1
|
Hastuti FW, Kim MH. Silver nanoprism-mediated colourimetric sensing probe for efficient detection of Pd(II) and Pt(II) ions in water and reuse of formed bimetallic nanoprisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124234. [PMID: 38569388 DOI: 10.1016/j.saa.2024.124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Sensitive and selective methods for detecting Pd(II) and Pt(II) ions in water are crucial for environmental monitoring and remediation. Although traditional methods for detection of Pd(II) and Pt(II) ions are accurate and sensitive, they face substantial challenges due to high costs, reliance on specialised equipment and limited field applicability, thereby presenting notable limitations. In this study, we introduce a novel colourimetric sensing probe designed specifically to identify Pd(II) and Pt(II) ions in aqueous solutions. This probe utilises the enhanced chemical stability of Ag nanoprisms achieved through Pd or Pt deposition on their surfaces. Our approach features exceptionally low limits of detection of 2.6 nM for Pd(II) and 0.3 nM for Pt(II), indicating an impressive detection range. Furthermore, the probe's ease of use, cost-effectiveness and compatibility with both naked eye and UV-Vis spectrophotometric detection make it a selective, reliable and affordable option for point-of-care analysis. Beyond its impressive sensitivity for ion detection, this methodology offers the additional benefit of enabling the on-demand synthesis of customised bimetallic catalysts. The synthesised Ag/Pd and Ag/Pt bimetallic nanoprisms demonstrate promising catalytic potential for environmental remediation. This advancement paves the way for efficient recycling and reuse of valuable Pd(II) and Pt(II) ions in various catalytic applications.
Collapse
Affiliation(s)
- Fenni Woro Hastuti
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Sarkar A, Singh K, Bhardwaj K, Jaiswal A. NIR-Active Gold Dogbone Nanorattles Impregnated in Cationic Dextrin Nanoparticles for Cancer Nanotheranostics. ACS Biomater Sci Eng 2024; 10:2510-2522. [PMID: 38466622 DOI: 10.1021/acsbiomaterials.3c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Theranostic systems, which integrate therapy and diagnosis into a single platform, have gained significant attention as a promising approach for noninvasive cancer treatment. The field of image-guided therapy has revolutionized real-time tumor detection, and within this domain, plasmonic nanostructures have garnered significant attention. These structures possess unique localized surface plasmon resonance (LSPR), allowing for enhanced absorption in the near-infrared (NIR) range. By leveraging the heat generated from plasmonic nanoparticles upon NIR irradiation, target cancer cells can be effectively eradicated. This study introduces a plasmonic gold dogbone-nanorattle (AuDB NRT) structure that exhibits broad absorption in the NIR region and demonstrates a photothermal conversion efficiency of 35.29%. When exposed to an NIR laser, the AuDB NRTs generate heat, achieving a maximum temperature rise of 38 °C at a concentration of 200 μg/mL and a laser power density of 3 W/cm2. Additionally, the AuDB NRTs possess intrinsic electromagnetic hotspots that amplify the signal of a Raman reporter molecule, making them an excellent probe for surface-enhanced Raman scattering-based bioimaging of cancer cells. To improve the biocompatibility of the nanorattles, the AuDB NRTs were conjugated with mPEG-thiol and successfully encapsulated into cationic dextrin nanoparticles (CD NPs). Biocompatibility tests were performed on HEK 293 A and MCF-7 cell lines, revealing high cell viability when exposed to AuDB NRT-CD NPs. Remarkably, even at a low laser power density of 1 W/cm2, the application of the NIR laser resulted in a remarkable 80% cell death in cells treated with a nanocomposite concentration of 100 μg/mL. Further investigation elucidated that the cell death induced by photothermal heat followed an apoptotic mechanism. Overall, our findings highlight the significant potential of the prepared nanocomposite for cancer theranostics, combining effective photothermal therapy along with the ability to image cancer cells.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Khushal Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Keshav Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
3
|
Oh MJ, Kwon S, Lee S, Jung I, Park S. Octahedron in a Cubic Nanoframe: Strong Near-Field Focusing and Surface-Enhanced Raman Scattering. ACS NANO 2024; 18:7656-7665. [PMID: 38416014 DOI: 10.1021/acsnano.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Here, we describe the synthesis of a plasmonic particle-in-a-frame architecture in which a solid Au octahedron is enclosed by a Au cubic nanoframe. The octahedra are positioned inside and surrounded by outer Au cubic nanoframes, creating intra-nanogaps within a single entity. Six sharp vertexes in the Au octahedra point toward the open (100) facets of the cubic nanoframes. This allows not only efficient interactions with the surroundings but also tip-enhanced electromagnetic near-field focusing at the sharp tips of the octahedra, combined with intraparticle coupling. The solid core-frame shell structure enhances near-field focusing, giving rise to a heightened concentration of "hot spots". This effect enables highly sensitive detection of 2-naphthalenethiol and thiram, indicating these substrates for use in surface-enhanced Raman spectroscopy-related applications.
Collapse
Affiliation(s)
- Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sunwoo Kwon
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Patarroyo J, Bastús NG, Puntes V. Sculpting Windows onto AuAg Hollow Cubic Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2590. [PMID: 37764620 PMCID: PMC10538185 DOI: 10.3390/nano13182590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Using surfactants in the galvanic replacement reaction (GRR) offers a versatile approach to modulating hollow metal nanocrystal (NC) morphology and composition. Among the various surfactants available, quaternary ammonium cationic surfactants are commonly utilised. However, understanding how they precisely influence morphological features, such as the size and void distribution, is still limited. In this study, we aim to uncover how adding different surfactants-CTAB, CTAC, CTApTS, and PVP-can fine-tune the morphological characteristics of AuAg hollow NCs synthesised via GRR at room temperature. Our findings reveal that the halide counterion in the surfactant significantly controls void formation within the hollow structure. When halogenated surfactants, such as CTAB or CTAC, are employed, multichambered opened nanoboxes are formed. In contrast, with non-halogenated CTApTS, single-walled closed nanoboxes with irregularly thick walls form. Furthermore, when PVP, a polymer surfactant, is utilised, changes in concentration lead to the production of well-defined single-walled closed nanoboxes. These observations highlight the role of surfactants in tailoring the morphology of hollow NCs synthesised through GRR.
Collapse
Affiliation(s)
- Javier Patarroyo
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Neus G. Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
5
|
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2022; 5:13. [PMID: 36212026 PMCID: PMC9536324 DOI: 10.1007/s41918-022-00173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2022]
Abstract
AbstractProton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans. However, their performance, cost, and durability are significantly related to Pt-based electrocatalysts, hampering their large-scale commercial application. Hence, considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use, and consequently, the cost. Therefore, this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts, which significantly affect the nanoparticle size, shape, and dispersion on supports and thus the activity and durability of the prepared electrocatalysts. The reviewed processes include (i) the functionalization of a commercial carbon support for enhanced catalyst–support interaction and additional catalytic effects, (ii) the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts, (iii) the preparation of spherical and nonspherical Pt-based electrocatalysts (polyhedrons, nanocages, nanoframes, one- and two-dimensional nanostructures), and (iv) the postsynthesis treatments of supported electrocatalysts. The influences of the supports, key experimental parameters, and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail. Future research directions are outlined, including (i) the full exploitation of the potential functionalization of commercial carbon supports, (ii) scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts, and (iii) simplification of postsynthesis treatments. One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts.
Graphical Abstract
This review focuses on the synthesis process of Pt-based electrocatalysts/C to develop aqueous one-pot synthesis at large-scale production for PEMFC stack application.
Collapse
|
6
|
Hong Y, Venkateshalu S, Jeong S, Tomboc GM, Jo J, Park J, Lee K. Galvanic replacement reaction to prepare catalytic materials. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yongju Hong
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Sangyeon Jeong
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Gracita M. Tomboc
- Green Hydrogen Lab (GH2Lab) Institute for Hydrogen Research (IHR), Université du Québec à Trois−Rivières (UQTR) Québec Canada
| | - Jinhyoung Jo
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Jongsik Park
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| |
Collapse
|
7
|
Hung TC, Liu YR, Chou PC, Lin CW, Hsieh YT. Electrochemical sensing of hydrazine using hollow Pd/Ag dendrites prepared by galvanic replacement from choline Chloride-based deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Ying J, Lenaerts S, Symes MD, Yang X. Hierarchical Design in Nanoporous Metals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106117. [PMID: 35900062 PMCID: PMC9507373 DOI: 10.1002/advs.202106117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Indexed: 05/28/2023]
Abstract
Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and TechnologySun Yat‐sen University (SYSU)Zhuhai519082P. R. China
| | - Silvia Lenaerts
- Research Group of Sustainable Energy and Air Purification (DuEL), Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Mark D. Symes
- WestCHEM, School of ChemistryUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
9
|
Khavar AHC, Mahjoub AR, Khazaee Z. MoCu Bimetallic Nanoalloy-Modified Copper Molybdenum Oxide with Strong SPR Properties; a 2D-0D System for Enhanced Degradation of Antibiotics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Formation Mechanism of Carbon-Supported Hollow PtNi Nanoparticles via One-Step Preparations for Use in the Oxygen Reduction Reaction. Catalysts 2022. [DOI: 10.3390/catal12050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hollow Pt-based nanoparticles are known to possess the properties of high electrocatalytic activity and durability. Nonetheless, their practical applications as catalytic materials are limited because of the requirement for exhaustive preparation. In this study, we prepared carbon-supported hollow PtNix (x = the moles of the Ni precursor to the Pt precursor in the catalyst preparation step) catalysts using a one-step preparation method, which substantially reduced the complexity of the conventional method for preparing hollow Pt-based catalysts. In particular, this hollow structure formation mechanism was proposed based on extensive characterizations. The prepared catalysts were examined to determine if they could be used as electrocatalysts for the oxygen reduction reaction (ORR). Among the investigated catalysts, the acid-treated hollow PtNi3/C catalyst demonstrated the best ORR activity, which was 3 times higher and 2.3 times higher than those of the commercial Pt/C and acid-treated particulate PtNi3/C catalysts, respectively.
Collapse
|
11
|
Jung JY, Kim DG, Jang I, Kim ND, Yoo SJ, Kim P. Synthesis of hollow structured PtNi/Pt core/shell and Pt-only nanoparticles via galvanic displacement and selective etching for efficient oxygen reduction reaction. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Huang L, Shen B, Lin H, Shen J, Jibril L, Zheng CY, Wolverton C, Mirkin CA. Regioselective Deposition of Metals on Seeds within a Polymer Matrix. J Am Chem Soc 2022; 144:4792-4798. [PMID: 35258289 DOI: 10.1021/jacs.1c11118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We use scanning probe block copolymer lithography in a two-step sequential manner to explore the deposition of secondary metals on nanoparticle seeds. When single element nanoparticles (Au, Ag, Cu, Co, or Ni) were used as seeds, both heterogeneous and homogeneous growth occurred, as rationalized using the thermodynamic concepts of bond strength and lattice mismatch. Specifically, heterogeneous growth occurs when the heterobond strength between the seed and growth atoms is stronger than the homobond strength between the growth atoms. Moreover, the resulting nanoparticle structure depends on the degree of lattice mismatch between the seed and growth metals. Specifically, a large lattice mismatch (e.g., 13.82% for Au and Ni) typically resulted in heterodimers, whereas a small lattice mismatch (e.g., 0.19% for Au and Ag) resulted in core-shell structures. Interestingly, when heterodimer nanoparticles were used as seeds, the secondary metals deposited asymmetrically on one side of the seed. By programming the deposition conditions of Ag and Cu on AuNi heterodimer seeds, two distinct nanostructures were synthesized with (1) Ag and Cu on the Au domain and (2) Ag on the Au domain and Cu on the Ni domain, illustrating how this technique can be used to predictively synthesize structurally complex, multimetallic nanostructures.
Collapse
Affiliation(s)
- Liliang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Shen
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Haixin Lin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Liban Jibril
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Cindy Y Zheng
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Wang C, Bukhvalov D, Goh MC, Du Y, Yang X. Hierarchical AgAu alloy nanostructures for highly efficient electrocatalytic ethanol oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Zhang X, Huo H, Ma K, Zhao Z. Reduced graphene oxide-supported smart plasmonic AgPtPd porous nanoparticles for high-performance electrochemical detection of 2,4,6-trinitrotoluene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smart plasmonic AgPtPd NPs/rGO exhibited a wide linear range for TNT from 0.1 to 8 ppm with a sensing limit of 0.95 ppb. The remarkable features are probably attributed to the integrated advantages of the plasmonic properties and synergistic effect.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongyue Huo
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kongshuo Ma
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Zhenlu Zhao
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| |
Collapse
|
15
|
Wang L, Patskovsky S, Gauthier-Soumis B, Meunier M. Porous Au-Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105209. [PMID: 34761520 DOI: 10.1002/smll.202105209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic nanostructures have raised the interest of biomedical applications of surface-enhanced Raman scattering (SERS). To improve the enhancement and produce sensitive SERS probes, porous Au-Ag alloy nanoparticles (NPs) are synthesized by dealloying Au-Ag alloy NP-precursors with Au or Ag core in aqueous colloidal environment through galvanic replacement reaction. The novel designed core-shell Au-Ag alloy NP-precursors facilitate controllable synthesis of porous nanostructure, and dealloying degree during the reaction has significant effect on structural and spectral properties of dealloyed porous NPs. Narrow-dispersed dealloyed NPs are obtained using NPs of Au/Ag ratio from 10/90 to 40/60 with Au and Ag core to produce solid core@porous shell and porous nanoshells, having rough surface, hollowness, and porosity around 30-60%. The clean nanostructure from colloidal synthesis exhibits a redshifted plasmon peak up to near-infrared region, and the large accessible surface induces highly localized surface plasmon resonance and generates robust SERS activity. Thus, the porous NPs produce intensely enhanced Raman signal up to 68-fold higher than 100 nm AuNP enhancement at single-particle level, and the estimated Raman enhancement around 7800, showing the potential for highly sensitive SERS probes. The single-particle SERS probes are effectively demonstrated in quantitative monitoring of anticancer drug Doxorubicin release.
Collapse
Affiliation(s)
- Lu Wang
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, H3C 3A7, Canada
| | - Sergiy Patskovsky
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, H3C 3A7, Canada
| | - Bastien Gauthier-Soumis
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, H3C 3A7, Canada
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, H3C 3A7, Canada
| |
Collapse
|
16
|
Formation of Platinum-Silver Nanostructure with Hollow Filament Structure Using Techniques Based on Photographic Chemistry and Its Electrocatalytic Behavior for Aldose Electrooxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
18
|
Liu D, Yang N, Zeng Q, Liu H, Chen D, Cui P, Xu L, Hu C, Yang J. Core-shell Ag–Pt nanoparticles: A versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Pak M, Moshaii A, Nikkhah M, Abbasian S, Siampour H. Nickel-gold bimetallic nanostructures with the improved electrochemical performance for non-enzymatic glucose determination. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Liu S, Chai J, Sun S, Zhang L, Yang J, Fu X, Hai J, Jing YH, Wang B. Site-Selective Photosynthesis of Ag-AgCl@Au Nanomushrooms for NIR-II Light-Driven O 2- and O 2•--Evolving Synergistic Photothermal Therapy against Deep Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46451-46463. [PMID: 34570459 DOI: 10.1021/acsami.1c16999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-driven endogenous water oxidation has been considered as an attractive and desirable way to obtain O2 and reactive oxygen species (ROS) in the hypoxic tumor microenvironment. However, the use of a second near-infrared (NIR-II) light to achieve endogenous H2O oxidation to alleviate tumor hypoxia and realize deep hypoxic tumor phototherapy is still a challenge. Herein, novel plasmonic Ag-AgCl@Au core-shell nanomushrooms (NMs) were synthesized by the selective photodeposition of plasmonic Au at the bulge sites of the Ag-AgCl nanocubes (NCs) under visible light irradiation. Upon NIR-II light irradiation, the resulting Ag-AgCl@Au NMs could oxidize endogenous H2O to produce O2 to alleviate tumor hypoxia. Almost synchronously, O2 could react with electrons on the conduction band of the AgCl core to generate superoxide radicals (O2•-)for photodynamic therapy. Moreover, Ag-AgCl@Au NMs with an excellent photothermal performance could further promote the phototherapy effect. In vitro and in vivo experimental results show that the resulting Ag-AgCl@Au NMs could significantly improve tumor hypoxia and enhance phototherapy against a hypoxic tumor. The present study provides a new strategy to design H2O-activatable, O2- and ROS-evolving NIR II light-response nanoagents for the highly efficient and synergistic treatment of deep O2-deprived tumor tissue.
Collapse
Affiliation(s)
- Sha Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Chai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shihao Sun
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiayue Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Fu
- Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou 730000, P. R. China
| | - Jun Hai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Lim SY, Seo D, Jang MS, Chung TD. Functional Integration of Catalysts with Si Nanowire Photocathodes for Efficient Utilization of Photogenerated Charge Carriers. ACS OMEGA 2021; 6:22311-22316. [PMID: 34497920 PMCID: PMC8412901 DOI: 10.1021/acsomega.1c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Low-cost catalysts with high activity and durability are necessary to achieve efficient large-scale energy conversion in photoelectrochemical cell (PEC) systems. An additional factor that governs the construction of photoelectrodes for PECs is the spatial control of the catalysts for efficient utilization of photogenerated charge carriers. Here, we demonstrate spatial decoupling of the light-absorbing and catalytic components in hierarchically structured Si-based photocathodes for the hydrogen evolution reaction (HER). By simply modifying a well-known metal-assisted chemical etching procedure, we fabricated a Si nanowire (NW) array-based photocathode with Ag-Pt catalysts at the base and small amounts of the Pt catalyst at the NW tips. This approach simultaneously mitigates the parasitic light absorption by the catalytic layers and recombination of charge carriers owing to the long transport distance, resulting in improved photoelectrochemical HER performance under simulated AM 1.5G illumination.
Collapse
Affiliation(s)
- Sung Yul Lim
- Department
of Chemistry and Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Korea
| | - Daye Seo
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Min Seok Jang
- School
of Electrical Engineering, Korea Advanced
Institute Science and Technology (KAIST), Daejeon 34141, Korea
| | - Taek Dong Chung
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
22
|
Falchevskaya AS, Kulachenkov NK, Bachinin SV, Milichko VA, Vinogradov VV. Single Particle Color Switching by Laser-Induced Deformation of Liquid Metal-derived Microcapsules. J Phys Chem Lett 2021; 12:7738-7744. [PMID: 34357779 DOI: 10.1021/acs.jpclett.1c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active controlling of optical properties of metallic particles holds great promise for nonlinear nanophotonics and compact optoelectronic devices. Except for the electronic and chemical tuning of their properties, active control through fast and reversible shape modulation remains a significant challenge. Here, we report on the concept for changing the color and brightness of single particles by reversible/irreversible tuning of their shapes. As a family of plasmonic materials with low melting points and high flexibility, we synthesized liquid metal microparticles with different interior (dense/hollow) and morphology from Ga and its alloys (GaNi, GaCu). Utilizing near-infrared femtosecond laser pulses, we achieve two regimes for reversible/irreversible optical tuning due to consequent weak/strong perturbation of the microcapsules (MC) shapes. The chemical composition and MCs morphology significantly affect the tuning of color and brightness, as well as the rigidity of the MCs to extreme laser conditions.
Collapse
Affiliation(s)
| | - Nikita K Kulachenkov
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, St. Petersburg, 197101, Russian Federation
| | - Semyon V Bachinin
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, St. Petersburg, 197101, Russian Federation
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, St. Petersburg, 197101, Russian Federation
- Université de Lorraine, CNRS, IJL, Nancy, F-54000, France
| | - Vladimir V Vinogradov
- SCAMT Institute, ITMO University, Kronversky Pr. 49, St. Petersburg, 197101, Russian Federation
| |
Collapse
|
23
|
Tan X, Wang R, Liu X, Wang W, Cao L, Dong B. Mn 3-x Fe x O 4 Hollow Nanostructures for High-Performance Asymmetric Supercapacitor Applications. Chemistry 2021; 27:9398-9405. [PMID: 33908095 DOI: 10.1002/chem.202100768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 11/10/2022]
Abstract
Design of hollow nanostructure and controllable phase of mixed metal oxides for improving performance in supercapacitor applications is highly desirable. Here we demonstrate the rational design and synthesis of Mn3-x Fex O4 hollow nanostructures for supercapacitor applications. Owing to high porosity and the specific surface area that provides more active sites for electrochemical reactions, the electrochemical performance of Mn3-x Fex O4 hollow nanostructure substantially enhanced comparing with pristine Mn3 O4 . Particularly, in 1.0 M KOH electrolyte, Mn0.16 Fe2.84 O4 with a typical diameter of 20 nm exhibits excellent specific capacitance of 2675, 2320, 1662, 987 F g-1 at current densities of 1, 2, 5, 10 A g-1 , respectively, which is significantly superior to those of other transition metal oxides. Besides, an asymmetric supercapacitor is assembled by using Mn0.16 Fe2.84 O4 and activated carbon as a positive and a negative electrode, respectively. Electrochemical results indicate a high energy density of 42 Wh kg-1 at a power density of 0.75 kW kg-1 , which makes this hollow nanostructure a highly promising electrode for achieving high-performance next-generation supercapacitors.
Collapse
Affiliation(s)
- Xueling Tan
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Ruonan Wang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Xiaofei Liu
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Wei Wang
- Aramco Research Center Boston, Aramco Services Company, 02139, Cambridge, MA, USA
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| |
Collapse
|
24
|
Park JM, Choi HE, Kudaibergen D, Kim JH, Kim KS. Recent Advances in Hollow Gold Nanostructures for Biomedical Applications. Front Chem 2021; 9:699284. [PMID: 34169061 PMCID: PMC8217768 DOI: 10.3389/fchem.2021.699284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The localized surface plasmon resonance of metallic nanoparticles has attracted much attention owing to its unique characteristics, including the enhancement of signals in sensors and photothermal effects. In particular, hollow gold nanostructures are highly promising for practical applications, with significant advantages being found in their material properties and structures: 1) the interaction between the outer surface plasmon mode and inner cavity mode leads to a greater resonance, allowing it to absorb near-infrared light, which can readily penetrate tissue; 2) it has anti-corrosiveness and good biocompatibility, which makes it suitable for biomedical applications; 3) it shows a reduced net density and large surface area, allowing the possibility of nanocarriers for drug delivery. In this review, we present information on the classification, characteristics, and synthetic methods of hollow gold nanostructures; discuss the recent advances in hollow gold nanostructures in biomedical applications, including biosensing, bioimaging, photothermal therapy, and drug delivery; and report on the existing challenges and prospects for hollow gold nanostructures.
Collapse
Affiliation(s)
- Jeong-Min Park
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, Busan, South Korea
| | - Dauletkerey Kudaibergen
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
25
|
Lu L, Wang B, Wu D, Zou S, Fang B. Engineering porous Pd-Cu nanocrystals with tailored three-dimensional catalytic facets for highly efficient formic acid oxidation. NANOSCALE 2021; 13:3709-3722. [PMID: 33544114 DOI: 10.1039/d0nr09164b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rational synthesis of bi- or multi-metallic nanomaterials with both dendritic and porous features is appealing yet challenging. Herein, with the cubic Cu2O nanoparticles composed of ultrafine Cu2O nanocrystals as a self-template, a series of Pd-Cu nanocrystals with different morphologies (e.g., aggregates, porous nanodendrites, meshy nanochains and porous nanoboxes) are synthesized through simply regulating the molar ratio of the Pd precursor to the cubic Cu2O, indicating that the galvanic replacement and Kirkendall effect across the alloying process are well controlled. Among the as-developed various Pd-Cu nanocrystals, the porous nanodendrites with both dendritic and hollow features show superior electrocatalytic activity toward formic acid oxidation. Comprehensive characterizations including three-dimensional simulated reconstruction of a single particle and high-resolution transmission electron microscopy reveal that the surface steps, defects, three-dimensional architecture, and the electronic/strain effects between Cu and Pd are responsible for the outstanding catalytic activity and excellent stability of the Pd-Cu porous nanodendrites.
Collapse
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Bing Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Di Wu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6 T 1Z3, Canada.
| |
Collapse
|
26
|
Zheng Y, Wang X, Kong Y, Ma Y. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00975c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this highlight article, the recent progress on the preparation and application of multimetallic alloy nanocrystals with 2D nanostructures is systematically reviewed, as well as perspectives on future challenges and opportunities.
Collapse
Affiliation(s)
- Yiqun Zheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiping Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhan Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
27
|
Kumar G, Soni RK. Bimetallic Ag-Au alloy nanocubes for SERS based sensitive detection of explosive molecules. NANOTECHNOLOGY 2020; 31:505504. [PMID: 33021229 DOI: 10.1088/1361-6528/abb628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We have fabricated Ag-Au alloy nanocubes using the galvanic replacement of silver nanocubes by aqueous HAuCl4 and investigated their morphological, structural, compositional and optical properties. The inter-diffusion between silver and gold at 100 °C leads to the formation of Ag-Au alloy nanocubes with hollow interiors. A broad tuning of the surface plasmon resonance (SPR) wavelength from 624 nm to 920 nm is obtained with the varying volume of HAuCl4. When excited at wavelength 785 nm, the bimetallic Ag-Au nanocubes with pinholes exhibit two-fold Raman intensity enhancement compared to pristine Ag nanocubes. The surface-enhanced Raman spectroscopy (SERS) substrate prepared with Ag-Au alloy nanocubes shows high-intensity enhancement factor of 1.9 × 107 for 11.2 wt% Au content. The SERS-active Ag-Au alloy nanocubes substrates were exploited for the detection of two explosive molecules; p-nitrobenzoic acid (PNBA) and picric acid (PA). Remarkable detection sensitivity and ultra-low detection limit of 1.7 × 10-14 M for PNBA and 4.1 × 10-11 M for PA were obtained, demonstrating the very high SERS detection capabilities of the as-prepared substrate.
Collapse
Affiliation(s)
- Govind Kumar
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - R K Soni
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
28
|
Pattadar DK, Masitas RA, Stachurski CD, Cliffel DE, Zamborini FP. Reversing the Thermodynamics of Galvanic Replacement Reactions by Decreasing the Size of Gold Nanoparticles. J Am Chem Soc 2020; 142:19268-19277. [PMID: 33140961 DOI: 10.1021/jacs.0c09426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here, we describe the surprising reactivity between surface-attached (a) 0.9, 1.6, and 4.1 nm diameter weakly stabilized Au nanoparticles (NPs) and aqueous 1.0 × 10-4 M Ag+ solution, and (b) 1.6 and 4.1 nm diameter weakly stabilized Au NPs and aqueous 1.0 × 10-5 M PtCl42-, which are considered to be antigalvanic replacement (AGR) reactions because they are not thermodynamically favorable for bulk-sized Au under these conditions. Anodic Stripping Voltammetry (ASV) and Scanning Transmission Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (STEM-EDS) mapping provide quantitation of the extent of Ag and Pt replacement as a function of Au NP diameter. The extent of the reaction increases as the Au NP size decreases. The percentage of Ag in the AuAg alloy following AGR based on ASV is 17.8 ± 0.6% for 4.1 nm diameter Au NPs, 87.2 ± 2.9% for 1.6 nm Au NPs, and an unprecedented full 100% Ag for 0.9 nm diameter Au NPs. STEM-EDS mapping shows very close agreement with the ASV-determined compositions. In the case of PtCl42-, STEM-EDS mapping shows AuPt alloy NPs with 3.9 ± 1.3% and 41.1 ± 8.7% Pt following replacement with 4.1 and 1.6 nm diameter Au NPs, respectively, consistent with qualitative changes to the ASV. The size-dependent AGR correlates well with the negative shift in the standard potential (E0) for Au oxidation with decreasing NP size.
Collapse
Affiliation(s)
- Dhruba K Pattadar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rafael A Masitas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | | | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Francis P Zamborini
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
29
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
30
|
Zheng G, Mourdikoudis S, Zhang Z. Plasmonic Metallic Heteromeric Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002588. [PMID: 32762017 DOI: 10.1002/smll.202002588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Binary, ternary, and other high-order plasmonic heteromers possess remarkable physical and chemical properties, enabling them to be used in numerous applications. The seed-mediated approach is one of the most promising and versatile routes to produce plasmonic heteromers. Selective growth of one or multiple domains on desired sites of noble metal, semiconductor, or magnetic seeds would form desired heteromeric nanostructures with multiple functionalities and synergistic effects. In this work, the challenges for the synthetic approaches are discussed with respect to tuning the thermodynamics, as well as the kinetic properties (e.g., pH, temperature, injection rate, among others). Then, plasmonic heteromers with their structure advantages displaying unique activities compared to other hybrid nanostructures (e.g., core-shell, alloy) are highlighted. Some of the main most recent applications of plasmonic heteromers are also presented. Finally, perspectives for further exploitation of plasmonic heteromers are demonstrated. The goal of this work is to provide the current know-how on the synthesis routes of plasmonic heteromers in a summarized manner, so as to achieve a better understanding of the resulting properties and to gain an improved control of their performances and extend their breadth of applications.
Collapse
Affiliation(s)
- Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London (UCL), London, WC1E 6BT, UK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, London, W1S 4BS, UK
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
31
|
Liu A, Yang Y, Ren X, Zhao Q, Gao M, Guan W, Meng F, Gao L, Yang Q, Liang X, Ma T. Current Progress of Electrocatalysts for Ammonia Synthesis Through Electrochemical Nitrogen Reduction Under Ambient Conditions. CHEMSUSCHEM 2020; 13:3766-3788. [PMID: 32302057 DOI: 10.1002/cssc.202000487] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Ammonia, one of the most important chemicals and carbon-free energy carriers, is mainly produced by the traditional Haber-Bosch process operated at high pressure and temperature, which results in massive energy consumption and CO2 emissions. Alternatively, the electrocatalytic nitrogen reduction reaction to synthesize NH3 under ambient conditions using renewable energy has recently attracted significant attention. However, the competing hydrogen evolution reaction (HER) significantly reduces the faradaic efficiency and NH3 production rate. The design of high-performance electrocatalysts with the suppression of the HER for N2 reduction to NH3 under ambient conditions is a crucial consideration for the development of electrocatalytic NH3 synthesis with high FE and NH3 production rate. Five kinds of recently developed electrocatalysts classified by their chemical compositions are summarized, with particular emphasis on the relationship between their optimal electrocatalytic conditions and NH3 production performance. Conclusions and perspectives are provided for the future design of high-performance electrocatalysts for electrocatalytic NH3 production. The Review can give practical guidance for the design of effective electrocatalysts with high FE and NH3 production rates.
Collapse
Affiliation(s)
- Anmin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Yanan Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Xuefeng Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, P.R. China
| | - Qidong Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Mengfan Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Weixin Guan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Fanning Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Liguo Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Qiyue Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Xingyou Liang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P.R. China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196, Japan
| |
Collapse
|
32
|
Chauvin A, Lafuente M, Mevellec JY, Mallada R, Humbert B, Pina MP, Tessier PY, El Mel A. Lamellar nanoporous gold thin films with tunable porosity for ultrasensitive SERS detection in liquid and gas phase. NANOSCALE 2020; 12:12602-12612. [PMID: 32501469 DOI: 10.1039/d0nr01721c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lamellar nanoporous gold thin films, constituted of a stack of very thin layers of porous gold, are synthesized by chemical etching from a stack of successively deposited nanolayers of copper and gold. The gold ligament size, the pore size and the distance between lamellas are tunable in the few tens nanometer range by controlling the initial thickness of the layers and the etching time. The SERS activity of these lamellar porous gold films is characterized by their SERS responses after adsorption of probe bipyridine and naphtalenethiol molecules. The SERS signal is investigated as a function of the bipyridine concentration from 10-14 mol L-1 to 10-3 mol L-1. The higher SERS response corresponds to an experimental detection limit down to 10-12 mol L-1. These performance is mainly attributed to the specific nanoporous gold architecture and the larger accessible surface to volume ratio. The lamellar nanoporous gold substrate is explored for sensitive SERS detection of dimethyl methylphosphonate (DMMP), a surrogate molecule of the highly toxic G-series nerve agents. The resultant nanostructure facilitates the diffusion of target molecules through the nanopores and their localization at the enhancing metallic surface leading to the unequivocal Raman signature of DMMP at a concentration of 5 parts per million.
Collapse
Affiliation(s)
- Adrien Chauvin
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229, 44322 Nantes cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bhol P, Bhavya MB, Swain S, Saxena M, Samal AK. Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostructures and Their Application in Catalysis. Front Chem 2020; 8:357. [PMID: 32528924 PMCID: PMC7262677 DOI: 10.3389/fchem.2020.00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Bimetallic nanoparticles (BNPs) have attracted greater attention compared to its monometallic counterpart because of their chemical/physical properties. The BNPs have a wide range of applications in the fields of health, energy, water, and environment. These properties could be tuned with a number of parameters such as compositions of the bimetallic systems, their preparation method, and morphology. Monodisperse and anisotropic BNPs have gained considerable interest and numerous efforts have been made for the controlled synthesis of bimetallic nanostructures (BNS) of different sizes and shapes. This review offers a brief summary of the various synthetic routes adopted for the synthesis of Palladium(Pd), Platinum(Pt), Nickel(Ni), Gold(Au), Silver(Ag), Iron(Fe), Cobalt(Co), Rhodium(Rh), and Copper(Cu) based transition metal bimetallic anisotropic nanostructures, growth mechanisms e.g., seed mediated co-reduction, hydrothermal, galvanic replacement reactions, and antigalvanic reaction, and their application in the field of catalysis. The effect of surfactant, reducing agent, metal precursors ratio, pH, and reaction temperature for the synthesis of anisotropic nanostructures has been explained with examples. This review further discusses how slight modifications in one of the parameters could alter the growth mechanism, resulting in different anisotropic nanostructures which highly influence the catalytic activity. The progress or modification implied in the synthesis techniques within recent years is focused on in this article. Furthermore, this article discussed the improved activity, stability, and catalytic performance of BNS compared to the monometallic performance. The synthetic strategies reported here established a deeper understanding of the mechanisms and development of sophisticated and controlled BNS for widespread application.
Collapse
Affiliation(s)
- Prangya Bhol
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - M B Bhavya
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Swarnalata Swain
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| |
Collapse
|
34
|
Kang YS, Jung JY, Choi D, Sohn Y, Lee SH, Lee KS, Kim ND, Kim P, Yoo SJ. Formation Mechanism and Gram-Scale Production of PtNi Hollow Nanoparticles for Oxygen Electrocatalysis through In Situ Galvanic Displacement Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16286-16297. [PMID: 32167736 DOI: 10.1021/acsami.9b22615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Galvanic displacement reaction has been considered a simple method for fabricating hollow nanoparticles. However, the formation of hollow interiors in nanoparticles is not easily achieved owing to the easy oxidization of transition metals, which results in mixed morphologies, and the presence of surfactants on the nanoparticle surface, which severely deteriorates the catalytic activity. In this study, we developed a facile gram-scale methodology for the one-pot preparation of carbon-supported PtNi hollow nanoparticles as an efficient and durable oxygen reduction electrocatalyst without using stabilizing agents or additional processes. The hollow structures were evolved from sacrificial Ni nanoparticles via an in situ galvanic displacement reaction with a Pt precursor, directly following a preannealing process. By sampling the PtNi/C hollow nanoparticles at various reaction times, the structural formation mechanism was investigated using transmission electron microscopy with energy-dispersive X-ray spectroscopy mapping/line-scan profiling. We found out that the structure and morphology of the PtNi hollow nanoparticles were controlled by the acidity of the metal precursor solution and the nanoparticle core size. The synthesized PtNi hollow nanoparticles acted as an oxygen reduction electrocatalyst, with a catalytic activity superior to that of a commercial Pt catalyst. Even after 10 000 cycles of harsh accelerated durability testing, the PtNi/C hollow electrocatalyst showed high performance and durability. We concluded that the Pt-rich layers on the PtNi hollow nanoparticles improved the catalytic activity and durability considerably.
Collapse
Affiliation(s)
- Yun Sik Kang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Young Jung
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju 55324, Republic of Korea
- Department of Materials Science & Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| | - Daeil Choi
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yeonsun Sohn
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Soo-Hyoung Lee
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Nam Dong Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju 55324, Republic of Korea
| | - Pil Kim
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
35
|
Kang S, Gil YG, Kim YJ, Kim YK, Min DH, Jang H. Environmentally Friendly Synthesis of Au-Te-Clustered Nanoworms via Galvanic Replacement for Wavelength-Selective Combination Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5511-5519. [PMID: 31918538 DOI: 10.1021/acsami.9b19862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Au-Te-clustered nanoworms (AuTeNWs) were successfully synthesized under ambient conditions by spontaneous galvanic replacement using Te nanorods as a sacrificial nanotemplate. Along with the gradual replacement and on-surface crystalline Au cluster formation, Te nanotemplates were transformed into a serpentine nanoworm-like morphology. The present strategy was an environmentally friendly method that did not use surfactants to control the surface structure. The synthesized nanoworms exhibited excellent photothermal conversion, photocatalytic efficiencies, and high payloads for thiolated genes and cell-penetrating peptides. According to the visible and near-infrared wavelengths of light, the photodynamic and photothermal therapeutic pathways were dominantly acting, respectively. From this, wavelength-selective combination treatment with gene therapy was successfully accomplished. Taken together, excellent therapeutic effects for in vitro and in vivo mouse models against hepatitis C replicon human hepatocarcinoma were clearly identified by using the present AuTeNWs as a phototherapeutic nanocarrier.
Collapse
Affiliation(s)
- Seounghun Kang
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Yeong-Gyu Gil
- Department of Chemistry , Kwangwoon University , 20 Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| | - Young-Jin Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , San 101 , Eunha-ri, Bongdong-eup, Wanju-gun , Jeollabuk-do 565-905 , Republic of Korea
| | - Young-Kwan Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , San 101 , Eunha-ri, Bongdong-eup, Wanju-gun , Jeollabuk-do 565-905 , Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
- Center for RNA Research, Institute for Basic Science (IBS) , Seoul National University , Seoul 08826 , Republic of Korea
- Institute of Biotherapeutics Convergence Technology , Lemonex Inc. , Seoul 08826 , Republic of Korea
| | - Hongje Jang
- Department of Chemistry , Kwangwoon University , 20 Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| |
Collapse
|
36
|
Liu H, Li L, Luo L, He Y, Cong C, He Y, Hao Z, Gao D. Green dual-template synthesis of AgPd core-shell nanoparticles with enhanced electrocatalytic activity. NANOTECHNOLOGY 2020; 31:035603. [PMID: 31557747 DOI: 10.1088/1361-6528/ab4836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A key challenge in developing an ethanol oxidation reaction is nontoxic fabrication of highly active stable and low-cost catalysts. Here we design a green synthetic strategy of AgPd bimetallic nanosphere by a dual-template cascade method. The Pd nanoshell is firstly prepared using Vapreotide acetate as a primary template, and then the Ag nanoshell acts as a secondary template for the distribution of AgPd alloy nanoparticles. The AgPd nanoparticles have core-shell structures and various sizes, and their shell thicknesses are tuned by controlling the amount of PdCl2. The six different samples are prepared, named AgPd-1, AgPd-2, AgPd-3, AgPd-4, AgPd-5, and AgPd-6, respectively. The mass current density of AgPd-5, is higher 3.87 times that of commercial Pd/C, and exhibits the best ethanol oxidation reaction activity and long-term stability. The main reasons are that the AgPd-5 possessed excellent specific surface area due to their rough structure, and Ag can remove more CO-like species. This is the first time a Vapreotide acetate/Ag-template method has been used to synthesize a AgPd core-shell structure, which would have broad application prospects for direct ethanol fuel cells.
Collapse
Affiliation(s)
- Huan Liu
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, People's Republic of China. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ryu HJ, Shin H, Oh S, Joo JH, Choi Y, Lee JS. Wrapping AgCl Nanostructures with Trimetallic Nanomeshes for Plasmon-Enhanced Catalysis and in Situ SERS Monitoring of Chemical Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2842-2853. [PMID: 31887004 DOI: 10.1021/acsami.9b18364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selective chemical control of multiple reactions is incredibly important for the fabrication of sophisticated nanostructures for functional applications. A representative example is the synthesis of plasmonic nanomaterial-silver chloride (AgCl) conjugates, where metal ions should be selectively reduced into metallic nanostructures for plasmon-enhanced catalytic activity, while the reducible AgCl nanomaterials remain intact despite the presence of a chemical reductant. In addition to the selectively controlled reduction, the plasmonic nanostructures should be appropriately designed for the high stability and photoefficiency of catalysts. In this study, we demonstrate how AgCl nanocubes and nanospheres could be comprehensively wrapped by plasmonic three-dimensional nanomesh structures consisting of gold, silver, and palladium by the selective reduction of their ionic precursors while the AgCl nanostructures remain intact. Complete trimetallic wrapping provided the absorption of visible light, while the porosity of the nanomesh structures exposed the photocatalytic AgCl surface to catalyze desired reactions. Platinum in place of palladium was examined to demonstrate the versatility of the wrapping scheme, resulting in an extraordinary catalytic activity. Importantly, the detailed chemical mechanism behind the trimetallic wrapping of the AgCl nanostructures was systematically investigated to understand the roles of each reaction component in controlling the chemical selectivity. The synthesized AgCl-trimetal nanoconjugates excellently exhibit both metal-based and plasmon-enhanced catalytic properties for the removal of environmentally harmful Cr6+. Moreover, their applications as surface-enhanced Raman-scattering (SERS) probes for the in situ monitoring of catalytic reduction in real-time and as single-nanoparticle SERS probes for molecular detection are thoroughly demonstrated.
Collapse
|
38
|
Facile Aqueous-Phase Synthesis of Bimetallic (AgPt, AgPd, and CuPt) and Trimetallic (AgCuPt) Nanoparticles. MATERIALS 2020; 13:ma13020254. [PMID: 31935999 PMCID: PMC7013979 DOI: 10.3390/ma13020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 11/19/2022]
Abstract
Multi-metallic nanoparticles continue to attract attention, due to their great potential in various applications. In this paper, we report a facile aqueous-phase synthesis for multi-metallic nanoparticles, including AgPt, AgPd, CuPt, and AgCuPt, by a co-reduction method within a short reaction time of 10 min. The atomic ratio of bimetallic nanoparticles was easily controlled by varying the ratio of each precursor. In addition, we found that AgCuPt trimetallic nanoparticles had a core-shell structure with an Ag core and CuPt shell.
Collapse
|
39
|
Xia C, He W, Gao PF, Wang JR, Cao ZM, Li YF, Wang Y, Huang CZ. Nanofabrication of hollowed-out Au@AgPt core-frames via selective carving of silver and deposition of platinum. Chem Commun (Camb) 2020; 56:2945-2948. [DOI: 10.1039/c9cc09573j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanofabrication of a hollowed-out Au@AgPt core-frame is presented, which is based on the selective deposition of Pt atoms on the active edges of the cubes and dissolution of Ag atoms from the {100} facets.
Collapse
Affiliation(s)
- Chang Xia
- Key Laboratory of Luminescent and Real-Time Analysis System (Southwest University) Chongqing Science and Technology Bureau
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Wei He
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| | - Peng Fei Gao
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| | - Jia Ru Wang
- Key Laboratory of Luminescent and Real-Time Analysis System (Southwest University) Chongqing Science and Technology Bureau
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Zheng Mao Cao
- Key Laboratory of Luminescent and Real-Time Analysis System (Southwest University) Chongqing Science and Technology Bureau
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analysis System (Southwest University) Chongqing Science and Technology Bureau
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Cheng Zhi Huang
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
40
|
Sudheeshkumar V, Alyari M, Gangishetty M, Scott RWJ. Galvanic synthesis of AgPd bimetallic catalysts from Ag clusters dispersed in a silica matrix. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01675f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AgPd bimetallic clusters dispersed in a silica matrix were made by a top down synthetic strategy and used as selective hydrogenation catalysts.
Collapse
Affiliation(s)
- V. Sudheeshkumar
- 110 Science Place
- Department of Chemistry
- University of Saskatchewan
- Canada
| | - Maryam Alyari
- 110 Science Place
- Department of Chemistry
- University of Saskatchewan
- Canada
| | | | - Robert W. J. Scott
- 110 Science Place
- Department of Chemistry
- University of Saskatchewan
- Canada
| |
Collapse
|
41
|
Wang H, Liu S, Zhang H, Yin S, Xu Y, Li X, Wang Z, Wang L. Multinary PtPdNiP truncated octahedral mesoporous nanocages for enhanced methanol oxidation electrocatalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03369c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multinary PtPdNiP TOMNs have been synthesized for the electrocatalytic methanol oxidation reaction with a superior electrocatalytic performance.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
42
|
Zhuang C, Qi H, Cheng X, Chen G, Gao C, Wang L, Sun S, Zou J, Han X. In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chunqiang Zhuang
- Institute of Microstructure and Property of Advanced Materials Beijing Key Lab of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 China
| | - Heyang Qi
- Institute of Microstructure and Property of Advanced Materials Beijing Key Lab of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 China
| | - Xing Cheng
- Department Beijing Key Laboratory for Green Catalysis and Separation College of Environmental & Energy Engineering Beijing University of Technology 100124 Beijing P. R. China
| | - Ge Chen
- Department Beijing Key Laboratory for Green Catalysis and Separation College of Environmental & Energy Engineering Beijing University of Technology 100124 Beijing P. R. China
| | - Chunlang Gao
- Institute of Microstructure and Property of Advanced Materials Beijing Key Lab of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 China
| | - Lihua Wang
- Institute of Microstructure and Property of Advanced Materials Beijing Key Lab of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 China
| | - Shaorui Sun
- Department Beijing Key Laboratory for Green Catalysis and Separation College of Environmental & Energy Engineering Beijing University of Technology 100124 Beijing P. R. China
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis The University of Queensland Brisbane QLD 4072 Australia
| | - Xiaodong Han
- Institute of Microstructure and Property of Advanced Materials Beijing Key Lab of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 China
| |
Collapse
|
43
|
Zhuang C, Qi H, Cheng X, Chen G, Gao C, Wang L, Sun S, Zou J, Han X. In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy. Angew Chem Int Ed Engl 2019; 58:18627-18633. [PMID: 31621994 DOI: 10.1002/anie.201910379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/13/2019] [Indexed: 02/04/2023]
Abstract
Galvanic replacement is a versatile approach to prepare hollow nanostructures with controllable morphology and elemental composition. The primary issue is to identify its fundamental mechanism. In this study, in situ liquid cell transmission electron microscopy was employed to monitor the dynamic reaction process and to explore the mechanism of galvanic replacement. The detailed reaction process was revealed based on in situ experiments in which small Au particles first appeared around Ag nanowires; they coalesced, grew, and adhered to Ag nanowires. After that, small pits grew from the edge of Ag nanowires to form tubular structures, and then extended along the Ag nanowires to obtain hollowed structures. All of our experimental observations from the viewpoint of electron microscopy, combined with DFT calculations, contribute towards an in-depth understanding of the galvanic replacement reaction process and the design of new materials with hollow structures.
Collapse
Affiliation(s)
- Chunqiang Zhuang
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Heyang Qi
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Xing Cheng
- Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124, Beijing, P. R. China
| | - Ge Chen
- Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124, Beijing, P. R. China
| | - Chunlang Gao
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Lihua Wang
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Shaorui Sun
- Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124, Beijing, P. R. China
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiaodong Han
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
44
|
Composition-dependent electrochemical activity of Ag-based alloy nanotubes for efficient nitrogen reduction under ambient conditions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Li GG, Wang Z, Blom DA, Wang H. Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23482-23494. [PMID: 31179681 DOI: 10.1021/acsami.9b05385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscale galvanic exchange confined by metallic nanoparticles is an intriguing structure-remodeling process that transforms geometrically simple solid nanoparticles into multimetallic hollow nanoparticles with increased structural complexity and compositional diversity. Using liquid polyols with intrinsic reducing capabilities as the reaction medium for nanoparticle-templated galvanic exchange represents an interesting paradigm shift, allowing us to interface galvanic exchange with oxidative etching and seed-mediated deposition without introducing any additional oxidizing or reducing agents. By kinetically maneuvering the interplay among galvanic Cu-Pt exchange, oxidative Cu etching, and seed-mediated Pt deposition, we have been able to selectively transform AuCu3 alloy nanoparticles into two architecturally distinct multimetallic heteronanostructures, namely, Au-Pt alloy skin-covered spongy nanoparticles and Pt nanodendrite-covered hollow nanoparticles, both of which exhibit unique structural features highly desirable for high-performance electrocatalysis. Using the formic acid oxidation and hydrogen evolution reactions in acidic electrolytes as model electrocatalytic reactions, we show that the multimetallic nanoparticles derived from AuCu3 alloy nanoparticles through polyol-mediated galvanic exchange reactions markedly outperform the commercial Pt/C benchmark catalysts in terms of both activity and durability. This work not only provides important mechanistic insights on how galvanic exchange dynamically interplays with other redox processes to rigorously dictate the versatile structural transformations of multimetallic nanoparticles but also sheds light on the detailed structure-property relationships underpinning the intriguing electrocatalytic behaviors of architecturally complex multimetallic heteronanostructures.
Collapse
|
46
|
Liao G, Fang J, Li Q, Li S, Xu Z, Fang B. Ag-Based nanocomposites: synthesis and applications in catalysis. NANOSCALE 2019; 11:7062-7096. [PMID: 30931457 DOI: 10.1039/c9nr01408j] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ag-Based nanocomposites, including supported Ag nanocomposites and bimetallic Ag nanocomposites, have been intensively investigated as highly efficient catalysts because of their high activity and stability, easy preparation, low cost, and low toxicity. Herein, we systematically summarize and comprehensively evaluate versatile synthetic strategies for the preparation of Ag-based nanocomposites, and outline their recent advances in catalytic oxidation, catalytic reduction, photocatalysis and electrocatalysis. In addition, the challenges and prospects related to Ag-based nanocomposites for various catalytic applications are also discussed. In light of the most recent advances in Ag-based nanocomposites for catalysis applications, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characteristics of these catalysts, which offers a strategic guide to build a close connection between Ag nanocomposites and catalysis applications.
Collapse
Affiliation(s)
- Guangfu Liao
- School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong 523808, China.
| | | | | | | | | | | |
Collapse
|
47
|
Li Z, Yu C, Wen Y, Gao Y, Xing X, Wei Z, Sun H, Zhang YW, Song W. Mesoporous Hollow Cu–Ni Alloy Nanocage from Core–Shell Cu@Ni Nanocube for Efficient Hydrogen Evolution Reaction. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04814] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chengcheng Yu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yangyang Wen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yang Gao
- College of Science, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xiaofei Xing
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhiting Wei
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiyu Song
- College of Science, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
48
|
Wang D, Hua H, Liu Y, Tang H, Li Y. Single Ag Nanowire Electrodes and Single Pt@Ag Nanowire Electrodes: Fabrication, Electrocatalysis, and Surface-Enhanced Raman Scattering Applications. Anal Chem 2019; 91:4291-4295. [DOI: 10.1021/acs.analchem.8b04610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dongmei Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
- College of Chemistry and Material Engineering, Chaohu University, Chaohu, Anhui 238000, P.R. China
| | - Hongmei Hua
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yong Liu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
49
|
Yin HJ, Zhou JH, Zhang YW. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00689c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in shaping protocols and structure-activity relationships of noble-metal-based catalysts with well-defined nanostructures in electrochemical reactions.
Collapse
Affiliation(s)
- Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
50
|
Bi J, Cai H, Wang B, Kong C, Yang S. Localized surface plasmon enhanced electrocatalytic methanol oxidation of AgPt bimetallic nanoparticles with an ultra-thin shell. Chem Commun (Camb) 2019; 55:3943-3946. [DOI: 10.1039/c9cc00331b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AgPt bimetallic hollow nanoparticles (AgPt-BHNPs) with an ultra-thin shell were synthesized.
Collapse
Affiliation(s)
- Jinglei Bi
- School of Science
- Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi’an
| | - Hairui Cai
- School of Science
- Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi’an
| | - Bin Wang
- School of Science
- Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi’an
| | - Chuncai Kong
- School of Science
- Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi’an
| | - Shengchun Yang
- School of Science
- Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi’an
| |
Collapse
|