1
|
Khunpetch P, Majee A, Ruixuan H, Podgornik R. Curvature effects in interfacial acidity of amphiphilic vesicles. Phys Rev E 2023; 108:024402. [PMID: 37723726 DOI: 10.1103/physreve.108.024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
We analyze the changes in the vicinal acidity (pH) at a spherical amphiphilic membrane. The membrane is assumed to contain solvent accessible, embedded, dissociable, charge-regulated moieties. Basing our approach on the linear Debye-Hückel approximation, as well as on the nonlinear Poisson-Boltzmann theory, together with the general Frumkin-Fowler-Guggenheim adsorption isotherm model of the charge-regulation process, we analyze and review the dependence of the local pH on the position, as well as bulk electrolyte concentration, bulk pH, and curvature of the amphiphilic single membrane vesicle. With appropriately chosen adsorption parameters of the charge-regulation model, we find a good agreement with the available experimental data.
Collapse
Affiliation(s)
- Petch Khunpetch
- Department of Physics, Faculty of Science, Ramkhamhaeng University, Bang Kapi, 10240 Bangkok, Thailand
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Arghya Majee
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Hu Ruixuan
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, 325000 Zhejiang, China
| |
Collapse
|
2
|
Landsgesell J, Beyer D, Hebbeker P, Košovan P, Holm C. The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - David Beyer
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Pascal Hebbeker
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Landsgesell J, Hebbeker P, Rud O, Lunkad R, Košovan P, Holm C. Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00260] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Pascal Hebbeker
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Oleg Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Lošdorfer Božič A, Podgornik R. Anomalous multipole expansion: Charge regulation of patchy inhomogeneously charged spherical particles. J Chem Phys 2018; 149:163307. [DOI: 10.1063/1.5037044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Nutan B, Chandel AKS, Jewrajka SK. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)-Linked-Poly(caprolactone)-Linked-Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS APPLIED BIO MATERIALS 2018; 1:1606-1619. [DOI: 10.1021/acsabm.8b00461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Arvind K. Singh Chandel
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
6
|
Avni Y, Markovich T, Podgornik R, Andelman D. Charge regulating macro-ions in salt solutions: screening properties and electrostatic interactions. SOFT MATTER 2018; 14:6058-6069. [PMID: 29985507 DOI: 10.1039/c8sm00728d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We revisit the charge-regulation mechanism of macro-ions and apply it to mobile macro-ions in a bathing salt solution. In particular, we examine the effects of correlation between various adsorption/desorption sites and analyze the collective behavior in terms of the solution effective screening properties. We show that such a behavior can be quantified in terms of the charge asymmetry of the macro-ions, defined by their preference for a non-zero effective charge, and their donor/acceptor propensity for exchanging salt ions with the bathing solution. Asymmetric macro-ions tend to increase the screening, while symmetric macro-ions can in some cases decrease it. Macro-ions that are classified as donors display a rather regular behavior, while those that behave as acceptors exhibit an anomalous non-monotonic Debye length. The screening properties, in their turn, engender important modifications to the disjoining pressure between two charged surfaces. Our findings are in particular relevant for solutions of proteins, whose exposed amino acids can undergo charge dissociation/association processes to/from the bathing solution, and can be considered as a solution of charged regulated macro-ions, as analyzed here.
Collapse
Affiliation(s)
- Yael Avni
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
7
|
Majee A, Bier M, Podgornik R. Spontaneous symmetry breaking of charge-regulated surfaces. SOFT MATTER 2018; 14:985-991. [PMID: 29323397 DOI: 10.1039/c7sm02270k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interaction between two chemically identical charge-regulated surfaces is studied using the classical density functional theory. In contrast to common expectations and assumptions, under certain realistic conditions we find a spontaneous emergence of disparate charge densities on the two surfaces. The surface charge densities can differ not only in their magnitude, but quite unexpectedly, even in their sign, implying that the electrostatic interaction between the two chemically identical surfaces can be attractive instead of repulsive. Moreover, an initial symmetry with equal charge densities on both surfaces can also be broken spontaneously upon decreasing the separation between the two surfaces. The origin of this phenomenon is a competition between the adsorption of ions from the solution to the surface and the interaction between the adsorbed ions already on the surface. These findings are fundamental for the understanding of the forces between colloidal objects and, in particular, they are bound to strongly influence the present picture of protein interaction.
Collapse
Affiliation(s)
- Arghya Majee
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany. and Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Markus Bier
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany. and Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Rudolf Podgornik
- Department of Theoretical Physics, J. Stefan Institute, Jamova c. 39, 1000 Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Nová L, Uhlík F, Košovan P. Local pH and effective pK A of weak polyelectrolytes - insights from computer simulations. Phys Chem Chem Phys 2018; 19:14376-14387. [PMID: 28277570 DOI: 10.1039/c7cp00265c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work we study the titration behavior of weak polyelectrolytes by computer simulations. We analyze the local pH near the chains at various conditions and provide molecular-level insight which complements the recent experimental determination of this quantity. Next, we analyze the non-ideal titration behaviour of weak polyelectrolytes in solution, calculate the effective ionization constant and compare the simulation results with theoretical predictions. In contrast with the universal behaviour with respect to chain length, we find non-universality and deviations from theory with respect to polymer concentration and permittivity of the solvent. The latter we explain in terms of counterion condensation and ion correlation effects, which lead to reversal of the non-ideal titration behaviour at very low permittivities. We discuss the impact of these findings on the interpretation of experimental results.
Collapse
Affiliation(s)
- Lucie Nová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
9
|
Pevarnik M, Cui W, Yemenicioglu S, Rofeh J, Theogarajan L. Solid-state nanopore based biomimetic voltage gated ion channels. BIOINSPIRATION & BIOMIMETICS 2017; 12:066008. [PMID: 28726670 DOI: 10.1088/1748-3190/aa811b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Voltage gating is essential to the computational ability of neurons. We show this effect can be mimicked in a solid-state nanopore by functionalizing the pore interior with a redox active molecule. We study the integration of an active biological molecule-a quinone-into a solid state nanopore, and its subsequent induced voltage gating. We show that the voltage gating effect mimics biological gating systems in its classic sigmoidal voltage response, unlike previous synthetic voltage gating systems. Initially, the quinone undergoes a reduction due to radicals in the bulk solution, and is converted to the hydroquinone state. Upon deprontonation the hydroquinone then acts as a charged nanomechanical arm, which opens the channel under the applied potential. We establish that the quinone gains a single net charge when the pH inside of the nanopore reaches its pKa value, and explore factors that influence the net pH in the middle of the pore. Using a combination of theory, experiment and simulation, we conclude that concentration polarization and a shift of the pH inside of the channel is the main cause of this gating effect.
Collapse
Affiliation(s)
- Matthew Pevarnik
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-9560, United States of America. Department of Science and Math, Regent University, Virginia Beach, VA 23464-5037, United States of America
| | | | | | | | | |
Collapse
|
10
|
Study on salt thickening mechanism of the amphiphilic polymer with betaine zwitterionic group by β-cyclodextrin inclusion method. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4169-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Sanz B, von Bilderling C, Tuninetti JS, Pietrasanta L, Mijangos C, Longo GS, Azzaroni O, Giussi JM. Thermally-induced softening of PNIPAm-based nanopillar arrays. SOFT MATTER 2017; 13:2453-2464. [PMID: 28287232 DOI: 10.1039/c7sm00206h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modified by introducing a hydrophilic monomer to create a wide range of thermo-responsive micro-/nano-structures in a large temperature range. Using surface initiation atom-transfer radical polymerization in synthesized anodized aluminum oxide templates, we designed, fabricated, and characterized thermo-responsive nanopillars based on PNIPAm hydrogels with tunable mechanical properties by incorporating acrylamide monomers (AAm). In addition to their LCST, the incorporation of a hydrophilic entity in the nanopillars based on PNIPAm has abruptly changed the topological and mechanical properties of our system. To gain an insight into the mechanical properties of the nanostructure, its hydrophilic/hydrophobic behavior and topological characteristics, atomic force microscopy, molecular dynamics simulations and water contact angle studies were combined. When changing the nanopillar composition, a significant and opposite variation was observed in their mechanical properties. As temperature increased above the LCST, the stiffness of PNIPAm nanopillars, as expected, did so too, in contrast to the stiffness of PNIPAm-AAm nanopillars that decreased significantly. The molecular dynamics simulations proposed a local molecular rearrangement in our nanosystems at the LCST. The local aggregation of NIPAm segments near the center of the nanopillars displaced the hydrophilic AAm units towards the surface of the structure leading to contact with the aqueous environment. This behavior was confirmed via contact angle measurements below and above the LCST.
Collapse
Affiliation(s)
- Belén Sanz
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Catalina von Bilderling
- Instituto de Física de Buenos Aires (IFIBA-CONICET) and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Jimena S Tuninetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química - Facultad de Ciencias Exactas - Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina.
| | - Lía Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA-CONICET) and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina and Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química - Facultad de Ciencias Exactas - Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química - Facultad de Ciencias Exactas - Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina.
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química - Facultad de Ciencias Exactas - Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina.
| |
Collapse
|
12
|
Gleria I, Mocskos E, Tagliazucchi M. Minimum free-energy paths for the self-organization of polymer brushes. SOFT MATTER 2017; 13:2362-2370. [PMID: 28275766 DOI: 10.1039/c6sm02725c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.
Collapse
Affiliation(s)
- Ignacio Gleria
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Buenos Aires, Argentina
| | - Esteban Mocskos
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Buenos Aires, Argentina and CONICET, Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC), Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química-Física, Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| |
Collapse
|
13
|
Sing CE. Development of the modern theory of polymeric complex coacervation. Adv Colloid Interface Sci 2017; 239:2-16. [PMID: 27161661 DOI: 10.1016/j.cis.2016.04.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/10/2016] [Accepted: 04/19/2016] [Indexed: 11/15/2022]
Abstract
Oppositely charged polymers can undergo the process of complex coacervation, which refers to a liquid-liquid phase separation driven by electrostatic attraction. These materials have demonstrated considerable promise as the basis for complex, self-assembled materials. In this review, we provide a broad overview of the theoretical tools used to understand the physical properties of polymeric coacervates. In particular, we discuss historic theories (Voorn-Overbeek, Random Phase Approximation), and then describe recent developments in the field (Field Theoretic, Counterion Release, Molecular Simulation, and Polymer Reference Interaction Site Model methods). We provide context for these methods, and map out the patchwork of theoretical models that are used to describe a diverse array of coacervate systems. We use this review of the literature to clarify a number of important theoretical challenges remaining in our physical understanding of complex coacervation.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave. Urbana IL, 61801, United States.
| |
Collapse
|
14
|
Adžić N, Podgornik R. Titratable macroions in multivalent electrolyte solutions: Strong coupling dressed ion approach. J Chem Phys 2016; 144:214901. [DOI: 10.1063/1.4952980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nataša Adžić
- Department of Theoretical Physics, J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, J. Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Rikkou-Kalourkoti M, Kitiri EN, Patrickios CS, Leontidis E, Constantinou M, Constantinides G, Zhang X, Papadakis CM. Double Networks Based on Amphiphilic Cross-Linked Star Block Copolymer First Conetworks and Randomly Cross-Linked Hydrophilic Second Networks. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Elina N. Kitiri
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Marios Constantinou
- Research
Unit for Nanostructured Materials Systems, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O.
Box 50329, 3603 Limassol, Cyprus
| | - Georgios Constantinides
- Research
Unit for Nanostructured Materials Systems, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O.
Box 50329, 3603 Limassol, Cyprus
| | - Xiaohan Zhang
- Fachgebiet
Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Fachgebiet
Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
16
|
Kepola EJ, Loizou E, Patrickios CS, Leontidis E, Voutouri C, Stylianopoulos T, Schweins R, Gradzielski M, Krumm C, Tiller JC, Kushnir M, Wesdemiotis C. Amphiphilic Polymer Conetworks Based on End-Linked "Core-First" Star Block Copolymers: Structure Formation with Long-Range Order. ACS Macro Lett 2015; 4:1163-1168. [PMID: 35614799 DOI: 10.1021/acsmacrolett.5b00608] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amphiphilic polymer conetworks are cross-linked polymers that swell both in water and in organic solvents and can phase separate on the nanoscale in the bulk or in selective solvents. To date, however, this phase separation has only been reported with short-range order, characterized by disordered morphologies. We now report the first example of amphiphilic polymer conetworks, based on end-linked "core-first" star block copolymers, that form a lamellar phase with long-range order. These mesoscopically ordered systems can be produced in a simple fashion and exhibit significantly improved mechanical properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ralf Schweins
- Large Scale
Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, Grenoble F-38042 Cedex 9, France
| | - Michael Gradzielski
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Christian Krumm
- Department
of Biochemical and Chemical Engineering, Technische Universität Dortmund, D-44227 Dortmund, Germany
| | - Joerg C. Tiller
- Department
of Biochemical and Chemical Engineering, Technische Universität Dortmund, D-44227 Dortmund, Germany
| | - Michelle Kushnir
- Department
of Chemistry and Integrated Biosciences Program, University of Akron, Akron, Ohio 44325-3601, United States
| | - Chrys Wesdemiotis
- Department
of Chemistry and Integrated Biosciences Program, University of Akron, Akron, Ohio 44325-3601, United States
| |
Collapse
|
17
|
Wang M, Sun J, Zhai Y, Lian H, Luo C, Li L, Du Y, Zhang D, Ding W, Qiu S, Liu Y, Kou L, Han X, Xiang R, Wang Y, He Z. Enteric polymer based on pH-responsive aliphatic polycarbonate functionalized with vitamin E to facilitate oral delivery of tacrolimus. Biomacromolecules 2015; 16:1179-90. [PMID: 25714622 DOI: 10.1021/bm501847u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To improve the bioavailability of orally administered drugs, we synthesized a pH-sensitive polymer (poly(ethylene glycol)-poly(2-methyl-2-carboxyl-propylene carbonate)-vitamin E, mPEG-PCC-VE) attempting to integrate the advantages of enteric coating and P-glycoprotein (P-gp) inhibition. The aliphatic polycarbonate chain was functionalized with carboxyl groups and vitamin E via postpolymerization modification. Optimized by comparison and central composite design, mPEG113-PCC32-VE4 exhibited low critical micelle concentration of 1.7 × 10(-6) mg/mL and high drug loading ability for tacrolimus (21.2% ± 2.7%, w/w). The pH-responsive profile was demonstrated by pH-dependent swelling and in vitro drug release. Less than 4.0% tacrolimus was released under simulated gastric fluid after 2.5 h, whereas an immediate release was observed under simulated intestinal fluid. The mPEG113-PCC32-VE4 micelles significantly increased the absorption of P-gp substrate tacrolimus in the whole intestine. The oral bioavailability of tacrolimus micelles was 6-fold higher than that of tacrolimus solution in rats. This enteric polymer therefore has the potential to become a useful nanoscale carrier for oral delivery of drugs.
Collapse
Affiliation(s)
- Menglin Wang
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jin Sun
- ‡Municipal Key Laboratory of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yinglei Zhai
- §School of Medical Instrument, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - He Lian
- §School of Medical Instrument, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Cong Luo
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Lin Li
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yuqian Du
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Dong Zhang
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenya Ding
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Shuhong Qiu
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yuhai Liu
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Longfa Kou
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiangfei Han
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Rongwu Xiang
- §School of Medical Instrument, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yongjun Wang
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Zhonggui He
- †Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
18
|
Bera A, Singh Chandel AK, Uday Kumar C, Jewrajka SK. Degradable/cytocompatible and pH responsive amphiphilic conetwork gels based on agarose-graft copolymers and polycaprolactone. J Mater Chem B 2015; 3:8548-8557. [DOI: 10.1039/c5tb01251a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic conetwork gels based on graft copolymers of agarose and polycaprolactone exhibited desirable cytocompatibility/blood compatibility and pH responsive release of hydrophilic and hydrophobic drugs, and may be suitable for biomedical applications.
Collapse
Affiliation(s)
- Anupam Bera
- Reverse Osmosis Membrane Division
- Bhavnagar
- India
- AcSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar
| | - Arvind K. Singh Chandel
- Reverse Osmosis Membrane Division
- Bhavnagar
- India
- AcSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar
| | | | - Suresh K. Jewrajka
- Reverse Osmosis Membrane Division
- Bhavnagar
- India
- AcSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar
| |
Collapse
|
19
|
Naji A, Ghodrat M, Komaie-Moghaddam H, Podgornik R. Asymmetric Coulomb fluids at randomly charged dielectric interfaces: Anti-fragility, overcharging and charge inversion. J Chem Phys 2014; 141:174704. [DOI: 10.1063/1.4898663] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Malihe Ghodrat
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Haniyeh Komaie-Moghaddam
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Rudolf Podgornik
- Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Nap RJ, Park SH, Szleifer I. On the stability of nanoparticles coated with polyelectrolytes in high salinity solutions. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rikkert J. Nap
- Department of Biomedical Engineering; Northwestern University; Evanston Illinois
- Department of Chemistry; Northwestern University; Evanston Illinois
- Chemistry of Life Processes Institute; Northwestern University; Evanston Illinois
| | - Sung Hyun Park
- Department of Biomedical Engineering; Northwestern University; Evanston Illinois
- Department of Chemistry; Northwestern University; Evanston Illinois
- Chemistry of Life Processes Institute; Northwestern University; Evanston Illinois
| | - Igal Szleifer
- Department of Biomedical Engineering; Northwestern University; Evanston Illinois
- Department of Chemistry; Northwestern University; Evanston Illinois
- Chemistry of Life Processes Institute; Northwestern University; Evanston Illinois
| |
Collapse
|
21
|
Naji A, Kanduč M, Forsman J, Podgornik R. Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond. J Chem Phys 2013; 139:150901. [DOI: 10.1063/1.4824681] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Ghasdian N, Church E, Cottam AP, Hornsby K, Leung MY, Georgiou TK. Novel “core-first” star-based quasi-model amphiphilic polymer networks. RSC Adv 2013. [DOI: 10.1039/c3ra42836b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|