1
|
Grün F, van den Bergh N, Klevanski M, Verma MS, Bühler B, Nienhaus GU, Kuner T, Jäschke A, Sunbul M. Super-Resolved Protein Imaging Using Bifunctional Light-Up Aptamers. Angew Chem Int Ed Engl 2024; 63:e202412810. [PMID: 39115976 PMCID: PMC11627133 DOI: 10.1002/anie.202412810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Efficient labeling methods for protein visualization with minimal tag size and appropriate photophysical properties are required for single-molecule localization microscopy (SMLM), providing insights into the organization and interactions of biomolecules in cells at the molecular level. Among the fluorescent light-up aptamers (FLAPs) originally developed for RNA imaging, RhoBAST stands out due to its remarkable brightness, photostability, fluorogenicity, and rapid exchange kinetics, enabling super-resolved imaging with high localization precision. Here, we expand the applicability of RhoBAST to protein imaging by fusing it to protein-binding aptamers. The versatility of such bifunctional aptamers is demonstrated by employing a variety of protein-binding aptamers and different FLAPs. Moreover, fusing RhoBAST with the GFP-binding aptamer AP3 facilitates high- and super-resolution imaging of GFP-tagged proteins, which is particularly valuable in view of the widespread availability of plasmids and stable cell lines expressing proteins fused to GFP. The bifunctional aptamers compare favorably with standard antibody-based immunofluorescence protocols, as they are 7-fold smaller than antibody conjugates and exhibit higher bleaching-resistance. We demonstrate the effectiveness of our approach in super-resolution microscopy in secondary mammalian cell lines and primary neurons by RhoBAST-PAINT, an SMLM protein imaging technique that leverages the transient binding of the fluorogenic rhodamine dye SpyRho to RhoBAST.
Collapse
Affiliation(s)
- Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
| | - Niklas van den Bergh
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
- Department of Nuclear MedicineHeidelberg University Hospital69120HeidelbergGermany
| | - Maja Klevanski
- Department of Functional NeuroanatomyHeidelberg University69120HeidelbergGermany
| | - Mrigank S. Verma
- Institute of Applied Physics (APH)Karlsruhe Institute of Technology76131KarlsruheGermany
- Department of Applied Physics and Science EducationEindhoven University of Technology5612APEindhovenNetherlands
| | - Bastian Bühler
- Department of Chemical BiologyMax Planck Institute for Medical Research69120HeidelbergGermany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics (APH)Karlsruhe Institute of Technology76131KarlsruheGermany
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
| | - Thomas Kuner
- Department of Functional NeuroanatomyHeidelberg University69120HeidelbergGermany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
| |
Collapse
|
2
|
Liu J, Li Y, Chen T, Zhang F, Xu F. Machine Learning for Single-Molecule Localization Microscopy: From Data Analysis to Quantification. Anal Chem 2024; 96:11103-11114. [PMID: 38946062 DOI: 10.1021/acs.analchem.3c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-molecule localization microscopy (SMLM) is a versatile tool for realizing nanoscale imaging with visible light and providing unprecedented opportunities to observe bioprocesses. The integration of machine learning with SMLM enhances data analysis by improving efficiency and accuracy. This tutorial aims to provide a comprehensive overview of the data analysis process and theoretical aspects of SMLM, while also highlighting the typical applications of machine learning in this field. By leveraging advanced analytical techniques, SMLM is becoming a powerful quantitative analysis tool for biological research.
Collapse
Affiliation(s)
- Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Tailong Chen
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Xu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Štefl M, Takamiya M, Middel V, Tekpınar M, Nienhaus K, Beil T, Rastegar S, Strähle U, Nienhaus GU. Caveolae disassemble upon membrane lesioning and foster cell survival. iScience 2024; 27:108849. [PMID: 38303730 PMCID: PMC10831942 DOI: 10.1016/j.isci.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Repair of lesions in the plasma membrane is key to sustaining cellular homeostasis. Cells maintain cytoplasmic as well as membrane-bound stores of repair proteins that can rapidly precipitate at the site of membrane lesions. However, little is known about the origins of lipids and proteins for resealing and repair of the plasma membrane. Here we study the dynamics of caveolar proteins after laser-induced lesioning of plasma membranes of mammalian C2C12 tissue culture cells and muscle cells of intact zebrafish embryos. Single-molecule diffusivity measurements indicate that caveolar clusters break up into smaller entities after wounding. Unlike Annexins and Dysferlin, caveolar proteins do not accumulate at the lesion patch. In caveolae-depleted cavin1a knockout zebrafish embryos, lesion patch formation is impaired, and injured cells show reduced survival. Our data suggest that caveolae disassembly releases surplus plasma membrane near the lesion to facilitate membrane repair after initial patch formation for emergency sealing.
Collapse
Affiliation(s)
- Martin Štefl
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Volker Middel
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Miyase Tekpınar
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Englert D, Burger EM, Grün F, Verma MS, Lackner J, Lampe M, Bühler B, Schokolowski J, Nienhaus GU, Jäschke A, Sunbul M. Fast-exchanging spirocyclic rhodamine probes for aptamer-based super-resolution RNA imaging. Nat Commun 2023; 14:3879. [PMID: 37391423 PMCID: PMC10313827 DOI: 10.1038/s41467-023-39611-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Live-cell RNA imaging with high spatial and temporal resolution remains a major challenge. Here we report the development of RhoBAST:SpyRho, a fluorescent light-up aptamer (FLAP) system ideally suited for visualizing RNAs in live or fixed cells with various advanced fluorescence microscopy modalities. Overcoming problems associated with low cell permeability, brightness, fluorogenicity, and signal-to-background ratio of previous fluorophores, we design a novel probe, SpyRho (Spirocyclic Rhodamine), which tightly binds to the RhoBAST aptamer. High brightness and fluorogenicity is achieved by shifting the equilibrium between spirolactam and quinoid. With its high affinity and fast ligand exchange, RhoBAST:SpyRho is a superb system for both super-resolution SMLM and STED imaging. Its excellent performance in SMLM and the first reported super-resolved STED images of specifically labeled RNA in live mammalian cells represent significant advances over other FLAPs. The versatility of RhoBAST:SpyRho is further demonstrated by imaging endogenous chromosomal loci and proteins.
Collapse
Affiliation(s)
- Daniel Englert
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Eva-Maria Burger
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Mrigank S Verma
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jens Lackner
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bastian Bühler
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Janin Schokolowski
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Kuznik NC, Solozobova V, Lee II, Jung N, Yang L, Nienhaus K, Ntim EA, Rottenberg JT, Muhle-Goll C, Kumar AR, Peravali R, Gräßle S, Gourain V, Deville C, Cato L, Neeb A, Dilger M, Cramer von Clausbruch CA, Weiss C, Kieffer B, Nienhaus GU, Brown M, Bräse S, Cato ACB. A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway. iScience 2022; 25:104175. [PMID: 35479411 PMCID: PMC9036123 DOI: 10.1016/j.isci.2022.104175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth. BAG1L interacts with a sequence overlapping a polyalanine tract in the AR NTD Knockdown of BAG1L increase AR dynamics in the nucleus BAG1L uses ROS pathway to regulate AR+ prostate cancer cell proliferation A small molecule BAG1 inhibitor inhibits prostate tumor growth in mouse xenografts
Collapse
Affiliation(s)
- Nane C Kuznik
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Valeria Solozobova
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Linxiao Yang
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Emmanuel A Ntim
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Claudia Muhle-Goll
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Amrish Rajendra Kumar
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Victor Gourain
- LabEx IGO "Immunotherapy, Graft, Oncology", Centre de Recherche en Transplantation et Immunologie - UMR1064, 44093 Nantes, France
| | - Célia Deville
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Antje Neeb
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marco Dilger
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christina A Cramer von Clausbruch
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bruno Kieffer
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - G Ulrich Nienhaus
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andrew C B Cato
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Ma R, Štefl M, Nienhaus GU. Single molecule localization-based analysis of clathrin-coated pit and caveolar dynamics. NANOSCALE HORIZONS 2022; 7:385-395. [PMID: 35289830 DOI: 10.1039/d2nh00008c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Clathrin-coated pits and caveolae are nanoscale invaginations of the plasma membrane of cells, forming through the assembly of membrane coat and accessory proteins in a tightly regulated process. We have analyzed the development of these membrane coat structures with high spatial and temporal resolution and sensitivity using super-resolution single-molecule localization microscopy (SMLM) on live cells. To this end, we developed a sophisticated clustering and data analysis workflow that automatically extracts the relevant information from SMLM image sequences taken on live cells. We quantified lifetime distributions of clathrin-coated and caveolar structures, and analyzed their growth dynamics. Moreover, we observed hotspots in the plasma membrane where coat structures appear repeatedly. The stunningly similar temporal development of clathrin-coated and caveolar structures suggests that key accessory proteins, some of which are shared between the two types of membrane coat structures, orchestrate the temporal evolution of these complex architectures.
Collapse
Affiliation(s)
- Rui Ma
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany.
| | - Martin Štefl
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany.
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Borah BJ, Sun CK. A rapid denoised contrast enhancement method digitally mimicking an adaptive illumination in submicron-resolution neuronal imaging. iScience 2022; 25:103773. [PMID: 35169684 PMCID: PMC8829796 DOI: 10.1016/j.isci.2022.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
Optical neuronal imaging often shows ultrafine structures, such as a nerve fiber, coexisting with ultrabright structures, such as a soma with a substantially higher fluorescence-protein concentration. Owing to experimental and environmental factors, a laser-scanning multiphoton optical microscope (MPM) often encounters a high-frequency background noise that might contaminate such weak-intensity ultrafine neuronal structures. A straightforward contrast enhancement often leads to the saturation of the brighter ones, and might further amplify the high-frequency background noise. We report a digital approach called rapid denoised contrast enhancement (DCE), which digitally mimics a hardware-based adaptive/controlled illumination technique by means of digitally optimizing the signal strengths and hence the visibility of such weak-intensity structures while mostly preventing the saturation of the brightest ones. With large field-of-view (FOV) two-photon excitation fluorescence (TPEF) neuronal imaging, we validate the effectiveness of DCE over state-of-the-art digital image processing algorithms. With compute-unified-device-architecture (CUDA)-acceleration, a real-time DCE is further enabled with a reduced time complexity. A real-time applicable CUDA-accelerated Noise-suppressed Contrast Enhancement method Digitally mimics a traditional hardware-based adaptive/controlled illumination Drastically improves the visibility of noise-contaminated ultrafine neuronal structures Applicable in large-field high-NFOM multiphoton optical microscopes
Collapse
Affiliation(s)
- Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Sunbul M, Lackner J, Martin A, Englert D, Hacene B, Grün F, Nienhaus K, Nienhaus GU, Jäschke A. Super-resolution RNA imaging using a rhodamine-binding aptamer with fast exchange kinetics. Nat Biotechnol 2021; 39:686-690. [PMID: 33574610 DOI: 10.1038/s41587-020-00794-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022]
Abstract
Overcoming limitations of previous fluorescent light-up RNA aptamers for super-resolution imaging, we present RhoBAST, an aptamer that binds a fluorogenic rhodamine dye with fast association and dissociation kinetics. Its intermittent fluorescence emission enables single-molecule localization microscopy with a resolution not limited by photobleaching. We use RhoBAST to image subcellular structures of RNA in live and fixed cells with about 10-nm localization precision and a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.
| | - Jens Lackner
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Annabell Martin
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Daniel Englert
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Benjamin Hacene
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Karin Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany. .,Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany. .,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Puzik K, Tonnier V, Opper I, Eckert A, Zhou L, Kratzer MC, Noble FL, Nienhaus GU, Gradl D. Lef1 regulates caveolin expression and caveolin dependent endocytosis, a process necessary for Wnt5a/Ror2 signaling during Xenopus gastrulation. Sci Rep 2019; 9:15645. [PMID: 31666627 PMCID: PMC6821757 DOI: 10.1038/s41598-019-52218-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022] Open
Abstract
The activation of distinct branches of the Wnt signaling network is essential for regulating early vertebrate development. Activation of the canonical Wnt/β-catenin pathway stimulates expression of β-catenin-Lef/Tcf regulated Wnt target genes and a regulatory network giving rise to the formation of the Spemann organizer. Non-canonical pathways, by contrast, mainly regulate cell polarization and migration, in particular convergent extension movements of the trunk mesoderm during gastrulation. By transcriptome analyses, we found caveolin1, caveolin3 and cavin1 to be regulated by Lef1 in the involuting mesoderm of Xenopus embryos at gastrula stages. We show that caveolins and caveolin dependent endocytosis are necessary for proper gastrulation, most likely by interfering with Wnt5a/Ror2 signaling. Wnt5a regulates the subcellular localization of receptor complexes, including Ror2 homodimers, Ror2/Fzd7 and Ror2/dsh heterodimers in an endocytosis dependent manner. Live-cell imaging revealed endocytosis of Ror2/caveolin1 complexes. In Xenopus explants, in the presence of Wnt5a, these receptor clusters remain stable exclusively at the basolateral side, suggesting that endocytosis of non-canonical Wnt/receptor complexes preferentially takes place at the apical membrane. In support of this blocking endocytosis with inhibitors prevents the effects of Wnt5a. Thus, target genes of Lef1 interfere with Wnt5a/Ror2 signaling to coordinate gastrulation movements.
Collapse
Affiliation(s)
- Katharina Puzik
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Veronika Tonnier
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Isabell Opper
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Antonia Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Marie-Claire Kratzer
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany.
| |
Collapse
|
10
|
Li C, Hai J, Li S, Wang B, Yang Z. Luminescent magnetic nanoparticles encapsulated in MOFs for highly selective and sensitive detection of ClO -/SCN - and anti-counterfeiting. NANOSCALE 2018; 10:8667-8676. [PMID: 29700546 DOI: 10.1039/c8nr01487f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well-known that ClO- and SCN- can cause adverse effects on the environment and organisms; therefore, development of new strategies for detecting ClO- and SCN-, especially in water, are highly desirable. Here, we present luminous Eu(iii) complex-functionalized Fe3O4 nanoparticles encapsulated into zeolitic imidazolate framework materials (nano-ZIF-8) and successfully employ this nano-MOF as a fluorescence probe for selective and sensitive detection of ClO- and SCN-. The introduction of ClO- into nano-ZIF-8 solution induced a significant decrease in the characteristic fluorescence emission of Eu3+ at 613 nm. However, strong fluorescence emission was again observed when SCN- was successively injected into the prepared nano-ZIF-8-ClO-. Thus, a novel fluorescence system for simultaneous detection of free ClO- and SCN- was established. On the basis of the superior adsorption performance of nano-MOF materials, free residual ClO- and SCN- in water was rapidly, sensitively and selectively detected with a detection limit of 0.133 nM and 0.204 nM, respectively. Moreover, nano-ZIF-8 was successfully used for monitoring the concentration levels of ClO- and SCN- in specimens of tap water and Yellow River water. Furthermore, the reversibility and regeneration of nano-ZIF-8 in sensing ClO- and SCN- is advantageous for applications of nano-ZIF-8 in solid-state sensing and anti-counterfeiting. As far as we know, this is the first time that nano-MOFs have been used as a selective fluorescence probe for ClO-/SCN- detection and anti-counterfeiting.
Collapse
Affiliation(s)
- Chaorui Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P.R. China.
| | | | | | | | | |
Collapse
|
11
|
Zhou L, Obhof T, Schneider K, Feldbrügge M, Nienhaus GU, Kämper J. Cytoplasmic Transport Machinery of the SPF27 Homologue Num1 in Ustilago maydis. Sci Rep 2018; 8:3611. [PMID: 29483520 PMCID: PMC5832149 DOI: 10.1038/s41598-018-21628-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 01/15/2023] Open
Abstract
In the phytopathogenic basidiomycete Ustilago maydis, the Num1 protein has a pivotal function in hyphal morphogenesis. Num1 functions as a core component of the spliceosome-associated Prp19/CDC5 complex (NTC). The interaction of Num1 with the kinesin motor Kin1 suggests a connection between a component of the splicing machinery and cytoplasmic trafficking processes. Previously it was shown that Num1 localizes predominantly in the nucleus; however, due to the diffraction-limited spatial resolution of conventional optical microscopy, it was not possible to attribute the localization to specific structures within the cytoplasm. We have now employed super-resolution localization microscopy to visualize Num1 in the cytoplasm by fusing it to a tandem dimeric Eos fluorescent protein (tdEosFP). The Num1 protein is localized within the cytoplasm with an enhanced density in the vicinity of microtubules. Num1 movement is found predominantly close to the nucleus. Movement is dependent on its interaction partner Kin1, but independent of Kin3. Our results provide strong evidence that, in addition to its involvement in splicing in the nucleus, Num1 has an additional functional role in the cytosol connected to the Kin1 motor protein.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Theresa Obhof
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Karina Schneider
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, Düsseldorf, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| | - Jörg Kämper
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
12
|
Youn Y, Ishitsuka Y, Jin C, Selvin PR. Thermal nanoimprint lithography for drift correction in super-resolution fluorescence microscopy. OPTICS EXPRESS 2018; 26:1670-1680. [PMID: 29402038 PMCID: PMC5901072 DOI: 10.1364/oe.26.001670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Localization-based super-resolution microscopy enables imaging of biological structures with sub-diffraction-limited accuracy, but generally requires extended acquisition time. Consequently, stage drift often limits the spatial precision. Previously, we reported a simple method to correct for this by creating an array of 1 μm3 fiducial markers, every ~8 μm, on the coverslip, using UV-nanoimprint lithography (UV-NIL). While this allowed reliable and accurate 3D drift correction, it suffered high autofluorescence background with shorter wavelength illumination, unstable adsorption to the substrate glass surface, and suboptimal biocompatibility. Here, we present an improved fiducial micro-pattern prepared by thermal nanoimprint lithography (T-NIL). The new pattern is made of a thermal plastic material with low fluorescence backgrounds across the wide excitation range, particularly in the blue-region; robust structural stability under cell culturing condition; and a high bio-compatibility in terms of cell viability and adhesion. We demonstrate drift precision to 1.5 nm for lateral (x, y) and 6.1 nm axial (z) axes every 0.2 seconds for a total of 1 min long image acquisition. As a proof of principle, we acquired 4-color wide-field fluorescence images of live mammalian cells; we also acquired super-resolution images of fixed hippocampal neurons, and super-resolution images of live glutamate receptors and postsynaptic density proteins.
Collapse
Affiliation(s)
- Yeoan Youn
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- These authors contributed equally to this work
| | - Yuji Ishitsuka
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- These authors contributed equally to this work
| | - Chaoyi Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Paul R. Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Zhou L, Evangelinos M, Wernet V, Eckert AF, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N. Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. SCIENCE ADVANCES 2018; 4:e1701798. [PMID: 29387789 PMCID: PMC5787382 DOI: 10.1126/sciadv.1701798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s-1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s-1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Biology, University of Athens, Athens, Greece
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - Antonia F. Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute of Toxicology and Genetics, KIT, Eggenstein-Leopoldshafen, Germany
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Pulses of Ca 2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 2017; 114:5701-5706. [PMID: 28507141 DOI: 10.1073/pnas.1700204114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells grow by extending their cell periphery in pulses. The molecular mechanisms underlying this process are not yet fully understood. Here we present a comprehensive model of stepwise cell extension by using the unique tip growth system of filamentous fungi. Live-cell imaging analysis, including superresolution microscopy, revealed that the fungus Aspergillus nidulans extends the hyphal tip in an oscillatory manner. The amount of F-actin and secretory vesicles (SV) accumulating at the hyphal tip oscillated with a positive temporal correlation, whereas vesicle amounts were negatively correlated to the growth rate. The intracellular Ca2+ level also pulsed with a positive temporal correlation to the amount of F-actin and SV at the hyphal tip. Two Ca2+ channels, MidA and CchA, were needed for proper tip growth and the oscillations of actin polymerization, exocytosis, and the growth rate. The data indicate a model in which transient Ca2+ pluses cause depolymerization of F-actin at the cortex and promote SV fusion with the plasma membrane, thereby extending the cell tip. Over time, Ca2+ diffuses away and F-actin and SV accumulate again at the hyphal tip. Our data provide evidence that temporally controlled actin polymerization and exocytosis are coordinated by pulsed Ca2+ influx, resulting in stepwise cell extension.
Collapse
|
15
|
Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, Lee SH, Belmont AS, Selvin PR. Labeling proteins inside living cells using external fluorophores for microscopy. eLife 2016; 5. [PMID: 27935478 PMCID: PMC5148600 DOI: 10.7554/elife.20378] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial toxin which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG’s to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20–30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes. DOI:http://dx.doi.org/10.7554/eLife.20378.001
Collapse
Affiliation(s)
- Kai Wen Teng
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Yuji Ishitsuka
- Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Pin Ren
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Yeoan Youn
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Xiang Deng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Pinghua Ge
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Sang Hak Lee
- Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Andrew S Belmont
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Paul R Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
16
|
Stein SC, Thiart J. TrackNTrace: A simple and extendable open-source framework for developing single-molecule localization and tracking algorithms. Sci Rep 2016; 6:37947. [PMID: 27885259 PMCID: PMC5122847 DOI: 10.1038/srep37947] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Super-resolution localization microscopy and single particle tracking are important tools for fluorescence microscopy. Both rely on detecting, and tracking, a large number of fluorescent markers using increasingly sophisticated computer algorithms. However, this rise in complexity makes it difficult to fine-tune parameters and detect inconsistencies, improve existing routines, or develop new approaches founded on established principles. We present an open-source MATLAB framework for single molecule localization, tracking and super-resolution applications. The purpose of this software is to facilitate the development, distribution, and comparison of methods in the community by providing a unique, easily extendable plugin-based system and combining it with a novel visualization system. This graphical interface incorporates possibilities for quick inspection of localization and tracking results, giving direct feedback of the quality achieved with the chosen algorithms and parameter values, as well as possible sources for errors. This is of great importance in practical applications and even more so when developing new techniques. The plugin system greatly simplifies the development of new methods as well as adapting and tailoring routines towards any research problem’s individual requirements. We demonstrate its high speed and accuracy with plugins implementing state-of-the-art algorithms and show two biological applications.
Collapse
Affiliation(s)
| | - Jan Thiart
- III. Institute of Physics, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Middel V, Zhou L, Takamiya M, Beil T, Shahid M, Roostalu U, Grabher C, Rastegar S, Reischl M, Nienhaus GU, Strähle U. Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nat Commun 2016; 7:12875. [PMID: 27641898 PMCID: PMC5031802 DOI: 10.1038/ncomms12875] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/10/2016] [Indexed: 01/22/2023] Open
Abstract
Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an 'eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions.
Collapse
Affiliation(s)
- Volker Middel
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Maryam Shahid
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Urmas Roostalu
- Institute of Inflammation and Repair, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Clemens Grabher
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Markus Reischl
- Institute for Applied Computer Science, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, 61801 Urbana, Illinois, US
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
18
|
Hense A, Prunsche B, Gao P, Ishitsuka Y, Nienhaus K, Ulrich Nienhaus G. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging. Sci Rep 2015; 5:18006. [PMID: 26648024 PMCID: PMC4673609 DOI: 10.1038/srep18006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023] Open
Abstract
The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M(-1)cm(-1), mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths.
Collapse
Affiliation(s)
- Anika Hense
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Benedikt Prunsche
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Peng Gao
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
| |
Collapse
|
19
|
Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N. Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. SCIENCE ADVANCES 2015; 1:e1500947. [PMID: 26665168 PMCID: PMC4673053 DOI: 10.1126/sciadv.1500947] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/14/2015] [Indexed: 05/02/2023]
Abstract
Polar (directional) cell growth, a key cellular mechanism shared among a wide range of species, relies on targeted insertion of new material at specific locations of the plasma membrane. How these cell polarity sites are stably maintained during massive membrane insertion has remained elusive. Conventional live-cell optical microscopy fails to visualize polarity site formation in the crowded cell membrane environment because of its limited resolution. We have used advanced live-cell imaging techniques to directly observe the localization, assembly, and disassembly processes of cell polarity sites with high spatiotemporal resolution in a rapidly growing filamentous fungus, Aspergillus nidulans. We show that the membrane-associated polarity site marker TeaR is transported on microtubules along with secretory vesicles and forms a protein cluster at that point of the apical membrane where the plus end of the microtubule touches. There, a small patch of membrane is added through exocytosis, and the TeaR cluster gets quickly dispersed over the membrane. There is an incessant disassembly and reassembly of polarity sites at the growth zone, and each new polarity site locus is slightly offset from preceding ones. On the basis of our imaging results and computational modeling, we propose a transient polarity model that explains how cell polarity is stably maintained during highly active directional growth.
Collapse
Affiliation(s)
- Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Natasha Savage
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Yiming Li
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Anna Bergs
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
| | - Nathalie Grün
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
| | - Daria Kohler
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Rebecca Donnelly
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Nanotechnology, KIT, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Toxicology and Genetics, KIT, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| |
Collapse
|
20
|
Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R. Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 2015; 128:3569-82. [PMID: 26272919 DOI: 10.1242/jcs.169094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
The cellular switch from symmetry to polarity in eukaryotes depends on the microtubule (MT) and actin cytoskeletons. In fungi such as Schizosaccharomyces pombe or Aspergillus nidulans, the MT cytoskeleton determines the sites of actin polymerization through cortical cell-end marker proteins. Here we describe A. nidulans MT guidance protein A (MigA) as the first ortholog of the karyogamy protein Kar9 from Saccharomyces cerevisiae in filamentous fungi. A. nidulans MigA interacts with the cortical ApsA protein and is involved in spindle positioning during mitosis. MigA is also associated with septal and nuclear MT organizing centers (MTOCs). Super-resolution photoactivated localization microscopy (PALM) analyses revealed that MigA is recruited to assembling and retracting MT plus ends in an EbA-dependent manner. MigA is required for MT convergence in hyphal tips and plays a role in correct localization of the cell-end markers TeaA and TeaR. In addition, MigA interacts with a class-V myosin, suggesting that an active mechanism exists to capture MTs and to pull the ends along actin filaments. Hence, the organization of MTs and actin depend on each other, and positive feedback loops ensure robust polar growth.
Collapse
Affiliation(s)
- Raphael Manck
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Yuji Ishitsuka
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki 305-8572, Japan
| | - G Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| |
Collapse
|
21
|
Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, Unser M. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods 2015; 12:717-24. [PMID: 26076424 DOI: 10.1038/nmeth.3442] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/17/2015] [Indexed: 12/12/2022]
Abstract
The quality of super-resolution images obtained by single-molecule localization microscopy (SMLM) depends largely on the software used to detect and accurately localize point sources. In this work, we focus on the computational aspects of super-resolution microscopy and present a comprehensive evaluation of localization software packages. Our philosophy is to evaluate each package as a whole, thus maintaining the integrity of the software. We prepared synthetic data that represent three-dimensional structures modeled after biological components, taking excitation parameters, noise sources, point-spread functions and pixelation into account. We then asked developers to run their software on our data; most responded favorably, allowing us to present a broad picture of the methods available. We evaluated their results using quantitative and user-interpretable criteria: detection rate, accuracy, quality of image reconstruction, resolution, software usability and computational resources. These metrics reflect the various tradeoffs of SMLM software packages and help users to choose the software that fits their needs.
Collapse
Affiliation(s)
- Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hagai Kirshner
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Nico Stuurman
- 1] Howard Hughes Medical Institute, University of California (UCSF), San Francisco, California, USA. [2] Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Junhong Min
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Suliana Manley
- Laboratory of Experimental Biophysics, EPFL, Lausanne, Switzerland
| | - Michael Unser
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Abstract
Endosomes are multipurpose membranous carriers important for endocytosis and secretion. During membrane trafficking, endosomes transport lipids, proteins, and even RNAs. In highly polarized cells such as fungal hyphae, they shuttle bidirectionally along microtubules mediated by molecular motors like kinesins and dynein. For in vivo studies of these highly dynamic protein/membrane complexes, advanced fluorescence microscopy is instrumental. In this chapter, we describe live cell imaging of endosomes in two distantly related fungal model systems, the basidiomycete Ustilago maydis and the ascomycete Aspergillus nidulans. We provide insights into live cell imaging of dynamic endosomal proteins and RNA, dual-color detection for colocalization studies, as well as fluorescence recovery after photobleaching (FRAP) for quantification and photo-activated localization microscopy (PALM) for super-resolution. These methods described in two well-studied fungal model systems are applicable to a broad range of other organisms.
Collapse
|
23
|
Nienhaus K, Nienhaus GU. Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 2014; 43:1088-106. [PMID: 24056711 DOI: 10.1039/c3cs60171d] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent proteins (FPs) from the GFP family have become indispensable as marker tools for imaging live cells, tissues and entire organisms. A wide variety of these proteins have been isolated from natural sources and engineered to optimize their properties as genetically encoded markers. Here we review recent developments in this field. A special focus is placed on photoactivatable FPs, for which the fluorescence emission can be controlled by light irradiation at specific wavelengths. They enable regional optical marking in pulse-chase experiments on live cells and tissues, and they are essential marker tools for live-cell optical imaging with super-resolution. Photoconvertible FPs, which can be activated irreversibly via a photo-induced chemical reaction that either turns on their emission or changes their emission wavelength, are excellent markers for localization-based super-resolution microscopy (e.g., PALM). Patterned illumination microscopy (e.g., RESOLFT), however, requires markers that can be reversibly photoactivated many times. Photoswitchable FPs can be toggled repeatedly between a fluorescent and a non-fluorescent state by means of a light-induced chromophore isomerization coupled to a protonation reaction. We discuss the mechanistic origins of the effect and illustrate how photoswitchable FPs are employed in RESOLFT imaging. For this purpose, special FP variants with low switching fatigue have been introduced in recent years. Despite nearly two decades of FP engineering by many laboratories, there is still room for further improvement of these important markers for live cell imaging.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straβe 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
24
|
Hedde PN, Nienhaus GU. Super-resolution localization microscopy with photoactivatable fluorescent marker proteins. PROTOPLASMA 2014; 251:349-62. [PMID: 24162869 DOI: 10.1007/s00709-013-0566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 05/02/2023]
Abstract
Fluorescent proteins (FPs) have become popular imaging tools because of their high specificity, minimal invasive labeling and allowing visualization of proteins and structures inside living organisms. FPs are genetically encoded and expressed in living cells, therefore, labeling involves minimal effort in comparison to approaches involving synthetic dyes. Photoactivatable FPs (paFPs) comprise a subclass of FPs that can change their absorption/emission properties such as brightness and color upon irradiation. This methodology has found a broad range of applications in the life sciences, especially in localization-based super-resolution microscopy of cells, tissues and even entire organisms. In this review, we discuss recent developments and applications of paFPs in super-resolution localization imaging.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | | |
Collapse
|
25
|
Ishitsuka Y, Nienhaus K, Nienhaus GU. Photoactivatable fluorescent proteins for super-resolution microscopy. Methods Mol Biol 2014; 1148:239-60. [PMID: 24718806 DOI: 10.1007/978-1-4939-0470-9_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Super-resolution fluorescence microscopy techniques such as simulated emission depletion (STED) microscopy and photoactivated localization microscopy (PALM) allow substructures, organelles or even proteins within a cell to be imaged with a resolution far below the diffraction limit of ~200 nm. The development of advanced fluorescent proteins, especially photoactivatable fluorescent proteins of the GFP family, has greatly contributed to the successful application of these techniques to live-cell imaging. Here, we will illustrate how two fluorescent proteins with different photoactivation mechanisms can be utilized in high resolution dual color PALM imaging to obtain insights into a cellular process that otherwise would not be accessible. We will explain how to set up and perform the experiment and how to use our latest software "a-livePALM" for fast and efficient data analysis.
Collapse
Affiliation(s)
- Yuji Ishitsuka
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, Karlsruhe, 76131, Germany
| | | | | |
Collapse
|