium 2-mercaptoethanesulfonate, MES. The QD growth rate increases when the ligand aliphatic chain length decreases due to steric reasons. At the same time, the QDs stabilized with carboxylate ligands grow faster and achieve higher photoluminescence quantum yields compared to those containing sulfonate ligands. The average PL lifetime of TGA and MPA capped QDs is similar (≈20 ns) while in the case of MPS shorter (≈15 ns) and for MES significantly longer (≈30 ns) values are measured. A detailed structural analysis combining powder X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) indicates the existence of two novel regimes of band alignment: in the case of the mercaptocarboxylate ligands the classic type I band alignment between the core and shell materials is predominant, while the mercaptosulfonate ligands induce a quasi-type II alignment (MES) or an inverted type I alignment (MPS). Finally, the effect of the pH value on the optical properties was evaluated: using a ligand excess in solution allows achieving better stability of the QDs while maintaining high photoluminescence intensity at low pH.
Collapse
|
28
|
Fu B, Deng C, Yang L. Efficiency Enhancement of Solid-State CuInS 2 Quantum Dot-Sensitized Solar Cells by Improving the Charge Recombination. NANOSCALE RESEARCH LETTERS 2019; 14:198. [PMID: 31172299 PMCID: PMC6554371 DOI: 10.1186/s11671-019-2998-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Copper indium sulfide quantum dots (CuInS2 QDs) were incorporated into a nanocrystalline TiO2 film by using spin coating-assisted successive ionic layer adsorption and reaction process to fabricate CuInS2 QD-sensitized TiO2 photoelectrodes for the solid-state quantum dot-sensitized solar cell (QDSSC) applications. The result shows that the photovoltaic performance of solar cell is extremely dependent on the number of cycles, which has an appreciable impact on the coverage ratio of CuInS2 on the surface of TiO2 and the density of surface defect states. In the following high-temperature annealing process, it is found that annealing TiO2/CuInS2 photoelectrode at a suitable temperature would be beneficial for decreasing the charge recombination and accelerating the charge transport. After annealing at 400 °C, a significantly enhanced photovoltaic properties of solid-state CuInS2 QDSSCs are obtained, achieving the power conversion efficiency (PCE) of 3.13%, along with an open-circuit voltage (VOC) of 0.68 V, a short-circuit photocurrent density (JSC) of 11.33 mA cm-2, and a fill factor (FF) of 0.41. The enhancement in the performance of solar cells is mainly ascribed to the suppression of charge recombination and the promotion of the electron transfer after annealing.
Collapse
Affiliation(s)
- Bowen Fu
- College of Physics Science and Technology, Hebei University, Baoding, 071002 China
| | - Chong Deng
- College of Physics Science and Technology, Hebei University, Baoding, 071002 China
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021 China
| | - Lin Yang
- College of Physics Science and Technology, Hebei University, Baoding, 071002 China
| |
Collapse
|
29
|
The conversion of CuInS2/ZnS core/shell structure from type I to quasi-type II and the shell thickness-dependent solar cell performance. J Colloid Interface Sci 2019; 546:276-284. [DOI: 10.1016/j.jcis.2019.03.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 01/02/2023]
|
30
|
Lee S, Flanagan JC, Kim J, Yun AJ, Lee B, Shim M, Park B. Efficient Type-II Heterojunction Nanorod Sensitized Solar Cells Realized by Controlled Synthesis of Core/Patchy-Shell Structure and CdS Cosensitization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19104-19114. [PMID: 31066260 DOI: 10.1021/acsami.9b02873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we report the successful application of core/patchy-shell CdSe/CdSe xTe1- x type-II heterojunction nanorods (HNRs) to realize efficient sensitized solar cells. The core/patchy-shell structure designed to have a large type-II heterointerface without completely shielding the CdSe core significantly improves photovoltaic performance compared to other HNRs with minimal or full-coverage shells. In addition, cosensitization with CdS grown by successive ionic layer adsorption and reaction further improves the power conversion efficiency. One-diode model analysis reveals that the HNRs having exposed CdSe cores and suitably grown CdS result in significant reduction of series resistance. Investigation of the intercorrelation between diode quality parameters, diode saturation current density ( J0) and recombination order (β = (ideality factor)-1) reveals that HNRs with open CdSe cores exhibit reduced recombination. These results confirm that the superior performance of core/patchy-shell HNRs results from their fine-tuned structure: photocurrent is increased by the large type-II heterointerface and recombination is effectively suppressed due to the open CdSe core enabling facile electron extraction. An optimized power conversion efficiency of 5.47% (5.89% with modified electrode configuration) is reported, which is unmatched among photovoltaics utilizing anisotropic colloidal heterostructures as light-harvesting materials.
Collapse
Affiliation(s)
- Sangheon Lee
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Joseph C Flanagan
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jaewook Kim
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Alan Jiwan Yun
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Byungho Lee
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Byungwoo Park
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| |
Collapse
|
31
|
Shao X, Zhang T, Li B, Zhou M, Ma X, Wang J, Jiang S. Chiroptical Activity of Type II Core/Shell Cu 2S/CdSe Nanocrystals. Inorg Chem 2019; 58:6534-6543. [PMID: 31007027 DOI: 10.1021/acs.inorgchem.9b00769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ligand-induced chirality in core/shell nanocrystals (NCs) has attracted extensive attention because of many valuable potential applications. However, the cause of chirality especially in semiconductor nanomaterials is still under debate despite the creation of chiral type I core/shell structures. Herein, we synthesized a kind of new Cu2S/CdSe core/shell nanostructure to study the underlying reason. Four samples of Cu2S/CdSe were synthesized utilizing successive ion layer adsorption and reaction to vary the thickness of the CdSe shell upon a Cu2S core with 5 nm diameter. The chirality of type II Cu2S/CdSe NCs is imparted by l-/d-cysteine and penicillamine, which could be modulated with an increasing thickness of the CdSe shell. To the best of our knowledge, this is the first report of chiral type II core/shell semiconductor NCs. The hybridization theory can explain the variation trend of g factors with every increase in shell thickness from four monolayers (4 ML) to 7 ML. The results indicate that the chiroptical activity of semiconductor NCs is mainly due to hybridization between the holes in the valence band of NCs and the highest occupied molecular orbitals of the chiral ligands. In addition, Cu2S/CdSe NCs show a better chiroptical intensity in comparison with the type I structure according to previous work. The first design of chiral type II Cu2S/CdSe core/shell NCs and a detailed investigation of chiral variation trend help to give a better understanding of the chiral interaction between ligands and core/shell semiconductor nanostructures.
Collapse
Affiliation(s)
- Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , People's Republic of China.,Tianjin Engineering Research Center of Functional Fine Chemicals , Tianjin 300354 , People's Republic of China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China.,Tianjin Engineering Research Center of Functional Fine Chemicals , Tianjin 300354 , People's Republic of China
| | - Minghao Zhou
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Xiaoyuan Ma
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Jingchao Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| |
Collapse
|
32
|
Warkhade SK, Zodape SP, Pratap UR, Wankhade AV. Rutile TiO2/CoSe nanocomposite: An efficient photocatalyst for photodegradation of model organic dyes under visible light irradiation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Review of Core/Shell Quantum Dots Technology Integrated into Building’s Glazing. ENERGIES 2019. [DOI: 10.3390/en12061058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skylights and windows are building openings that enhance human comfort and well-being in various ways. Recently, a massive drive is witnessed to replace traditional openings with building integrated photovoltaic (BIPV) systems to generate power in a bid to reduce buildings’ energy. The problem with most of the BIPV glazing lies in the obstruction of occupants’ vision of the outdoor view. In order to resolve this problem, new technology has emerged that utilizes quantum dots semiconductors (QDs) in glazing systems. QDs can absorb and re-emit the incoming radiation in the desired direction with the tunable spectrum, which renders them favorable for building integration. By redirecting the radiation towards edges of the glazing, they can be categorized as luminescent solar concentrators (QD-LSCs) that can help to generate electricity while maintaining transparency in the glazing. The aim of this paper is to review the different properties of core/shell quantum dots and their potential applications in buildings. Literature from various disciplines was reviewed to establish correlations between the optical and electrical properties of different types, sizes, thicknesses, and concentration ratios of QDs when used in transparent glazing. The current article will help building designers and system integrators assess the merits of integrating QDs on windows/skylights with regards to energy production and potential impact on admitted daylighting and visual comfort.
Collapse
|
34
|
Xue TY, Mei LP, Xu YT, Liu YL, Fan GC, Li HY, Ye D, Zhao WW. Nanoporous Semiconductor Electrode Captures the Quantum Dots: Toward Ultrasensitive Signal-On Liposomal Photoelectrochemical Immunoassay. Anal Chem 2019; 91:3795-3799. [PMID: 30789708 DOI: 10.1021/acs.analchem.9b00170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liposomal photoelectrochemical (PEC) bioanalysis has recently emerged and exhibited great potential in sensitive biomolecular detection. Exploration of the facile and efficient route for advanced liposomal PEC bioanalysis is highly appealing. In this work, we report the split-type liposomal PEC immunoassay system consisting of sandwich immunorecognition, CdS quantum dots (QDs)-loaded liposomes (QDLL), and the release and subsequent capture of the QDs by a separated TiO2 nanotubes (NTs) electrode. The system elegantly operated upon the protein binding and lysis treatment of CdS QDLL labels within the 96-well plate, and then the CdS QDs-enabled sensitization of TiO2 NTs electrode. Exemplified by cardiac markers troponin I (cTnI) as target, the proposed system achieved efficient activation of TiO2 NTs electrode and thus the signal generation toward the split-type PEC immunoassay. This work features the first use of QDs for liposomal PEC bioanalysis and is expected to inspire more interests in the design and implementation of numerous QDs-involved liposomal PEC bioanalysis.
Collapse
Affiliation(s)
- Tie-Ying Xue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Li-Ping Mei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Heng-Ye Li
- School of Materials Science and Engineering , Yancheng Institute of Technology , Yancheng 224051 , China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
35
|
|
36
|
Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-018-0054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
37
|
Huang KY, Luo YH, Cheng HM, Tang J, Huang JH. Performance Enhancement of CdS/CdSe Quantum Dot-Sensitized Solar Cells with (001)-Oriented Anatase TiO 2 Nanosheets Photoanode. NANOSCALE RESEARCH LETTERS 2019; 14:18. [PMID: 30635791 PMCID: PMC6329687 DOI: 10.1186/s11671-018-2842-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
CdS/CdSe quantum dot-sensitized solar cells (QDSSCs) were fabricated on two types of TiO2 photoanodes, namely nanosheets (NSs) and nanoparticles. The TiO2 NSs with high (001)-exposed facets were prepared via a hydrothermal method, while the TiO2 nanoparticles used the commercial Degussa P-25. It was found that the pore size, specific surface area, porosity, and electron transport properties of TiO2 NSs were generally superior to those of P-25. As a result, the TiO2 NS-based CdS/CdSe QDSSC has exhibited a power conversion efficiency of 4.42%, which corresponds to a 54% improvement in comparison with the P-25-based reference cell. This study provides an effective photoanode design using nanostructure approach to improve the performance of TiO2-based QDSSCs.
Collapse
Affiliation(s)
- Kuo-Yen Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Yi-Hsiang Luo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Hsin-Ming Cheng
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 115 Taiwan
| | - Jau Tang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 115 Taiwan
| | - Jin-Hua Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300 Taiwan
| |
Collapse
|
38
|
Pirsaheb M, Asadi A, Sillanpää M, Farhadian N. Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Maiti S, Dana J, Ghosh HN. Correlating Charge‐Carrier Dynamics with Efficiency in Quantum‐Dot Solar Cells: Can Excitonics Lead to Highly Efficient Devices? Chemistry 2018; 25:692-702. [DOI: 10.1002/chem.201801853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Sourav Maiti
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
- Department of ChemistrySavitribai Phule Pune University Ganeshkhind Pune 411007 India
| | - Jayanta Dana
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
| | - Hirendra N. Ghosh
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
- Institute of Nano Science and Technology Mohali Punjab 160062 India
| |
Collapse
|
40
|
KAMEYAMA T. Advances in Colloidal I-III-VI 2-Based Semiconductor Quantum Dots toward Tailorable Photofunctional Materials. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.18-6-e2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Samadi-Maybodi A, Shariati MR. Enhanced photocatalytic activity in the reverse type-I QD through the shell-oriented cascadal charge transfer. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Halder G, Ghosh D, Ali MY, Sahasrabudhe A, Bhattacharyya S. Interface Engineering in Quantum-Dot-Sensitized Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10197-10216. [PMID: 29584956 DOI: 10.1021/acs.langmuir.8b00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unique properties of II-VI semiconductor nanocrystals such as superior light absorption, size-dependent optoelectronic properties, solution processability, and interesting photophysics prompted quantum-dot-sensitized solar cells (QDSSCs) as promising candidates for next-generation photovoltaic (PV) technology. QDSSCs have advantages such as low-cost device fabrication, multiple exciton generation, and the possibility to push over the theoretical power conversion efficiency (PCE) limit of 32%. In spite of dedicated research efforts to enhance the PCE, optimize individual solar cell components, and better understand the underlying science, QDSSCs have unfortunately not lived up to their potential due to shortcomings in the fabrication process and with the QDs themselves. In this feature article, we briefly discuss the QDSSC concepts and mechanisms of the charge carrier recombination pathways that occur at multiple interfaces, viz., (i) metal oxide (MO)/QDs, (ii) MO/QDs/electrolyte, and (iii) counter electrode (CE)/electrolyte. The rational strategies that have been developed to minimize/block these charge recombination pathways are elaborated. The article concludes with a discussion of the present challenges in fabricating efficient devices and future prospects for QDSSCs.
Collapse
Affiliation(s)
- Ganga Halder
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| | - Dibyendu Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| | - Md Yusuf Ali
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| | - Atharva Sahasrabudhe
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India
| |
Collapse
|
43
|
Xu H, Yuan H, Duan J, Zhao Y, Jiao Z, Tang Q. Lead-free CH3NH3SnBr3-xIx perovskite quantum dots for mesoscopic solar cell applications. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Malik A, Nath M, Mohiyuddin S, Packirisamy G. Multifunctional CdSNPs@ZIF-8: Potential Antibacterial Agent against GFP-Expressing Escherichia coli and Staphylococcus aureus and Efficient Photocatalyst for Degradation of Methylene Blue. ACS OMEGA 2018; 3:8288-8308. [PMID: 30087940 PMCID: PMC6072238 DOI: 10.1021/acsomega.8b00664] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/25/2018] [Indexed: 05/21/2023]
Abstract
Multifunctional novel core-shell composites, CdSNPs@ZIF-8, have been synthesized by in situ encapsulation of different amounts of CdSNPs (150, 300, and 500 μL suspension of CdSNPs in methanol) in ZIF-8 at room temperature. These composites have been characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), and diffuse reflectance spectroscopy techniques and Brunauer-Emmett-Teller surface analysis. XPS and HRTEM indicate the encapsulation of CdSNPs within ZIF-8 crystal without disturbing the crystal order of ZIF-8. The average size of embedded CdSNPs (determined by the particle size distribution from HRTEM) is found to be 16.34 nm. CdSNPs@ZIF-8 showed potential to be used as an antibacterial agent against the broad spectrum of bacterial strains such as Gram-positive Staphylococcus aureus and Gram-negative green fluorescent protein-expressing Escherichia coli in aqueous medium, as evident by various biophysical experiments, viz., 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, optical density and fluorescence spectroscopic studies, fluorescence and optical microscopic image analysis, disk diffusion assay, field emission scanning electron microscopy, and flow cytometry for reactive oxygen species induction assay. Further, the composite has been used as an efficient photocatalyst for the degradation of organic pollutants, such as methylene blue dye, in aqueous medium and found that the core-shell composite, CdSNPs@ZIF-8 (150 μL) (abbreviated as NC-1) (5 mg), exhibited higher photocatalytic activity (≈1.8 times) than CdSNPs for degradation of 90% of methylene blue (10 mL of 10 ppm) at pH ≥ 7 due to the synergetic effect. Therefore, in situ encapsulation of CdSNPs in ZIF-8 provides an easy executable measure for purification of wastewater effluents for the effective photocatalytic degradation of organic pollutants as well as to remove the bacterial contamination under sunlight.
Collapse
Affiliation(s)
- Ankur Malik
- Department
of Chemistry and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mala Nath
- Department
of Chemistry and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- E-mail: , , . Tel: +91 1332 285797. Fax: +91 1332 73560
| | - Shanid Mohiyuddin
- Department
of Chemistry and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Gopinath Packirisamy
- Department
of Chemistry and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
45
|
Samadi‐Maybodi A, Reza Shariati M. Excitons with Reverse Rectifying Characteristics for Superior Solar Photocatalysis. ChemistrySelect 2018. [DOI: 10.1002/slct.201800137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Zhang C, Liu S, Liu X, Deng F, Xiong Y, Tsai FC. Incorporation of Mn 2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells. ROYAL SOCIETY OPEN SCIENCE 2018. [PMID: 29657776 DOI: 10.5061/dryad.27g26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Collapse
Affiliation(s)
- Chenguang Zhang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Shaowen Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Xingwei Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Fei Deng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Yan Xiong
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| | - Fang-Chang Tsai
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
47
|
Zhang C, Liu S, Liu X, Deng F, Xiong Y, Tsai FC. Incorporation of Mn 2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171712. [PMID: 29657776 PMCID: PMC5882700 DOI: 10.1098/rsos.171712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/09/2018] [Indexed: 05/30/2023]
Abstract
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Collapse
Affiliation(s)
- Chenguang Zhang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Shaowen Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Xingwei Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Fei Deng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Yan Xiong
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| | - Fang-Chang Tsai
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
48
|
Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X. Quantum dot-sensitized solar cells. Chem Soc Rev 2018; 47:7659-7702. [DOI: 10.1039/c8cs00431e] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive overview of the development of quantum dot-sensitized solar cells (QDSCs) is presented.
Collapse
Affiliation(s)
- Zhenxiao Pan
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Huashang Rao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Juan Bisquert
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Xinhua Zhong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
49
|
Wu Q, Hou J, Zhao H, Liu Z, Yue X, Peng S, Cao H. Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS layers. Dalton Trans 2018; 47:2214-2221. [DOI: 10.1039/c7dt04356b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnS as an inorganic passivation agent has been proven to be effective in suppressing charge recombination and enhancing power conversion efficiency (PCE) in quantum dot-sensitized solar cells (QDSCs).
Collapse
Affiliation(s)
- Qiang Wu
- College of Science/Key Laboratory of Ecophysics and Department of Physics
- Shihezi University
- Shihezi 832003
- P. R. China
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
| | - Juan Hou
- College of Science/Key Laboratory of Ecophysics and Department of Physics
- Shihezi University
- Shihezi 832003
- P. R. China
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
| | - Haifeng Zhao
- College of Science/Key Laboratory of Ecophysics and Department of Physics
- Shihezi University
- Shihezi 832003
- P. R. China
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- P. R. China
| | - Xuanyu Yue
- College of Science/Key Laboratory of Ecophysics and Department of Physics
- Shihezi University
- Shihezi 832003
- P. R. China
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
| | - Shanglong Peng
- School of Physical Science and Technology/ Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou
- China
| | - Haibin Cao
- College of Science/Key Laboratory of Ecophysics and Department of Physics
- Shihezi University
- Shihezi 832003
- P. R. China
| |
Collapse
|
50
|
Huang HB, Wang Y, Cai FY, Jiao WB, Zhang N, Liu C, Cao HL, Lü J. Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Front Chem 2017; 5:123. [PMID: 29326925 PMCID: PMC5742335 DOI: 10.3389/fchem.2017.00123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
A family of new composite materials was successfully prepared through the deposition of as-synthesized CdS nanomaterials on lotus-seedpod-derived activated carbon (SAC). The SAC supports derived at different activation temperatures exhibited considerably large surface areas and various microstructures that were of great importance in enhancing photocatalytic performance of CdS@SAC composite materials toward the photodegradation of rhodamine B (RhB) under visible irradiation. The best-performing CdS@SAC-800 showed excellent photocatalytic activity with a rate constant of ca. 2.40 × 10-2 min-1, which was approximately 13 times higher than that of the CdS nanomaterials. Moreover, the estimated band gap energy of CdS@SAC-800 was significantly lowered down to 1.99 eV compared to that of the CdS precursor (2.22 eV), which suggested considerable strength of interface contact between the CdS and SAC support, as well as efficient light harvesting capacity of the composite material. Further photocatalytic study indicated that the SAC supports enhanced the separation of photogenerated electrons and holes in this system. Improved photocatalytic activity of the composite materials was largely due to the increased generation of catalytically active species such as h+, OH•, [Formula: see text] etc. This work provided a facile and low-cost pathway to fabricate photocatalysts for viable degradation of organic dye molecules.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yu Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng-Ying Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Bin Jiao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ning Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hai-Lei Cao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|