1
|
Reitemeier J, Metro J, Bohn PW. Detection of aldehydes from degradation of lipid nanoparticle formulations using a hierarchically-organized nanopore electrochemical biosensor. Biosens Bioelectron 2024; 261:116457. [PMID: 38850733 DOI: 10.1016/j.bios.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Degradation of ionizable lipids in mRNA-based vaccines was recently found to deactivate the payload, demanding rigorous monitoring of impurities in lipid nanoparticle (LNP) formulations. However, parallel screening for lipid degradation in customized delivery systems for next-generation therapeutics maintains a challenging and unsolved problem. Here, we describe a nanopore electrochemical sensor to detect ppb-levels of aldehydes arising from lipid degradation in LNP formulations that can be deployed in massively parallel fashion. Specifically, we combine nanopore electrodes with a block copolymer (BCP) membrane capable of hydrophobic gating of analyte transport between the bulk solution and the nanopore volume. By incorporating aldehyde dehydrogenase (ALDH), enzymatic oxidation of aldehydes generates NADH to enable ultrasensitive voltammetric detection with limits-of-detection (LOD) down to 1.2 ppb. Sensor utility was demonstrated by detecting degradation of N-oxidized SM-102, the ionizable lipid in Moderna's SpikeVax™ vaccine, in mRNA-1273 LNP formulation. This work should be of significant use in the pharmaceutical industry, paving the way for automated on-line quality assessments of next-generation therapeutics.
Collapse
Affiliation(s)
- Julius Reitemeier
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jarek Metro
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
2
|
Zheng Z, Grall S, Kim SH, Chovin A, Clement N, Demaille C. Activationless Electron Transfer of Redox-DNA in Electrochemical Nanogaps. J Am Chem Soc 2024; 146:6094-6103. [PMID: 38407938 DOI: 10.1021/jacs.3c13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Our recent discovery of decreased reorganization energy in electrode-tethered redox-DNA systems prompts inquiries into the origin of this phenomenon and suggests its potential use to lower the activation energy of electrochemical reactions. Here, we show that the confinement of the DNA chain in a nanogap amplifies this effect to an extent to which it nearly abolishes the intrinsic activation energy of electron transfer. Employing electrochemical atomic force microscopy (AFM-SECM), we create sub-10 nm nanogaps between a planar electrode surface bearing end-anchored ferrocenylated DNA chains and an incoming microelectrode tip. The redox cycling of the DNA's ferrocenyl (Fc) moiety between the surface and the tip generates a measurable current at the scale of ∼10 molecules. Our experimental findings are rigorously interpreted through theoretical modeling and original molecular dynamics simulations (Q-Biol code). Several intriguing findings emerge from our investigation: (i) The electron transport resulting from DNA dynamics is many times faster than predicted by simple diffusion considerations. (ii) The current in the nanogap is solely governed by the electron transfer rate at the electrodes. (iii) This rate rapidly saturates as overpotentials applied to the nanogap electrodes increase, implying near-complete suppression of the reorganization energy for the oxidation/reduction of the Fc heads within confined DNA. Furthermore, evidence is presented that this may constitute a general, previously unforeseen, behavior of redox polymer chains in electrochemical nanogaps.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Simon Grall
- IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Soo Hyeon Kim
- IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Arnaud Chovin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Nicolas Clement
- IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
- LAAS, 7 avenue du Colonel Roche, 31400 Toulouse, France
| | - Christophe Demaille
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| |
Collapse
|
3
|
Reitemeier J, Baek S, Bohn PW. Hydrophobic Gating and Spatial Confinement in Hierarchically Organized Block Copolymer-Nanopore Electrode Arrays for Electrochemical Biosensing of 4-Ethyl Phenol. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39707-39715. [PMID: 37579252 DOI: 10.1021/acsami.3c06709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hydrophobic gating in biological transport proteins is regulated by stimulus-specific switching between filled and empty nanocavities, endowing them with selective mass transport capabilities. Inspired by these, solid-state nanochannels have been integrated into functional materials for a broad range of applications, such as energy conversion, filtration, and nanoelectronics, and here we extend these to electrochemical biosensors coupled to mass transport control elements. Specifically, we report hierarchically organized structures with block copolymers on tyrosinase-modified two-electrode nanopore electrode arrays (BCP@NEAs) as stimulus-controlled electrochemical biosensors for alkylphenols. A polystyrene-b-poly(4-vinyl)pyridine (PS-b-P4VP) membrane placed atop the NEA endows the system with potential-responsive gating properties, where water transport is spatially and temporarily gated through hydrophobic P4VP nanochannels by the application of appropriate potentials. The reversibility of hydrophobic voltage-gating makes it possible to capture and confine analyte species in the attoliter-volume vestibule of cylindrical nanopore electrodes, enabling redox cycling and yielding enhanced currents with amplification factors >100× when operated in a generator-collector mode. The enzyme-coupled sensing capabilities are demonstrated using nonelectroactive 4-ethyl phenol, exploiting the tyrosinase-catalyzed turnover into reversibly redox-active quinones, then using the quinone-catechol redox reaction to achieve ultrasensitive cycling currents in confined BCP@NEA sensors giving a limit-of-detection of ∼120 nM. The mass transport controlled sensing platform described here is relevant to the development of enzyme-coupled multiplex biosensors for sensitive and selective detection of biomarkers and metabolites in next-generation point-of-care devices.
Collapse
Affiliation(s)
- Julius Reitemeier
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Linfield S, Gawinkowski S, Nogala W. Toward the Detection Limit of Electrochemistry: Studying Anodic Processes with a Fluorogenic Reporting Reaction. Anal Chem 2023; 95:11227-11235. [PMID: 37461137 PMCID: PMC10398625 DOI: 10.1021/acs.analchem.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Recently, shot noise has been shown to be an inherent part of all charge-transfer processes, leading to a practical limit of quantification of 2100 electrons (≈0.34 fC) [ Curr. Opin. Electrochem. 2020, 22, 170-177]. Attainable limits of quantification are made much larger by greater background currents and insufficient instrumentation, which restricts progress in sensing and single-entity applications. This limitation can be overcome by converting electrochemical charges into photons, which can be detected with much greater sensitivity, even down to a single-photon level. In this work, we demonstrate the use of fluorescence, induced through a closed bipolar setup, to monitor charge-transfer processes below the detection limit of electrochemical workstations. During this process, the oxidation of ferrocenemethanol (FcMeOH) in one cell is used to concurrently drive the oxidation of Amplex Red (AR), a fluorogenic redox molecule, in another cell. The spectroelectrochemistry of AR is investigated and new insights on the commonplace practice of using deprotonated glucose to limit AR photooxidation are presented. The closed bipolar setup is used to produce fluorescence signals corresponding to the steady-state voltammetry of FcMeOH on a microelectrode. Chronopotentiometry is then used to show a linear relationship between the charge passed through FcMeOH oxidation and the integrated AR fluorescence signal. The sensitivity of the measurements obtained at different timescales varies between 2200 and 500 electrons per detected photon. The electrochemical detection limit is approached using a diluted FcMeOH solution in which no faradaic current signal is observed. Nevertheless, a fluorescence signal corresponding to FcMeOH oxidation is still seen, and the detection of charges down to 300 fC is demonstrated.
Collapse
Affiliation(s)
- Steven Linfield
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sylwester Gawinkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
5
|
Fabrication of localized surface plasmon resonance sensors with scalable polyvinyltetrazole/copper cluster hybrid ring-array for Cu(II) detection. Talanta 2023; 256:124282. [PMID: 36682122 DOI: 10.1016/j.talanta.2023.124282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The bottom of a hole-array photoresist template deposited with a hydrophobic atom-transfer radical polymerization (ATRP) initiator was wetted by treatment with oxygen plasma. After the removal of the photoresist template, ring patterns of the ATRP initiator were formed at the interface between the hydrophobic and wetting regions. Polyacrylonitrile (PAN) was grafted from the initiator ring array to covert to polyvinyltetrazole (PVT) rings via a cyano-to-tetrazole reaction, which could adsorb Cu(II) at various concentrations. The Cu(II) ions within the PVT rings were reduced to form a PVT-copper hybrid ring (VCHR), resulting in a blue-shift of the localized surface plasmon resonance (LSPR) peak as the Cu(II) was adsorbed by the PVT rings. The blue-shift and Cu(II) concentration were linearly correlated, with a detection limit of ∼25 pg mL-1 and a linear range of 25-400 pg mL-1 for Cu(II) detection. Although the PVT rings also chelated Pb(II) and Cr(III), these ions did not exhibit obvious LSPR peaks. The VCHR LSPR sensor exhibited excellent selectivity for Cu(II) detection. Combining lithography and plasma technology provides a versatile platform for developing the scalable ring structure of copper for highly sensitive and selective Cu(II) sensing.
Collapse
|
6
|
Yin H, Tan C, Siddiqui S, Arumugam PU. Electrochemical Redox Cycling Behavior of Gold Nanoring Electrodes Microfabricated on a Silicon Micropillar. MICROMACHINES 2023; 14:726. [PMID: 37420959 DOI: 10.3390/mi14040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 07/09/2023]
Abstract
We report the microfabrication and characterization of concentric gold nanoring electrodes (Au NREs), which were fabricated by patterning two gold nanoelectrodes on the same silicon (Si) micropillar tip. Au NREs of 165 ± 10 nm in width were micropatterned on a 6.5 ± 0.2 µm diameter 80 ± 0.5 µm height Si micropillar with an intervening ~ 100 nm thick hafnium oxide insulating layer between the two nanoelectrodes. Excellent cylindricality of the micropillar with vertical sidewalls as well as a completely intact layer of a concentric Au NRE including the entire micropillar perimeter has been achieved as observed via scanning electron microscopy and energy dispersive spectroscopy data. The electrochemical behavior of the Au NREs was characterized by steady-state cyclic voltammetry and electrochemical impedance spectroscopy. The applicability of Au NREs to electrochemical sensing was demonstrated by redox cycling with the ferro/ferricyanide redox couple. The redox cycling amplified the currents by 1.63-fold with a collection efficiency of > 90% on a single collection cycle. The proposed micro-nanofabrication approach with further optimization studies shows great promise for the creation and expansion of concentric 3D NRE arrays with controllable width and nanometer spacing for electroanalytical research and applications such as single-cell analysis and advanced biological and neurochemical sensing.
Collapse
Affiliation(s)
- Haocheng Yin
- School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices of China, Xi'an 710071, China
| | - Chao Tan
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | - Shabnam Siddiqui
- Department of Chemistry and Physics, Louisiana State University Shreveport, Shreveport, LA 71101, USA
| | - Prabhu U Arumugam
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
7
|
Chen CW, Zeng XY, Cheng CC, Wang CF, Chen JK. LSPR Sensing of Epithelial Cell Adhesion Molecules through Sphere and Cavity Plasmons of a Composite Ring Array of Poly[2-(dimethylamino)ethyl methacrylate]/Gold Nanoparticles. Anal Chem 2022; 94:17779-17786. [PMID: 36519823 DOI: 10.1021/acs.analchem.2c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Self-organization facilitates the formation of specific structures as a result of constituent interactions. In this study, the bottom of a 600 nm hole array photoresist template, which was deposited with a hydrophobic atom transfer radical polymerization (ATRP) initiator, was wetted by treatment with oxygen plasma. After the removal of the photoresist template, ring patterns of the ATRP initiator were formed at the interface between the hydrophobic and wetting regions. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was grafted from the ring array of the initiator to immobilize gold nanoparticles (AuNPs) as a uniform ring array on a silicon substrate via repeated swelling/shrinking cycles. The localized surface plasmon resonance (LSPR) peak of the PDMAEMA-AuNP hybrid ring (PAHR) red-shifted after 12 swelling/shrinking cycles. In comparison to gold nanoparticles, scalable gold nanorings can effectively develop a variety of nanostructures to design LSPR-based sensors and optimize the sensing accuracy and stability. To detect epithelial cell adhesion molecules (EpCAM) during the structural change from a ring to a disk, antiEpCAM was anchored onto the PAHR as a biosensor during swelling/shrinking. The coupling of antiEpCAM and EpCAM led to asymptotical convergence from rings to disks as well as blue shifts of the LSPR peaks. Linear correlation between the blue shift and EpCAM concentration showed a limit of detection of ∼27 pg mL-1 and a linear range of 25-200 pg mL-1 for the detection of EpCAM within 30 min. The simple method of combining lithography and plasma technology provides a versatile platform for developing the scalable ring structure of AuNPs for highly sensitive and selective biosensing.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan710, Taiwan, ROC.,Department of Occupational Safety and Health/Institute of Industrial Safety and Disaster Prevention, College of Sustainable Environment, Chia Nan University of Pharmacy and Science, Tainan717, Taiwan, ROC.,Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei106, Taiwan, ROC
| | - Xiang-Yun Zeng
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei106, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei106, Taiwan, ROC
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei106, Taiwan, ROC
| | - Jem-Kun Chen
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei106, Taiwan, ROC
| |
Collapse
|
8
|
Moazzenzade T, Walstra T, Yang X, Huskens J, Lemay SG. Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry. Anal Chem 2022; 94:10168-10174. [PMID: 35792954 PMCID: PMC9310007 DOI: 10.1021/acs.analchem.2c01503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In current-blockade impact electrochemistry, insulating particles are detected amperometrically as they impinge upon a micro- or nanoelectrode via a decrease in the faradaic current caused by a redox mediator. A limit of the method is that analytes of a given size yield a broad distribution of response amplitudes due to the inhomogeneities of the mediator flux at the electrode surface. Here, we overcome this limitation by introducing microfabricated ring-shaped electrodes with a width that is significantly smaller than the size of the target particles. We show that the relative step size is somewhat larger and exhibits a narrower distribution than at a conventional ultramicroelectrode of equal diameter.
Collapse
Affiliation(s)
- Taghi Moazzenzade
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Tieme Walstra
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Xiaojun Yang
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G Lemay
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Butler D, Ebrahimi A. Rapid and sensitive detection of viral particles by coupling redox cycling and electrophoretic enrichment. Biosens Bioelectron 2022; 208:114198. [PMID: 35395617 PMCID: PMC8931995 DOI: 10.1016/j.bios.2022.114198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022]
Abstract
The COVID-19 pandemic has highlighted the need for rapid, low-cost, and sensitive virus detection platforms to monitor and mitigate widespread outbreaks. Electrochemical sensors are a viable choice to fill this role but still require improvements to the signal magnitude, especially for early detection and low viral loads. Herein, finite element analysis of a novel biosensor concept for single virion counting using a generator-collector microelectrode design is presented. The proposed design combines a redox-cycling amplified electrochemical current with electrophoresis-driven electrode-particle collision for rapid virus detection. The effects of experimental (e.g. scan rate, collector bias) and geometric factors are studied to optimize the sensor design. Two generator-collector configurations are explored: a ring-disk configuration to analyze sessile droplets and an interdigitated electrode (IDE) design housed in a microchannel. For the ring-disk configuration, we calculate an amplification factor of ∼5 and collector efficiency of ∼0.8 for a generator-collector spacing of 600 nm. For the IDE, the collector efficiency is even larger, approaching unity. The dual-electrode mode is critical for increasing the current and electric field strength. As a result, the current steps upon virus capture are more than an order of magnitude larger compared to single-mode. Additionally, single virus capture times are reduced from over 700 s down to ∼20 s. Overall, the frequency of virus capture and magnitude of the electrochemical current steps depend on the virus properties and electrode configuration, with the IDE capable of single virus detection within seconds owing to better particle confinement in the microchannel.
Collapse
Affiliation(s)
- Derrick Butler
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Center for Biodevices, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Song Q, Li Q, Yan J, Song Y. Echem methods and electrode types of the current in vivo electrochemical sensing. RSC Adv 2022; 12:17715-17739. [PMID: 35765338 PMCID: PMC9199085 DOI: 10.1039/d2ra01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
For a long time, people have been eager to realize continuous real-time online monitoring of biological compounds. Fortunately, in vivo electrochemical biosensor technology has greatly promoted the development of biological compound detection. This article summarizes the existing in vivo electrochemical detection technologies into two categories: microdialysis (MD) and microelectrode (ME). Then we summarized and discussed the electrode surface time, pollution resistance, linearity and the number of instances of simultaneous detection and analysis, the composition and characteristics of the sensor, and finally, we also predicted and prospected the development of electrochemical technology and sensors in vivo.
Collapse
Affiliation(s)
- Qiuye Song
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Qianmin Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China
| | - Jiadong Yan
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Yonggui Song
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China.,Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College 1688 Meiling Road Nanchang 330006 China
| |
Collapse
|
11
|
A direct comparison of 2D versus 3D diffusion analysis at nanowire electrodes: A finite element analysis and experimental study. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Kasuya M, Kubota D, Fujii S, Kurihara K. Nano-confined electrochemical reaction studied by electrochemical surface forces apparatus. Faraday Discuss 2021; 233:206-221. [PMID: 34889350 DOI: 10.1039/d1fd00060h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical reactions in a nano-space are different from those in bulk solutions due to structuring of the liquid molecules and peculiar ion behavior at the electric double layer and are important for applications involving sensors and energy devices. The electrochemical surface forces apparatus (EC-SFA) we developed enabled us to study the electrochemical reactions in a solution nano-confined between the electrodes with varying distance (D) at nm resolution. We recorded measurements of the current-distance profiles due to the electrochemical reaction of the redox couples in the electrolyte nano-confined between Pt electrodes using our EC-SFA. We observed a long-range feedback current due to redox cycling and the sudden current increase at a short distance, the latter for the first time. This sudden current increase was two orders greater than the conventional feedback current and was observed at D < 5 nm when the electrodes were approaching and D < 200 nm on separation. We simultaneously measured the electric double layer force and the current between the electrodes in the solution to study the mechanisms of this sudden current increase in the short distance range. The results revealed a molecular insight as to how the redox species affect the current between two electrodes under nano-confinement. This study demonstrated that EC-SFA is a powerful tool for obtaining fundamental knowledge about the nano-confined electrochemical reactions for nanoelectrodes which can be applied to sensors and energy devices.
Collapse
Affiliation(s)
- Motohiro Kasuya
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
| | - Daiki Kubota
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
| | - Sho Fujii
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Kazue Kurihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan. .,Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Borchers JS, Campbell CR, Van Scoy SB, Clark MJ, Anand RK. Redox Cycling at an Array of Interdigitated Bipolar Electrodes for Enhanced Sensitivity in Biosensing**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Janis S. Borchers
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Claire R. Campbell
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Savanah B. Van Scoy
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Morgan J. Clark
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Robbyn K. Anand
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| |
Collapse
|
14
|
Do H, Kwon SR, Baek S, Madukoma CS, Smiley MK, Dietrich LE, Shrout JD, Bohn PW. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays. Analyst 2021; 146:1346-1354. [PMID: 33393560 PMCID: PMC7937416 DOI: 10.1039/d0an02022b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Baek S, Kwon SR, Fu K, Bohn PW. Ion Gating in Nanopore Electrode Arrays with Hierarchically Organized pH-Responsive Block Copolymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55116-55124. [PMID: 33222437 DOI: 10.1021/acsami.0c12926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by biological ion channels, artificial nanopore-based architectures have been developed for smart ion/molecular transport control with potential applications to iontronics and energy conversion. Advances in nanofabrication technology enable simple, versatile construction methods, and post-fabrication functionalization delivers nanochannels with unique ion transport-control attributes. Here, we characterize a pH-responsive, charge-selective dual-gating block copolymer (BCP) membrane composed of polystyrene-b-poly(4-vinylpyridine) (PS48400-b-P4VP21300), capable of self-organizing into highly ordered nanocylindrical domains. Because the PS-b-P4VP membrane exhibits pH-dependent structural transitions, it is suitable for designing intelligent pH-gated biomimetic channels, for example, exhibiting on-off transport switching at pH values near the pKa of P4VP with excellent anion permselectivity at pH < pKa. Introducing the BCP membrane onto nanopore electrode arrays (BCP@NEAs) allows the BCP to serve as a pH-responsive gate controlling ion transfer into the NEA nanopores. Such selectively transported and confined ions are detected by using a 100 nm gap dual-ring nanoelectrode structure capable of enhancing current output by efficient redox cycling with an amplification factor >102. In addition, BCP@NEAs exhibit extraordinary pH-gated ion selectivity, resulting in a 3380-fold current difference between anion and cation probes at pH 3.0. This hierarchically organized BCP-gated NEA system can serve as a template for the development of other stimulus-responsive ion gates, for example, those based on temperature and ligand gating, thus exploiting the intrinsic advantages of NEAs, such as enhanced sensitivity based on redox cycling, which may lead to technological applications such as engineered biosensors and iontronic devices.
Collapse
Affiliation(s)
- Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Radiology, Stanford University, Stanford, California 94306, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94306, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Liu Y, Li X, Chen J, Yuan C. Micro/Nano Electrode Array Sensors: Advances in Fabrication and Emerging Applications in Bioanalysis. Front Chem 2020; 8:573865. [PMID: 33324609 PMCID: PMC7726471 DOI: 10.3389/fchem.2020.573865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/26/2020] [Indexed: 01/24/2023] Open
Abstract
Due to the rapid development of micro/nano manufacturing techniques and the greater understanding in electrochemical principles and methods, micro/nano electrode array sensing has received much attention in recent years, especially in bioanalysis. This review aims to explore recent progress in innovative techniques for the construction of micro/nano electrode array sensor and the unique applications of various types of micro/nano electrode array sensors in biochemical analysis. Moreover, the new area of smart sensing benefited from miniaturization of portable micro/nano electrode array sensors as well as wearable intelligent devices are further discussed.
Collapse
Affiliation(s)
- Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiuting Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chonglin Yuan
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Kwon SR, Baek S, Fu K, Bohn PW. Electrowetting-Mediated Transport to Produce Electrochemical Transistor Action in Nanopore Electrode Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907249. [PMID: 32270930 DOI: 10.1002/smll.201907249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding water behavior in confined volumes is important in applications ranging from water purification to healthcare devices. Especially relevant are wetting and dewetting phenomena which can be switched by external stimuli, such as light and electric fields. Here, these behaviors are exploited for electrochemical processing by voltage-directed ion transport in nanochannels contained within nanopore arrays in which each nanopore presents three electrodes. The top and middle electrodes (TE and ME) are in direct contact with the nanopore volume, but the bottom electrode (BE) is buried beneath a 70 nm silicon nitride (SiNx ) insulating layer. Electrochemical transistor operation is realized when small, defect-mediated channels are opened in the SiNx . These defect channels exhibit voltage-driven wetting that mediates the mass transport of redox species to/from the BE. When BE is held at a potential maintaining the defect channels in the wetted state, setting the potential of ME at either positive or negative overpotential results in strong electrochemical rectification with rectification factors up to 440. By directing the voltage-induced electrowetting of defect channels, these three-electrode nanopore structures can achieve precise gating and ion/molecule separation, and, as such, may be useful for applications such as water purification and drug delivery.
Collapse
Affiliation(s)
- Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kaiyu Fu
- Department of Radiology and Department of Electrical Engineering, Stanford University, Stanford, CA, 94306, USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
18
|
Fu K, Kwon SR, Han D, Bohn PW. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries. Acc Chem Res 2020; 53:719-728. [PMID: 31990518 PMCID: PMC8020881 DOI: 10.1021/acs.accounts.9b00543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electrochemical measurements conducted in confined volumes provide a powerful and direct means to address scientific questions at the nexus of nanoscience, biotechnology, and chemical analysis. How are electron transfer and ion transport coupled in confined volumes and how does understanding them require moving beyond macroscopic theories? Also, how do these coupled processes impact electrochemical detection and processing? We address these questions by studying a special type of confined-volume architecture, the nanopore electrode array, or NEA, which is designed to be commensurate in size with physical scaling lengths, such as the Debye length, a concordance that offers performance characteristics not available in larger scale structures.The experiments described here depend critically on carefully constructed nanoscale architectures that can usefully control molecular transport and electrochemical reactivity. We begin by considering the experimental constraints that guide the design and fabrication of zero-dimensional nanopore arrays with multiple embedded electrodes. These zero-dimensional structures are nearly ideal for exploring how permselectivity and unscreened ion migration can be combined to amplify signals and improve selectivity by enabling highly efficient redox cycling. Our studies also highlight the benefits of arrays, in that molecules escaping from a single nanopore are efficiently captured by neighboring pores and returned to the population of active redox species being measured, benefits that arise from coupling ion accumulation and migration. These tools for manipulating redox species are well-positioned to explore single molecule and single particle electron transfer events through spectroelectrochemistry, studies which are enabled by the electrochemical zero-mode waveguide (ZMW), a special hybrid nanophotonic/nanoelectronic architecture in which the lower ring electrode of an NEA nanopore functions both as a working electrode to initiate electron transfer reactions and as the optical cladding layer of a ZMW. While the work described here is largely exploratory and fundamental, we believe that the development of NEAs will enable important applications that emerge directly from the unique coupled transport and electron-transfer capabilities of NEAs, including in situ molecular separation and detection with external stimuli, redox-based electrochemical rectification in individually encapsulated nanopores, and coupled sorters and analyzers for nanoparticles.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Radiology, Stanford University, Stanford, CA, 94306
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94306
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662 Republic of Korea
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
19
|
Sassa F, Biswas GC, Suzuki H. Microfabricated electrochemical sensing devices. LAB ON A CHIP 2020; 20:1358-1389. [PMID: 32129358 DOI: 10.1039/c9lc01112a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemistry provides possibilities to realize smart microdevices of the next generation with high functionalities. Electrodes, which constitute major components of electrochemical devices, can be formed by various microfabrication techniques, and integration of the same (or different) components for that purpose is not difficult. Merging this technique with microfluidics can further expand the areas of application of the resultant devices. To augment the development of next generation devices, it will be beneficial to review recent technological trends in this field and clarify the directions required for moving forward. Even when limiting the discussion to electrochemical microdevices, a variety of useful techniques should be considered. Therefore, in this review, we attempted to provide an overview of all relevant techniques in this context in the hope that it can provide useful comprehensive information.
Collapse
Affiliation(s)
- Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
20
|
Zhou P, Yao L, Su B. Fabrication, Characterization, and Analytical Application of Silica Nanopore Array-Modified Platinum Electrode. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4143-4149. [PMID: 31886640 DOI: 10.1021/acsami.9b20165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we report a new approach to fabricate the nanopore array electrode (NAE) by transferring silica nanochannel membrane (SNM) to the surface of Pt electrode (0.5 mm in diameter) sealed by glass capillary (designated as Pt-NAE for simplicity). The SNM is supported via the irreversible covalent-bond formation with the surrounding glass capillary treated by plasma, thus providing long-term stability to Pt-NAE. Meanwhile, this fabrication process does not require pregrafting or premodification of Pt electrode surface, providing well-defined active surface domains. Thanks to the small pore diameter (∼2.3 nm) and negatively charged channel walls, the SNM is permselective and thus the electrochemical behavior of Pt-NAE is dependent on both electrolyte concentration and charge state of redox molecules. The permeability of SNM was determined by the scanning electrochemical microscopy (SECM) approach curve measurements coupled with finite-element simulations from a quantitative viewpoint. The permeability of anionic Ru(CN)64- was varied from 150 to 10.3 μm s-1 as the electrolyte concentration decreased from 1.0 to 0.01 M, while there is no obvious change for cationic Ru(NH3)63+. Finally, the as-prepared Pt-NAE is able to continuously monitor dissolved oxygen for up to 2 h in a solution containing biofouling reagents, exhibiting an enhanced antifouling ability and therefore excellent current stability. We believe the NAE with unique mass transport properties can be extended further for other analytical applications.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
21
|
Juska VB, Pemble ME. A dual-enzyme, micro-band array biosensor based on the electrodeposition of carbon nanotubes embedded in chitosan and nanostructured Au-foams on microfabricated gold band electrodes. Analyst 2019; 145:402-414. [PMID: 31755482 DOI: 10.1039/c9an01664c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report the development of a dual-enzyme electrochemical biosensor based on microfabricated gold band array electrodes which were first modified by gold foam (Au-foam) in order to dramatically increase the active surface area. The resulting nanostructured Au-foam deposits then served as a highly porous 3D matrix for the electrodeposition of a nanocomposite film consisting of multi walled carbon nanotubes embedded in a chitosan matrix (CS:MWCNT) designed to provide a conducting, biocompatible and chemically versatile surface suitable for the attachment of a wide range of chemically or biologically active agents. Finally, a dual enzyme mixture of glucose oxidase (GOx) and horseradish peroxidase (HRP) was immobilised onto the CS:MWCNT nanocomposite film surface. It is shown that the resulting sensing platform developed demonstrates excellent analytical performance in terms of glucose detection with a sensitivity of 261.8 μA mM-1 cm-2 and a reproducibility standard deviation (RSD) of 3.30% as determined over 7 measurements. Furthermore, long term stability studies showed that the electrodes exhibited an effectively unchanged response to glucose detection after some 45 days. The example of glucose detection presented here illustrates the fact that the particular combination of nanostructured materials employed represents a very flexible platform for the attachment of enzymes or indeed any other bioactive agent and as such may form the basis of the fabrication of a wide range of biosensors. Finally, since the platform used is based on lithographically-deposited gold electrodes on silicon, we note that it is also very suitable for further miniaturisation, mass production and packaging- all of which would serve to reduce production costs.
Collapse
Affiliation(s)
- Vuslat B Juska
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, Ireland. and School of Chemistry, University College Cork, Cork, Ireland
| | - Martyn E Pemble
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, Ireland. and School of Chemistry, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Kwon SR, Fu K, Han D, Bohn PW. Redox Cycling in Individually Encapsulated Attoliter-Volume Nanopores. ACS NANO 2018; 12:12923-12931. [PMID: 30525454 DOI: 10.1021/acsnano.8b08693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Redox cycling electrochemistry in arrays of individually encapsulated attoliter-volume ( V ∼ 10 aL) nanopores is investigated and reported here. These nanopore electrode array (NEA) structures exhibit distinctive electrochemical behaviors not observed in open NEAs, which allow free diffusion of redox couples between the nanopore interior and bulk solution. Confined nanopore environments, generated by sealing NEAs with a layer of poly(dimethylsiloxane), are characterized by enhanced currents-up to 250-fold compared with open NEAs-owing to effective trapping of the redox couple inside the nanopores and to enhanced mass transport effects. In addition, electrochemical rectification ( ca. 1.5-6.3) was observed and is attributed to ion migration. Finite-element simulations were performed to characterize the concentration and electric potential gradients associated with the disk electrode, aqueous medium, and ring electrode inside the nanopores, and the results are consistent with experimental observations. The additional signal enhancement and redox-cycling-based rectification behaviors produced in these self-confined attoliter-volume nanopores are potentially useful in devising ultrasensitive sensors and molecular-based iontronic devices.
Collapse
Affiliation(s)
| | | | - Donghoon Han
- Department of Chemistry , The Catholic University of Korea , Bucheon-si , Gyeonggi-do 14662 , Republic of Korea
| | | |
Collapse
|
23
|
Fan Y, Hao R, Han C, Zhang B. Counting Single Redox Molecules in a Nanoscale Electrochemical Cell. Anal Chem 2018; 90:13837-13841. [DOI: 10.1021/acs.analchem.8b04659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yunshan Fan
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Rui Hao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Chu Han
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
24
|
Fu K, Han D, Kwon SR, Bohn PW. Asymmetric Nafion-Coated Nanopore Electrode Arrays as Redox-Cycling-Based Electrochemical Diodes. ACS NANO 2018; 12:9177-9185. [PMID: 30080388 DOI: 10.1021/acsnano.8b03751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inspired by the functioning of cellular ion channels, pore-based structures with nanoscale openings have been fabricated and integrated into ionic circuits, for example, ionic diodes and transistors, for signal processing and detection. In these systems, the nonlinear current responses arise either because asymmetric nanopore geometries break the symmetry of the ion distribution, creating unequal surface charge across the nanopore, or by coupling unidirectional electron transfer within a nanopore electrode. Here we develop a high-performance redox-cycling-based electrochemical diode by coating an asymmetric ion-exchange membrane, that is, Nafion, on the top surface of a nanopore electrode array (Nafion@NEA), in which each pore in the array exhibits one or more annular electrodes. Nafion@NEAs exhibit highly sensitive and charge-selective electroanalytical measurements due to efficient redox-cycling reaction, the permselectivity of Nafion, and the strong confinement of redox species in the nanopore array. In addition, the top electrode of dual-electrode Nafion@NEAs can serve as a voltage-controlled switch to gate ion transport within the nanopore. Thus Nafion@NEAs can be operated as a diode by switching voltages applied to the top and bottom electrodes of the NEA, leading to a large rectification ratio, fast response times, and simplified circuitry without the need for external electrodes. By taking advantage of closely spaced and individually addressable electrodes, the redox-cycling electrochemical diode has the potential for application to large-scale production and electrochemically controlled circuit operations, which go well beyond conventional electronic diodes or transistors.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
25
|
Fu K, Han D, Ma C, Bohn PW. Electrochemistry at single molecule occupancy in nanopore-confined recessed ring-disk electrode arrays. Faraday Discuss 2018; 193:51-64. [PMID: 27711896 DOI: 10.1039/c6fd00062b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical reactions at nanoscale structures possess unique characteristics, e.g. fast mass transport, high signal-to-noise ratio at low concentration, and insignificant ohmic losses even at low electrolyte concentrations. These properties motivate the fabrication of high density, laterally ordered arrays of nanopores, embedding vertically stacked metal-insulator-metal electrode structures and exhibiting precisely controlled pore size and interpore spacing for use in redox cycling. These nanoscale recessed ring-disk electrode (RRDE) arrays exhibit current amplification factors, AFRC, as large as 55-fold with Ru(NH3)62/3+, indicative of capture efficiencies at the top and bottom electrodes, Φt,b, exceeding 99%. Finite element simulations performed to investigate the concentration distribution of redox species and to assess operating characteristics are in excellent agreement with experiment. AFRC increases as the pore diameter, at constant pore spacing, increases in the range 200-500 nm and as the pore spacing, at constant pore diameter, decreases in the range 1000-460 nm. Optimized nanoscale RRDE arrays exhibit a linear current response with concentration ranging from 0.1 μM to 10 mM and a small capacitive current with scan rate up to 100 V s-1. At the lowest concentrations, the average pore occupancy is 〈n〉 ∼ 0.13 molecule establishing productive electrochemical signals at occupancies at and below the single molecule level in these nanoscale RRDE arrays.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chaoxiong Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Wahl AJ, Seymour IP, Moore M, Lovera P, O'Riordan A, Rohan JF. Diffusion profile simulations and enhanced iron sensing in generator-collector mode at interdigitated nanowire electrode arrays. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Crouch GM, Han D, Bohn PW. Zero-Mode Waveguide Nanophotonic Structures for Single Molecule Characterization. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:193001. [PMID: 34158676 PMCID: PMC8216246 DOI: 10.1088/1361-6463/aab8be] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (μM - mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer (smFRET), and fluorescence correlation spectroscopy (FCS) for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs (E-ZMW). In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.
Collapse
Affiliation(s)
- Garrison M. Crouch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
- Departmemt of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
28
|
Fu K, Han D, Crouch GM, Kwon SR, Bohn PW. Voltage-Gated Nanoparticle Transport and Collisions in Attoliter-Volume Nanopore Electrode Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703248. [PMID: 29377558 PMCID: PMC8287793 DOI: 10.1002/smll.201703248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Single nanoparticle analysis can reveal how particle-to-particle heterogeneity affects ensemble properties derived from traditional bulk measurements. High-bandwidth, low noise electrochemical measurements are needed to examine the fast heterogeneous electron-transfer behavior of single nanoparticles with sufficient fidelity to resolve the behavior of individual nanoparticles. Herein, nanopore electrode arrays (NEAs) are fabricated in which each pore supports two vertically spaced, individually addressable electrodes. The top ring electrode serves as a particle gate to control the transport of silver nanoparticles (AgNPs) within individual attoliter volume NEAs nanopores, as shown by redox collisions of AgNPs collisions at the bottom disk electrode. The AgNP-nanoporeis system has wide-ranging technological applications as well as fundamental interest, since the transport of AgNPs within the NEA mimics the transport of ions through cell membranes via voltage-gated ion channels. A voltage threshold is observed above which AgNPs are able to access the bottom electrode of the NEAs, i.e., a minimum potential at the gate electrode is required to switch between few and many observed collision events on the collector electrode. It is further shown that this threshold voltage is strongly dependent on the applied voltage at both electrodes as well as the size of AgNPs, as shown both experimentally and through finite-element modeling. Overall, this study provides a precise method of monitoring nanoparticle transport and in situ redox reactions within nanoconfined spaces at the single particle level.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, US
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | - Garrison M. Crouch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | | |
Collapse
|
29
|
Yamamoto S, Uno S. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process. SENSORS 2018; 18:s18030730. [PMID: 29495647 PMCID: PMC5876865 DOI: 10.3390/s18030730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 01/21/2023]
Abstract
This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.
Collapse
Affiliation(s)
- So Yamamoto
- Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Shigeyasu Uno
- Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
30
|
Lee GY, Park JH, Chang YW, Cho S, Kang MJ, Pyun JC. Chronoamperometry-Based Redox Cycling for Application to Immunoassays. ACS Sens 2018; 3:106-112. [PMID: 29276887 DOI: 10.1021/acssensors.7b00681] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the chronoamperometry-based redox cycling of 3,3',5,5'-tetramethylbenzidine (TMB) was performed by using interdigitated electrode (IDE). The signal was obtained from two sequential chronoamperometric profiles: (1) with the generator at the oxidative potential of TMB and the collector at the reductive potential of TMB, and (2) with the generator at the reductive potential of TMB and the collector at the oxidative potential of TMB. The chronoamperometry-based redox cycling (dual mode) showed a sensitivity of 1.49 μA/OD, and the redox cycling efficiency was estimated to be 94% (n = 10). The sensitivities of conventional redox cycling with the same interdigitated electrode and chronoamperometry using a single working electrode (single mode) were estimated to be 0.67 μA/OD and 0.18 μA/OD, respectively. These results showed that the chronoamperometry-based redox cycling (dual mode) could be more effectively used to quantify the oxidized TMB than other amperometric methods. The chronoamperometry-based redox cycling (dual mode) was applied to immunoassays using a commercial ELISA kit for medical diagnosis of the human hepatitis B virus surface antigen (hHBsAg). Finally, the chronoamperometry-based redox cycling (dual mode) provided more than a 10-fold higher sensitivity than conventional chronoamperometry using a single working electrode (single mode) when applied to a commercial ELISA kit for medical diagnosis of hHBsAg.
Collapse
Affiliation(s)
- Ga-Yeon Lee
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Jun-Hee Park
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Young Wook Chang
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Sungbo Cho
- Department
of Biomedical Engineering, Gachon University, Incheon 21936, Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jae-Chul Pyun
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
31
|
Fu K, Bohn PW. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions. ACS CENTRAL SCIENCE 2018; 4:20-29. [PMID: 29392173 PMCID: PMC5785767 DOI: 10.1021/acscentsci.7b00576] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 05/12/2023]
Abstract
Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department
of Chemistry and Biochemistry and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W. Bohn
- Department
of Chemistry and Biochemistry and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- E-mail: . Tel: +1 574 631 1849. Fax: +1 574 631 8366
| |
Collapse
|
32
|
Affiliation(s)
- Mahdieh Atighilorestani
- Department
of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Center
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Center
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
33
|
Zhou J, Jiang D, Chen HY. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9109-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Kostiuchenko ZA, Glazer PJ, Mendes E, Lemay SG. Chemical physics of electroactive materials - the oft-overlooked faces of electrochemistry. Faraday Discuss 2017; 199:9-28. [PMID: 28654123 DOI: 10.1039/c7fd00117g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electroactive materials and their applications are enjoying renewed attention, in no small part motivated by the advent of nanoscale tools for their preparation and study. While the fundamentals of charge and mass transport in electrolytes on this scale are by and large well understood, their interplay can have subtle manifestations in the more complex situations typical of, for example, integrated microfluidics-based applications. In particular, the role of faradaic processes is often overlooked or, at best, purposefully suppressed via experimental design. In this introductory article we discuss, using simple illustrations from our laboratories, some of the manifestations of electrochemistry in electroactive materials.
Collapse
Affiliation(s)
- Zinaida A Kostiuchenko
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Piotr J Glazer
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
35
|
Han D, Crouch GM, Fu K, Zaino Iii LP, Bohn PW. Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides. Chem Sci 2017; 8:5345-5355. [PMID: 28970913 PMCID: PMC5609146 DOI: 10.1039/c7sc02250f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/18/2017] [Indexed: 11/21/2022] Open
Abstract
The ability of zero-mode waveguides (ZMW) to guide light into subwavelength-diameter nanoapertures has been exploited for studying electron transfer dynamics in zeptoliter-volume nanopores under single-molecule occupancy conditions. In this work, we report the spectroelectrochemical detection of individual molecules of the redox-active, fluorogenic molecule flavin mononucleotide (FMN) freely diffusing in solution. Our approach is based on an array of nanopore-confined recessed dual ring electrodes, wherein repeated reduction and oxidation of a single molecule at two closely spaced annular working electrodes yields amplified electrochemical signals. We have articulated these structures with an optically transparent bottom, so that the nanopores are bifunctional, exhibiting both nanophotonic and nanoelectrochemical behaviors allowing the coupling between electron transfer and fluorescence dynamics to be studied under redox cycling conditions. We also investigated the electric field intensity in electrochemical ZMWs (E-ZMW) through finite-element simulations, and the amplification of fluorescence by redox cycling agrees well with predictions based on optical confinement effects inside the E-ZMW. Proof-of-principle experiments are conducted showing that electrochemical and fluorescence signals may be correlated to reveal single molecule fluctuations in the array population. Cross-correlation of single molecule fluctuations in amperometric response and single photon emission provides unequivocal evidence of single molecule sensitivity.
Collapse
Affiliation(s)
- Donghoon Han
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , IN 46556 , USA . ; ; Tel: +1 574 631 1849
| | - Garrison M Crouch
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , IN 46556 , USA . ; ; Tel: +1 574 631 1849
| | - Kaiyu Fu
- Departmemt of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA
| | - Lawrence P Zaino Iii
- Departmemt of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , IN 46556 , USA . ; ; Tel: +1 574 631 1849.,Departmemt of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA
| |
Collapse
|
36
|
Steentjes T, Sarkar S, Jonkheijm P, Lemay SG, Huskens J. Electron Transfer Mediated by Surface-Tethered Redox Groups in Nanofluidic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603268. [PMID: 27982518 DOI: 10.1002/smll.201603268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Electrochemistry provides a powerful sensor transduction and amplification mechanism that is highly suited for use in integrated, massively parallelized assays. Here, the cyclic voltammetric detection of flexible, linear poly(ethylene glycol) polymers is demonstrated, which have been functionalized with redox-active ferrocene (Fc) moieties and surface-tethered inside a nanofluidic device consisting of two microscale electrodes separated by a gap of <100 nm. Diffusion of the surface-bound polymer chains in the aqueous electrolyte allows the redox groups to repeatedly shuttle electrons from one electrode to the other, resulting in a greatly amplified steady-state electrical current. Variation of the polymer length provides control over the current, as the activity per Fc moiety appears to depend on the extent to which the polymer layers of the opposing electrodes can interpenetrate each other and thus exchange electrons. These results outline the design rules for sensing devices that are based on changing the polymer length, flexibility, and/or diffusivity by binding an analyte to the polymer chain. Such a nanofluidic enabled configuration provides an amplified and highly sensitive alternative to other electrochemical detection mechanisms.
Collapse
Affiliation(s)
- Tom Steentjes
- Molecular NanoFabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Sahana Sarkar
- NanoIonics, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular NanoFabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Serge G Lemay
- NanoIonics, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| |
Collapse
|
37
|
Adly NY, Bachmann B, Krause KJ, Offenhäusser A, Wolfrum B, Yakushenko A. Three-dimensional inkjet-printed redox cycling sensor. RSC Adv 2017. [DOI: 10.1039/c6ra27170g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical amplification through redox cycling in an all-inkjet-printed device utilizing four different functional inks.
Collapse
Affiliation(s)
- N. Y. Adly
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - B. Bachmann
- Neuroelectronics
- MSB
- Department of Electrical and Computer Engineering
- Technical University of Munich (TUM) & BCCN Munich
- Garching
| | - K. J. Krause
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - A. Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - B. Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - A. Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| |
Collapse
|
38
|
Zafarani HR, Mathwig K, Lemay SG, Sudhölter EJR, Rassaei L. Modulating Selectivity in Nanogap Sensors. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hamid Reza Zafarani
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Klaus Mathwig
- Pharmaceutical
Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Serge G. Lemay
- MESA+
Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ernst J. R. Sudhölter
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Liza Rassaei
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
39
|
Redox cycling with ITO electrodes separated by an ultrathin silica nanochannel membrane. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Lemay SG, Laborde C, Renault C, Cossettini A, Selmi L, Widdershoven FP. High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook. Acc Chem Res 2016; 49:2355-2362. [PMID: 27643695 DOI: 10.1021/acs.accounts.6b00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65 536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time. These capabilities are made possible by fabricating the electrodes on a complementary metal-oxide-semiconductor (CMOS) chip together with the associated control and readout electronics, thus minimizing parasitic capacitance and maximizing the signal-to-noise ratio. This combination of features offers several advantages for a broad range of experiments. First, in contrast to alternative CMOS-based electrical systems based on field-effect detection, high-frequency operation is sensitive beyond the electrical double layer and can probe entities at a range of micrometers in electrolytes with high ionic strength such as water at physiological salt concentrations. Far from being limited to single- or few-channel recordings like conventional electrochemical impedance spectroscopy, the massively parallel design of the array permits electrically imaging micrometer-scale entities with each electrode serving as a separate pixel. This allows observation of complex kinetics in heterogeneous environments, for example, the motion of living cells on the surface of the array. This imaging aspect is further strengthened by the ability to distinguish between analyte species based on the sign and magnitude of their AC response. Finally, we show here that sensitivity down to the attofarad level combined with the small electrode size permits detection of individual 28 nm diameter particles as they land on the sensor surface. Interestingly, using finite-element methods, it is also possible to calculate accurately the full three-dimensional electric field and current distributions during operation at the level of the Poisson-Nernst-Planck formalism. This makes it possible to validate the interpretation of measurements and to optimize the design of future experiments. Indeed, the complex frequency and spatial dependence of the data suggests that experiments to date have only scratched the surface of the method's capabilities. Future iterations of the hardware will take advantage of the higher frequencies, higher electrode packing densities and smaller electrode sizes made available by continuing advances in CMOS manufacturing. Combined with targeted immobilization of targets at the electrodes, we anticipate that it will soon be possible to realize complex biosensors based on spatial- and time-resolved nanoscale impedance detection.
Collapse
Affiliation(s)
- Serge G. Lemay
- MESA+
Institute for Nanotechnology, University of Twente, PO Box 217, 7500
AE Enschede, The Netherlands
| | - Cecilia Laborde
- MESA+
Institute for Nanotechnology, University of Twente, PO Box 217, 7500
AE Enschede, The Netherlands
| | - Christophe Renault
- MESA+
Institute for Nanotechnology, University of Twente, PO Box 217, 7500
AE Enschede, The Netherlands
| | - Andrea Cossettini
- DPIA, University of Udine, Via delle Scienze 206, Udine 33100, Italy
| | - Luca Selmi
- DPIA, University of Udine, Via delle Scienze 206, Udine 33100, Italy
| | - Frans P. Widdershoven
- NXP Semiconductors, Global Technology Innovation, High Tech Campus 46, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
41
|
He D, Yan J, Zhu F, Zhou Y, Mao B, Oleinick A, Svir I, Amatore C. Enhancing the Bipolar Redox Cycling Efficiency of Plane-Recessed Microelectrode Arrays by Adding a Chemically Irreversible Interferent. Anal Chem 2016; 88:8535-41. [PMID: 27490270 DOI: 10.1021/acs.analchem.6b01454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual electrochemical anodic responses of dopamine (DA), epinephrine (EP), and pyrocatechol (CT) were investigated at arrays of recessed gold disk-microelectrodes arrays (MEAs) covered by a gold plane electrode and compared to those of their binary mixture (CT and EP) when the top-plane electrode was operated as a bipolar electrode or as a collector. The interferent species (EP) displays a chemically irreversible wave over the same potential range as the chemically reversible ones of DA or CT. As expected, in the generator-collector (GC) mode, EP did not contribute to the redox cycling amplification that occurred only for DA or CT. Conversely, in the bipolar mode, the presence of EP drastically increased the bipolar redox cycling efficiency of DA and CT. This evidenced that the chemically irreversible oxidation of EP at the anodic poles of the top plane floating electrode provided additional electron fluxes that were used to more efficiently reduce the oxidized DA or CT species at the cathodic poles. This suggests an easy experimental strategy for enhancing the bipolar efficiency of MEAs up to reach a performance identical to that achieved when the same MEAs are operated in a GC mode.
Collapse
Affiliation(s)
- Dingwen He
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Jiawei Yan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Feng Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Yongliang Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Bingwei Mao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Alexander Oleinick
- CNRS UMR 8640 "PASTEUR", Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University , Département de Chimie, 24 rue Lhomond, Paris 75005, France
| | - Irina Svir
- CNRS UMR 8640 "PASTEUR", Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University , Département de Chimie, 24 rue Lhomond, Paris 75005, France
| | - Christian Amatore
- CNRS UMR 8640 "PASTEUR", Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University , Département de Chimie, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
42
|
Ma C, Xu W, Wichert WRA, Bohn PW. Ion Accumulation and Migration Effects on Redox Cycling in Nanopore Electrode Arrays at Low Ionic Strength. ACS NANO 2016; 10:3658-64. [PMID: 26910572 DOI: 10.1021/acsnano.6b00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ion permselectivity can lead to accumulation in zero-dimensional nanopores, producing a significant increase in ion concentration, an effect which may be combined with unscreened ion migration to improve sensitivity in electrochemical measurements, as demonstrated by the enormous current amplification (∼2000-fold) previously observed in nanopore electrode arrays (NEA) in the absence of supporting electrolyte. Ionic strength is a key experimental factor that governs the magnitude of the additional current amplification (AFad) beyond simple redox cycling through both ion accumulation and ion migration effects. Separate contributions from ion accumulation and ion migration to the overall AFad were identified by studying NEAs with varying geometries, with larger AFad values being achieved in NEAs with smaller pores. In addition, larger AFad values were observed for Ru(NH3)6(3/2+) than for ferrocenium/ferrocene (Fc(+)/Fc) in aqueous solution, indicating that coupling efficiency in redox cycling can significantly affect AFad. While charged species are required to observe migration effects or ion accumulation, poising the top electrode at an oxidizing potential converts neutral species to cations, which can then exhibit current amplification similar to starting with the cation. The electrical double layer effect was also demonstrated for Fc/Fc(+) in acetonitrile and 1,2-dichloroethane, producing AFad up to 100× at low ionic strength. The pronounced AFad effects demonstrate the advantage of coupling redox cycling with ion accumulation and migration effects for ultrasensitive electrochemical measurements.
Collapse
Affiliation(s)
- Chaoxiong Ma
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Wei Xu
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - William R A Wichert
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
43
|
Wichert WRA, Han D, Bohn PW. Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer. LAB ON A CHIP 2016; 16:877-883. [PMID: 26792298 DOI: 10.1039/c5lc01413a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of molecular confinement and crowding on enzyme kinetics were studied at length scales and under conditions similar to those found in biological cells. These experiments were carried out using a nanofluidic network of channels constituting a nanofluidic gradient mixer, providing the basis for measuring multiple experimental conditions simultaneously. The 100 nm × 40 μm nanochannels were wet etched directly into borosilicate glass, then annealed and characterized with fluorescein emission prior to kinetic measurements. The nanofluidic gradient mixer was then used to measure the kinetics of the conversion of the horseradish peroxidase (HRP)-catalyzed conversion of non-fluorescent Amplex Red (AR) to the fluorescent product resorufin in the presence of hydrogen peroxide (H2O2). The design of the gradient mixer allows reaction kinetics to be studied under multiple (five) unique solution compositions in a single experiment. To characterize the efficiency of the device the effects of confinement on HRP-catalyzed AR conversion kinetics were studied by varying the starting ratio of AR : H2O2. Equimolar concentrations of Amplex Red and H2O2 yielded the highest reaction rates followed by 2 : 1, 1 : 2, 5 : 1, and finally 1 : 5 [AR] : [H2O2]. Under all conditions, initial reaction velocities were decreased by excess H2O2. Crowding effects on kinetics were studied by increasing solution viscosity in the nanochannels in the range 1.0-1.6 cP with sucrose. Increasing the solution viscosities in these confined geometries decreases the initial reaction velocity at the highest concentration from 3.79 μM min(-1) at 1.00 cP to 0.192 μM min(-1) at 1.59 cP. Variations in reaction velocity are interpreted in the context of models for HRP catalysis and for molecular crowding.
Collapse
Affiliation(s)
- William R A Wichert
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
44
|
Gold interdigitated nanoelectrodes as a sensitive analytical tool for selective detection of electroactive species via redox cycling. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1792-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Partel S, Dincer C, Kasemann S, Kieninger J, Edlinger J, Urban G. Lift-Off Free Fabrication Approach for Periodic Structures with Tunable Nano Gaps for Interdigitated Electrode Arrays. ACS NANO 2016; 10:1086-1092. [PMID: 26625012 DOI: 10.1021/acsnano.5b06405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a simple, low-cost and lift-off free fabrication approach for periodic structures with adjustable nanometer gaps for interdigitated electrode arrays (IDAs). It combines an initial structure and two deposition process steps; first a dielectric layer is deposited, followed by a metal evaporation. The initial structure can be realized by lithography or any other structuring technique (e.g., nano imprint, hot embossing or injection molding). This method allows the fabrication of nanometer sized gaps and completely eliminates the need for a lift-off process. Different substrate materials like silicon, Pyrex or polymers can be used. The electrode gap is controlled primarily by sputter deposition of the initial structure, and thus, adjustable gaps in the nanometer range can be realized independently of the mask or stamp pattern. Electrochemical characterizations using redox cycling in ferrocenemethanol (FcMeOH) demonstrate signal amplification factors of more than 110 together with collection factors higher than 99%. Furthermore, the correlation between the gap width and the amplification factor was studied to obtain an electrochemical performance assessment of the nano gap electrodes. The results demonstrate an exponential relationship between amplification factor and gap width.
Collapse
Affiliation(s)
- Stefan Partel
- Vorarlberg University of Applied Sciences , 6850 Dornbirn, Austria
- Department of Microsystem Engineering (IMTEK), University of Freiburg , 79110 Freiburg, Germany
| | - Can Dincer
- Department of Microsystem Engineering (IMTEK), University of Freiburg , 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg , 79104 Freiburg, Germany
| | - Stephan Kasemann
- Vorarlberg University of Applied Sciences , 6850 Dornbirn, Austria
| | - Jochen Kieninger
- Department of Microsystem Engineering (IMTEK), University of Freiburg , 79110 Freiburg, Germany
| | | | - Gerald Urban
- Department of Microsystem Engineering (IMTEK), University of Freiburg , 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg , 79104 Freiburg, Germany
| |
Collapse
|
46
|
Xu W, Fu K, Ma C, Bohn PW. Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst 2016; 141:6018-6024. [DOI: 10.1039/c6an01415a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Battery operation of a closed-BPE dual cell with colorimetric readout by smartphone camera yields a simple, inexpensive, field-deployable electrochemical sensor.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Chaoxiong Ma
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
47
|
Zafarani HR, Mathwig K, Sudhölter EJ, Rassaei L. Electrochemical redox cycling in a new nanogap sensor: Design and simulation. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
|
49
|
Ma C, Zaino Iii LP, Bohn PW. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes. Chem Sci 2015; 6:3173-3179. [PMID: 28706689 PMCID: PMC5490416 DOI: 10.1039/c5sc00433k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022] Open
Abstract
We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ∼30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy)32/3+/tri-n-propylamine on the floating bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH3)63+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.
Collapse
Affiliation(s)
- Chaoxiong Ma
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Lawrence P Zaino Iii
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Paul W Bohn
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , IN 46556 , USA
| |
Collapse
|
50
|
Gross AJ, Marken F. ITO-ITO Dual-Plate Microgap Electrodes: E and EC′ Generator-Collector Processes. ELECTROANAL 2015. [DOI: 10.1002/elan.201400554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|