1
|
Kondoh H. Enhancer Activation by Transcription Factors and Underlying Mechanisms. Results Probl Cell Differ 2024; 72:167-191. [PMID: 38509258 DOI: 10.1007/978-3-031-39027-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Enhancers are classified into two classes based on various criteria. Class I enhancers participate primarily in finely tuned cell-specific regulation, as exemplified by the neural enhancers discussed in Chap. 9 . They are activated by simultaneous binding of transcription factors (TFs) to adjacent sites in the core sequence and are marked by moderate levels of H3K27ac modification. Class II enhancers are activated by the reiterated binding of the same TFs at multiple sites and are marked by high levels of H3K27ac modification. Class II enhancers are exemplified by enhancers in the SCR downstream of the Sox2 gene, as also discussed in Chap. 9 . Both classes of enhancers activate transcription similarly with low selectivity toward the promoters.The genomic loci broadly covered by high-level H3K27ac modification were once dubbed "Super-enhancers," implying that they are densely packed enhancers with superpowers in gene regulation. However, marking with H3K27ac modification does not predict the enhancer activity of a sequence; a "Super enhancer" region includes a few ordinary Class II enhancers. Currently, the most reliable criterion for enhancer prediction is cross-species sequence conservation.The mechanism by which transcription factors find and stay on the target enhancer site remains elusive. Results from two approaches, single-molecule live imaging and kinetic analysis using FRAP, are discussed.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
2
|
Natarajan AK, Ryssy J, Kuzyk A. A DNA origami-based device for investigating DNA bending proteins by transmission electron microscopy. NANOSCALE 2023; 15:3212-3218. [PMID: 36722916 DOI: 10.1039/d2nr05366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The DNA origami technique offers precise positioning of nanoscale objects with high accuracy. This has facilitated the development of DNA origami-based functional nanomechanical devices that enable the investigation of DNA-protein interactions at the single particle level. Herein, we used the DNA origami technique to fabricate a nanoscale device for studying DNA bending proteins. For a proof of concept, we used TATA-box binding protein (TBP) to evaluate our approach. Upon binding to the TATA box, TBP causes a bend to DNA of ∼90°. Our device translates this bending into an angular change that is readily observable with a conventional transmission electron microscope (TEM). Furthermore, we investigated the roles of transcription factor II A (TF(II)A) and transcription factor II B (TF(II)B). Our results indicate that TF(II)A introduces additional bending, whereas TF(II)B does not significantly alter the TBP-DNA structure. Our approach can be readily adopted to a wide range of DNA-bending proteins and will aid the development of DNA-origami-based devices tailored for the investigation of DNA-protein interactions.
Collapse
Affiliation(s)
- Ashwin Karthick Natarajan
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - Joonas Ryssy
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - Anton Kuzyk
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.
| |
Collapse
|
3
|
Zhang J, Song C, Wang L. DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Phys Chem Chem Phys 2022; 24:23959-23979. [PMID: 36168789 DOI: 10.1039/d2cp02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in DNA technology have made it possible to combine with the plasmonics to fabricate reconfigurable dynamic nanodevices with extraordinary property and function. These DNA-mediated plasmonic nanostructures have been investigated for a variety of unique and beneficial physicochemical properties and their dynamic behavior has been controlled by endogenous or exogenous stimuli for a variety of interesting biological applications. In this perspective, the recent efforts to use the DNA nanostructures as molecular linkers for fabricating dynamic plasmonic nanostructures are reviewed. Next, the actuation media for triggering the dynamic behavior of plasmonic nanostructures and the dynamic response in optical features are summarized. Finally, the applications, remaining challenges and perspectives of the DNA-mediated dynamic plasmonic nanostructures are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
4
|
Verma AH, Ganesh S, Venkatakrishnan K, Tan B. Self-functional gold nanoprobes for intra-nuclear epigenomic monitoring of cancer stem-like cells. Biosens Bioelectron 2022; 195:113644. [PMID: 34571478 DOI: 10.1016/j.bios.2021.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
Abstract
Cancer epigenomic-environment is a core center of a tumor's genetic and epigenetic configuration. Surveying epigenomic-environment of cancer stem-like cells (CSC) is vital for developing novel diagnostic methods and improving current therapies since CSCs are among the most challenging clinical hurdles. To date, there exists no technique which can successfully monitor the epigenomics of CSC. Here, we have developed unique sub-10 nm Self-functional Gold Nanoprobes (GNP) as a CSC epigenomic monitoring platform that can easily maneuver into the nucleus while not producing any conformal changes to the genomic DNA. The GNP was synthesized using physical synthesis method of pulsed laser multiphoton ionization, which enabled the shrinking of GNP to 2.69 nm which helped us achieve two critical parameters for epigenomics monitoring: efficient nuclear uptake (98%) without complex functionalization and no conformational nuclear changes. The GNP efficiently generated SERS for structural, functional, molecular epigenetics, and nuclear proteomics in preclinical models of breast and lung CSCs. To the best of knowledge, this study is first to utilize the intranuclear epigenomic signal to distinguish between CSC from different tissues with >99% accuracy and specificity. Our findings are anticipated to help advance real-time epigenomics surveillance technologies such as nucleus-targeted drug surveillance and epigenomic prognosis and diagnostics.
Collapse
Affiliation(s)
- Anish Hiresha Verma
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Swarna Ganesh
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Nano-characterization Laboratory, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
5
|
Liu M, Wang F, Zhang X, Mao X, Wang L, Tian Y, Fan C, Li Q. Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. Nat Protoc 2020; 16:383-404. [PMID: 33288954 DOI: 10.1038/s41596-020-00420-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022]
Abstract
A comprehensive understanding of interactions between nanoparticles (NPs) and biological components is critical to the clinical application of NPs and nanomedicine. Here we provide a step-by-step correlative imaging approach to investigate plasmonic NPs of different aggregation states at the single-cell level. Traceable spherical nucleic acids (SNAs) are fabricated by decorating 50-nm spherical gold NPs with fluorophore-labeled DNA, serving as dually emissive (fluorescent and plasmonic) NPs. The in situ correlative imaging with dark-field microscopy (DFM) and fluorescence microscopy (FM) reveals intracellular distribution of SNAs, whereas DFM combined with scanning electron microscopy (SEM) allows semi-quantification of SNA clustering states in solution. The imaging data are analyzed by ImageJ and a colorimetry-based algorithm written in Python. The clustering states of SNAs in a single cell can be efficiently distinguished within 20 s. This method can be readily installed to monitor real-time endocytosis and cellular distribution of plasmonic NPs of different aggregation states and to quantitatively image targets of interest (e.g., specific DNA, messenger RNA, peptides or proteins) in living cells. The entire procedure can be completed in 3-5 d and requires standard DFM, FM and SEM imaging and data analysis skills and equipment.
Collapse
Affiliation(s)
- Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Direct Single-Molecule Observation of Sequential DNA Bending Transitions by the Sox2 HMG Box. Int J Mol Sci 2018; 19:ijms19123865. [PMID: 30518054 PMCID: PMC6321608 DOI: 10.3390/ijms19123865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Sox2 is a pioneer transcription factor that initiates cell fate reprogramming through locus-specific differential regulation. Mechanistically, it was assumed that Sox2 achieves its regulatory diversity via heterodimerization with partner transcription factors. Here, utilizing single-molecule fluorescence spectroscopy, we show that Sox2 alone can modulate DNA structural landscape in a dosage-dependent manner. We propose that such stoichiometric tuning of regulatory DNAs is crucial to the diverse biological functions of Sox2, and represents a generic mechanism of conferring functional plasticity and multiplicity to transcription factors.
Collapse
|
7
|
Ye W, Götz M, Celiksoy S, Tüting L, Ratzke C, Prasad J, Ricken J, Wegner SV, Ahijado-Guzmán R, Hugel T, Sönnichsen C. Conformational Dynamics of a Single Protein Monitored for 24 h at Video Rate. NANO LETTERS 2018; 18:6633-6637. [PMID: 30251862 PMCID: PMC6187522 DOI: 10.1021/acs.nanolett.8b03342] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We use plasmon rulers to follow the conformational dynamics of a single protein for up to 24 h at a video rate. The plasmon ruler consists of two gold nanospheres connected by a single protein linker. In our experiment, we follow the dynamics of the molecular chaperone heat shock protein 90 (Hsp90), which is known to show "open" and "closed" conformations. Our measurements confirm the previously known conformational dynamics with transition times in the second to minute time scale and reveals new dynamics on the time scale of minutes to hours. Plasmon rulers thus extend the observation bandwidth 3-4 orders of magnitude with respect to single-molecule fluorescence resonance energy transfer and enable the study of molecular dynamics with unprecedented precision.
Collapse
Affiliation(s)
- Weixiang Ye
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128 Mainz, Germany
| | - Markus Götz
- Institute of Physical Chemistry and BIOSS Centre for
Biological Signaling Studies, University
of Freiburg, Albertstraße
23a, D-79104 Freiburg, Germany
| | - Sirin Celiksoy
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Laura Tüting
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128 Mainz, Germany
| | - Christoph Ratzke
- Institute of Physical Chemistry and BIOSS Centre for
Biological Signaling Studies, University
of Freiburg, Albertstraße
23a, D-79104 Freiburg, Germany
| | - Janak Prasad
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128 Mainz, Germany
| | - Julia Ricken
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seraphine V. Wegner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rubén Ahijado-Guzmán
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry and BIOSS Centre for
Biological Signaling Studies, University
of Freiburg, Albertstraße
23a, D-79104 Freiburg, Germany
- E-mail:
| | - Carsten Sönnichsen
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- E-mail:
| |
Collapse
|
8
|
Abstract
The interaction between light and matter can be controlled efficiently by structuring materials at a length scale shorter than the wavelength of interest. With the goal to build optical devices that operate at the nanoscale, plasmonics has established itself as a discipline, where near-field effects of electromagnetic waves created in the vicinity of metallic surfaces can give rise to a variety of novel phenomena and fascinating applications. As research on plasmonics has emerged from the optics and solid-state communities, most laboratories employ top-down lithography to implement their nanophotonic designs. In this review, we discuss the recent, successful efforts of employing self-assembled DNA nanostructures as scaffolds for creating advanced plasmonic architectures. DNA self-assembly exploits the base-pairing specificity of nucleic acid sequences and allows for the nanometer-precise organization of organic molecules but also for the arrangement of inorganic particles in space. Bottom-up self-assembly thus bypasses many of the limitations of conventional fabrication methods. As a consequence, powerful tools such as DNA origami have pushed the boundaries of nanophotonics and new ways of thinking about plasmonic designs are on the rise.
Collapse
Affiliation(s)
- Na Liu
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, D-69120, Heidelberg, Germany
| | - Tim Liedl
- Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
9
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
10
|
Saha A, Kizaki S, De D, Endo M, Kim KK, Sugiyama H. Examining cooperative binding of Sox2 on DC5 regulatory element upon complex formation with Pax6 through excess electron transfer assay. Nucleic Acids Res 2016; 44:e125. [PMID: 27229137 PMCID: PMC5001601 DOI: 10.1093/nar/gkw478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/17/2016] [Indexed: 12/29/2022] Open
Abstract
Functional cooperativity among transcription factors on regulatory genetic elements is pivotal for milestone decision-making in various cellular processes including mammalian development. However, their molecular interaction during the cooperative binding cannot be precisely understood due to lack of efficient tools for the analyses of protein-DNA interaction in the transcription complex. Here, we demonstrate that photoinduced excess electron transfer assay can be used for analysing cooperativity of proteins in transcription complex using cooperative binding of Pax6 to Sox2 on the regulatory DNA element (DC5 enhancer) as an example. In this assay, (Br)U-labelled DC5 was introduced for the efficient detection of transferred electrons from Sox2 and Pax6 to the DNA, and guanine base in the complementary strand was replaced with hypoxanthine (I) to block intra-strand electron transfer at the Sox2-binding site. By examining DNA cleavage occurred as a result of the electron transfer process, from tryptophan residues of Sox2 and Pax6 to DNA after irradiation at 280 nm, we not only confirmed their binding to DNA but also observed their increased occupancy on DC5 with respect to that of Sox2 and Pax6 alone as a result of their cooperative interaction.
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Seiichiro Kizaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Debojyoti De
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon 440-746, Korea
| | - Masayuki Endo
- Institute for Integrated Cell-Materials Sciences (iCeMS) Kyoto University, Yoshida-ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon 440-746, Korea
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan Institute for Integrated Cell-Materials Sciences (iCeMS) Kyoto University, Yoshida-ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Lermusiaux L, Bidault S. Increasing the Morphological Stability of DNA-Templated Nanostructures with Surface Hydrophobicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5696-5704. [PMID: 26395441 DOI: 10.1002/smll.201501428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/31/2015] [Indexed: 06/05/2023]
Abstract
DNA has been extensively used as a versatile template to assemble inorganic nanoparticles into complex architectures; thanks to its programmability, stability, and long persistence length. But the geometry of self-assembled nanostructures depends on a complex combination of attractive and repulsive forces that can override the shape of a molecular scaffold. In this report, an approach to increase the morphological stability of DNA-templated gold nanoparticle (AuNP) groupings against electrostatic interactions is demonstrated by introducing hydrophobicity on the particle surface. Using single nanostructure spectroscopy, the nanometer-scale distortions of 40 nm diameter AuNP dimers are compared with different hydrophilic, amphiphilic, neutral, and negatively charged surface chemistries, when modifying the local ionic strength. It is observed that, with most ligands, a majority of studied nanostructures deform freely from a stretched geometry to touching particles when increasing the salt concentration while hydrophobicity strongly limits the dimer distortions. Furthermore, an amphiphilic surface chemistry provides DNA-linked AuNP dimers with a high long-term stability against internal aggregation.
Collapse
Affiliation(s)
- Laurent Lermusiaux
- ESPCI ParisTech PSL Research University, CNRS, INSERM, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France
| | - Sébastien Bidault
- ESPCI ParisTech PSL Research University, CNRS, INSERM, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France
| |
Collapse
|
12
|
Lermusiaux L, Maillard V, Bidault S. Widefield spectral monitoring of nanometer distance changes in DNA-templated plasmon rulers. ACS NANO 2015; 9:978-990. [PMID: 25565325 DOI: 10.1021/nn506947g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The nanometer-scale sensitivity of electromagnetic plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. We demonstrate here a widefield spectral analysis of 40 nm diameter gold nanoparticle (AuNP) dimers, linked by a short DNA double strand, using a low-cost color CCD camera and allowing a quantitative estimation of interparticle distances in a 3-20 nm range. This analysis can be extended to lower spacings and a parallel monitoring of dimer orientations by performing a simple polarization analysis. Our measurement approach is calibrated against confocal scattering spectroscopy using AuNP dimers that are distorted from a stretched geometry at low ionic strength to touching particles at high salt concentrations. We then apply it to identify dimers featuring two different conformations of the same DNA template and discuss the parallel colorimetric sensing of short sequence-specific DNA single strands using dynamic plasmon rulers.
Collapse
Affiliation(s)
- Laurent Lermusiaux
- ESPCI ParisTech, PSL Research University, CNRS, INSERM, Institut Langevin, 1 rue Jussieu, F-75005 Paris, France
| | | | | |
Collapse
|
13
|
Narasimhan K, Pillay S, Huang YH, Jayabal S, Udayasuryan B, Veerapandian V, Kolatkar P, Cojocaru V, Pervushin K, Jauch R. DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors. Nucleic Acids Res 2015; 43:1513-28. [PMID: 25578969 PMCID: PMC4330359 DOI: 10.1093/nar/gku1390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sox2 and Pax6 are transcription factors that direct cell fate decision during neurogenesis, yet the mechanism behind how they cooperate on enhancer DNA elements and regulate gene expression is unclear. By systematically interrogating Sox2 and Pax6 interaction on minimal enhancer elements, we found that cooperative DNA recognition relies on combinatorial nucleotide switches and precisely spaced, but cryptic composite DNA motifs. Surprisingly, all tested Sox and Pax paralogs have the capacity to cooperate on such enhancer elements. NMR and molecular modeling reveal very few direct protein-protein interactions between Sox2 and Pax6, suggesting that cooperative binding is mediated by allosteric interactions propagating through DNA structure. Furthermore, we detected and validated several novel sites in the human genome targeted cooperatively by Sox2 and Pax6. Collectively, we demonstrate that Sox-Pax partnerships have the potential to substantially alter DNA target specificities and likely enable the pleiotropic and context-specific action of these cell-lineage specifiers.
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shubhadra Pillay
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Yong-Heng Huang
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Sriram Jayabal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Barath Udayasuryan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Veeramohan Veerapandian
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672, Singapore University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China
| | - Prasanna Kolatkar
- Qatar Biomedical Research Institute, Qatar Foundation, PO Box 5825, Doha, Qatar
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Konstantin Pervushin
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Ralf Jauch
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672, Singapore
| |
Collapse
|