1
|
Rusciano F, Pastore R, Greco F. Universal Evolution of Fickian Non-Gaussian Diffusion in Two- and Three-Dimensional Glass-Forming Liquids. Int J Mol Sci 2023; 24:ijms24097871. [PMID: 37175578 PMCID: PMC10177888 DOI: 10.3390/ijms24097871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Recent works show that glass-forming liquids display Fickian non-Gaussian Diffusion, with non-Gaussian displacement distributions persisting even at very long times, when linearity in the mean square displacement (Fickianity) has already been attained. Such non-Gaussian deviations temporarily exhibit distinctive exponential tails, with a decay length λ growing in time as a power-law. We herein carefully examine data from four different glass-forming systems with isotropic interactions, both in two and three dimensions, namely, three numerical models of molecular liquids and one experimentally investigated colloidal suspension. Drawing on the identification of a proper time range for reliable exponential fits, we find that a scaling law λ(t)∝tα, with α≃1/3, holds for all considered systems, independently from dimensionality. We further show that, for each system, data at different temperatures/concentration can be collapsed onto a master-curve, identifying a characteristic time for the disappearance of exponential tails and the recovery of Gaussianity. We find that such characteristic time is always related through a power-law to the onset time of Fickianity. The present findings suggest that FnGD in glass-formers may be characterized by a "universal" evolution of the distribution tails, independent from system dimensionality, at least for liquids with isotropic potential.
Collapse
Affiliation(s)
- Francesco Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
2
|
Šlepavičius J, Avendaño C, Conchúir BÓ, Patti A. Structural relaxation dynamics of colloidal nanotrimers. Phys Rev E 2022; 106:014604. [PMID: 35974591 DOI: 10.1103/physreve.106.014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
By Molecular Dynamics simulation, we investigate the dynamics of isotropic fluids of colloidal nanotrimers whose interactions are described by varying the strength of attractive and repulsive terms of the Mie potential. To provide a consistent comparison between the systems described by different force fields, we determine the phase diagram and critical points of each system, characterize the morphology of high-density liquid phases at the same reduced temperature and density, and finally investigate their long-time relaxation dynamics. In particular, we detect an especially complex dynamics that reveals the existence of slow and fast nanotrimers and the resulting occurrence of non-Gaussianity, which develops at intermediate timescales. Deviations from Gaussianity are temporary and vanish within the timescales of the system's density fluctuations decay, when a Fickian-like diffusion regime is eventually observed.
Collapse
Affiliation(s)
- Justinas Šlepavičius
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Carlos Avendaño
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Breanndán Ó Conchúir
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
- IBM Research Europe, The Hartree Centre STFC Laboratory Sci-Tech Daresbury Warrington, Warrington WA4 4AD, United Kingdom
| | - Alessandro Patti
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Applied Physics, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Pastore R, Ciarlo A, Pesce G, Sasso A, Greco F. A model-system of Fickian yet non-Gaussian diffusion: light patterns in place of complex matter. SOFT MATTER 2022; 18:351-364. [PMID: 34888591 DOI: 10.1039/d1sm01133b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fickian yet non-Gaussian Diffusion (FnGD), widely observed for colloidal particles in a variety of complex and biological fluids, emerges as a most intriguing open issue in Soft Matter. To fully monitor FnGD and advance its understanding, recording many trajectories over a large time range is crucial, which makes experiments challenging. Here we exploit a recently introduced experimental model of finely tunable FnGD: a quasi-2d system of Brownian beads in water moving in a heterogeneous energy landscape generated by a static and spatially random optical force field (speckle pattern). By performing experiments at different optical power, we succeed in monitoring the evolution as well as the precursors of FnGD. Fickian scaling of the mean square displacement is always attained after a subdiffusive regime while the displacement distributions keep on being non-Gaussian, which allows for measuring a characteristic length- and time-scale for the onset of FnGD, ξf and tf. We find that ξf stays constant, whereas tf grows as the inverse of the long-time diffusion coefficient tf ∝ D-1 for increasing the optical power. Deviations from the standard Gaussian shape of the displacement distribution are neatly characterized on a broad range of times, focusing on the excess probability at small displacements and on the decay-length of the distinctive exponential tails. Such deviations are fully built in the subdiffusive regime and, at the FnGD onset, grow with the optical power. As time goes on, the small-displacement probability narrows and the exponential tails progressively break up, with a tendency to recover the Gaussian behaviour. Overall, both subdiffusion and FnGD become more marked and persistent on increasing the optical power, suggesting a strict relation between these two regimes. As clearly demonstrated by our results, the adopted model-system represents a privileged stage for in-depth study of FnGD and opens the way to unveil the nature of this phenomenon through finely tuned and well-controlled experiments.
Collapse
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| | - Antonio Ciarlo
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Giuseppe Pesce
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Antonio Sasso
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
4
|
Mangal D, Palmer JC, Conrad JC. Nanoparticle dispersion in porous media: Effects of array geometry and flow orientation. Phys Rev E 2021; 104:015102. [PMID: 34412201 DOI: 10.1103/physreve.104.015102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 11/07/2022]
Abstract
We investigate the effects of array geometry and flow orientation on transport of finite-sized particles in ordered arrays using Stokesian dynamics simulations. We find that quiescent diffusion is independent of array geometry over the range of volume fraction of the nanoposts examined. Longitudinal dispersion under flow depends on the direction of incident flow relative to the array lattice vectors. Taylor-Aris behavior is recovered for flow along the lattice directions, whereas a nonmonotonic dependence of the dispersion coefficient on the Péclet number is obtained for flow orientations slightly perturbed from certain lattice vectors, owing to a competition between directional locking and spatial velocity variations.
Collapse
Affiliation(s)
- Deepak Mangal
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
5
|
Pastore R, Ciarlo A, Pesce G, Greco F, Sasso A. Rapid Fickian Yet Non-Gaussian Diffusion after Subdiffusion. PHYSICAL REVIEW LETTERS 2021; 126:158003. [PMID: 33929249 DOI: 10.1103/physrevlett.126.158003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/11/2021] [Indexed: 05/23/2023]
Abstract
The recently discovered Fickian yet non-Gaussian diffusion (FnGD) is here finely tuned and investigated over a wide range of probabilities and timescales using a quasi-2D suspension of colloidal beads under the action of a static and spatially random optical force field. This experimental model allows one to demonstrate that a "rapid" FnGD regime with a diffusivity close to that of free suspension can originate from earlier subdiffusion. We show that these two regimes are strictly tangled: as subdiffusion deepens upon increasing the optical force, deviations from Gaussianity in the FnGD regime become larger and more persistent in time. In addition, the distinctive exponential tails of FnGD are quickly built up in the subdiffusive regime. Our results shed new light on previous experimental observations and suggest that FnGD may generally be a memory effect of earlier subdiffusive processes.
Collapse
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Antonio Ciarlo
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Naples, Italy
| | - Giuseppe Pesce
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Naples, Italy
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Antonio Sasso
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Naples, Italy
| |
Collapse
|
6
|
Mangal D, Conrad JC, Palmer JC. Nanoparticle dispersion in porous media: Effects of hydrodynamic interactions and dimensionality. AIChE J 2021. [DOI: 10.1002/aic.17147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Deepak Mangal
- Department of Chemical and Biomolecular Engineering University of Houston Houston Texas USA
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering University of Houston Houston Texas USA
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering University of Houston Houston Texas USA
| |
Collapse
|
7
|
Zhou F, Wang H, Zhang Z. Diffusion of Anisotropic Colloids in Periodic Arrays of Obstacles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11866-11872. [PMID: 32927949 DOI: 10.1021/acs.langmuir.0c01884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal suspensions in confined geometries exhibit rich diffusion dynamics governed by particle shapes and particle-confinement interactions. Here, we propose a colloidal system, consisting of ellipsoids in periodic array of obstacles, to investigate the confined diffusion of anisotropic colloids. From the obstacle density-dependent diffusion, we discover a decoupling of translational and rotational diffusion in which only rotational motion is localized while translational motion remains diffusive. Moreover, by evaluating the probability distributions of displacements, we found Brownian but non-Gaussian diffusion behaviors with increasing the obstacle densities, which originates from the shape anisotropy of the colloid and the multiplicity of the local configurations of the ellipsoids with respect to the obstacle. Our results suggest that the shape anisotropy and spatial confinements play a vital role in the diffusion dynamics. It is important for understanding the transportations of anisotropic objects in complex environments.
Collapse
Affiliation(s)
- Fang Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| |
Collapse
|
8
|
Karimi H, Setare MR, Moradian A. Rod separation by sawtooth channel. Phys Rev E 2020; 102:012610. [PMID: 32794973 DOI: 10.1103/physreve.102.012610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
By applying entropic barriers, we present a rod separation mechanism that induces the movement of rods of different sizes in the opposite directions. This mechanism is based on the combination of the saw-tooth channel, a static force, and an oscillating driving force. The asymmetric shape of the channel and the elongated shape of the rod causesa complicated interaction effect between the rods and the channel walls which reduces the accessible configuration space for the rods and leads to entropic free-energy effects.
Collapse
Affiliation(s)
- H Karimi
- Department of Science, University of Kurdistan, Sanandaj, Iran
| | - M R Setare
- Department of Science, University of Kurdistan, Sanandaj, Iran
| | - A Moradian
- Department of Science, Campus of Bijar, University of Kurdistan, Bijar, Iran
| |
Collapse
|
9
|
Wu H, Sarfati R, Wang D, Schwartz DK. Electrostatic Barriers to Nanoparticle Accessibility of a Porous Matrix. J Am Chem Soc 2020; 142:4696-4704. [DOI: 10.1021/jacs.9b12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Haichao Wu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Raphaël Sarfati
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Ghannad Z. Fickian yet non-Gaussian diffusion in two-dimensional Yukawa liquids. Phys Rev E 2019; 100:033211. [PMID: 31639989 DOI: 10.1103/physreve.100.033211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/07/2022]
Abstract
We investigate Fickian diffusion in two-dimensional (2D) Yukawa liquids using molecular dynamics simulations. We compute the self-van Hove correlation function G_{s}(r,t) and the self-intermediate scattering function F_{s}(k,t), and we compare these functions with those obtained from mean-squared displacement (MSD) using the Gaussian approximation. According to this approximation, a linear MSD with time implies a Gaussian behavior for G_{s}(r,t) and F_{s}(k,t) at all times. Surprisingly, we find that these functions deviate from Gaussian at intermediate timescales, indicating the failure of the Gaussian approximation. Furthermore, we quantify these deviations by the non-Gaussian parameter, and we find that the deviations increase when the temperature of the liquid decreases. The origin of the non-Gaussian behavior may be the heterogeneous dynamics of dust particles observed in 2D Yukawa liquids.
Collapse
Affiliation(s)
- Zahra Ghannad
- Department of Physics, Alzahra University, P.O. Box 19938-93973, Tehran, Iran
| |
Collapse
|
11
|
Maitri RV, De S, Koesen SP, Wyss HM, van der Schaaf J, Kuipers JAM, Padding JT, Peters EAJF. Effect of microchannel structure and fluid properties on non-inertial particle migration. SOFT MATTER 2019; 15:2648-2656. [PMID: 30860218 DOI: 10.1039/c8sm02348d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we investigate the influence of channel structure and fluid rheology on non-inertial migration of non-Brownian polystyrene beads. Particle migration in this regime can be found in biomedical, chemical, environmental and geological applications. However, the effect of fluid rheology on particle migration in porous media remains to be clearly understood. Here, we isolate the effects of elasticity and shear thinning by comparing a Newtonian fluid, a purely elastic (Boger) fluid, and a shear-thinning elastic fluid. To mimic the complexity of geometries in real-world application, a random porous structure is created through a disordered arrangement of cylindrical pillars in the microchannel. Experiments are repeated in an empty channel and in channels with an ordered arrangement of pillars, and the similarities and differences in the observed particle focusing are analyzed. It is found that elasticity drives the particles away from the channel walls in an empty microchannel. Notably, particle focusing is unaffected by curved streamlines in an ordered porous microchannel and particles stay away from pillars in elastic fluids. Shear-thinning is found to reduce the effect of focusing and a broader region of particle concentration is observed. It is also noteworthy that the rheological characteristics of the fluid are not important for the particle distribution in a randomly arranged pillared microchannel and particles have a uniform distribution for all suspending fluids. Moreover, discussion on the current discrepancy in the literature about the equilibrium positions of the particles in a channel is extended by analyzing the results obtained in the current experiments.
Collapse
Affiliation(s)
- R V Maitri
- Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fakhfouri A, Devendran C, Albrecht T, Collins DJ, Winkler A, Schmidt H, Neild A. Surface acoustic wave diffraction driven mechanisms in microfluidic systems. LAB ON A CHIP 2018; 18:2214-2224. [PMID: 29942943 DOI: 10.1039/c8lc00243f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.
Collapse
Affiliation(s)
- Armaghan Fakhfouri
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Annu Rev Chem Biomol Eng 2018; 9:175-200. [DOI: 10.1146/annurev-chembioeng-060817-084006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
14
|
Delavari A, Agasanapura B, Baltus RE. The effect of particle rotation on the motion and rejection of capsular particles in slit pores. AIChE J 2018. [DOI: 10.1002/aic.16132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Armin Delavari
- Dept. of Chemical and Biomolecular EngineeringClarkson UniversityPotsdam NY13699
| | | | - Ruth E. Baltus
- Dept. of Chemical and Biomolecular EngineeringClarkson UniversityPotsdam NY13699
| |
Collapse
|
15
|
Ash B, Chakrabarti J, Ghosal A. Static and dynamic properties of two-dimensional Coulomb clusters. Phys Rev E 2018; 96:042105. [PMID: 29347627 DOI: 10.1103/physreve.96.042105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Indexed: 11/07/2022]
Abstract
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Collapse
Affiliation(s)
- Biswarup Ash
- Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - J Chakrabarti
- S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | - Amit Ghosal
- Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
16
|
Cai Y, Schwartz DK. Mapping the Functional Tortuosity and Spatiotemporal Heterogeneity of Porous Polymer Membranes with Super-Resolution Nanoparticle Tracking. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43258-43266. [PMID: 29161008 DOI: 10.1021/acsami.7b15335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As particles flow through porous media, they follow complex pathways and experience heterogeneous environments that are challenging to characterize. Tortuosity is often used as a parameter to characterize the complexity of pathways in porous materials and is useful in understanding hindered mass transport in industrial filtration and mass separation processes. However, conventional calculations of tortuosity provide only average values under static conditions; they are insensitive to the intrinsic heterogeneity of porous media and do not account for potential effects of operating conditions. Here, we employ a high-throughput nanoparticle tracking method which enables the observation of actual particle trajectories in polymer membranes under relevant operating conditions. Our results indicate that tortuosity is not simply a structural material property but is instead a functional property that depends on flow rate and particle size. We also resolved the spatiotemporal heterogeneity of flowing particles in these porous media. The distributions of tortuosity and of local residence/retention times were surprisingly broad, exhibiting heavy tails representing a population of highly tortuous trajectories and local regions with anomalously long residence times. Interestingly, local tortuosity and residence times were directly correlated, suggesting the presence of highly confining regions that cause more meandering trajectories and longer retention times. The comprehensive information about tortuosity and spatiotemporal heterogeneity provided by these methods will advance the understanding of complex mass transport and assist rational design and synthesis of porous materials.
Collapse
Affiliation(s)
- Yu Cai
- Department of Chemical and Biological Engineering, University of Colorado Boulder , 596 UCB, Boulder, Colorado 80309-0596, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder , 596 UCB, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
17
|
Bitter JL, Yang Y, Duncan G, Fairbrother H, Bevan MA. Interfacial and Confined Colloidal Rod Diffusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9034-9042. [PMID: 28793187 DOI: 10.1021/acs.langmuir.7b01704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optical microscopy is used to measure translational and rotational diffusion of colloidal rods near a single wall, confined between parallel walls, and within quasi-2D porous media as a function of rod aspect ratio and aqueous solution ionic strength. Translational and rotational diffusivities are obtained as rod particles experience positions closer to boundaries and for larger aspect ratios. Models based on position dependent hydrodynamic interactions quantitatively capture diffusivities in all geometries and indicate particle-wall separations in agreement with independent estimates based on electrostatic interactions. Short-time translational diffusion in quasi-2D porous media is insensitive to porous media area fraction, which appears to arise from a balance of hydrodynamic hindrance and enhanced translation due to parallel alignment along surfaces. Findings in this work provide a basis to interpret and predict interfacial and confined colloidal rod transport relevant to biological, environmental, and synthetic material systems.
Collapse
Affiliation(s)
- Julie L Bitter
- Chemistry and ‡Chemical & Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Yuguang Yang
- Chemistry and ‡Chemical & Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Gregg Duncan
- Chemistry and ‡Chemical & Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Howard Fairbrother
- Chemistry and ‡Chemical & Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Michael A Bevan
- Chemistry and ‡Chemical & Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Jacob JDC, Krishnamoorti R, Conrad JC. Particle dispersion in porous media: Differentiating effects of geometry and fluid rheology. Phys Rev E 2017; 96:022610. [PMID: 28950508 DOI: 10.1103/physreve.96.022610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 06/07/2023]
Abstract
We investigate the effects of geometric order and fluid rheology on the dispersion of micron-sized particles in two-dimensional microfluidic porous media. Particles suspended in a mixture of glycerol and water or in solutions of partially hydrolyzed polyacrylamide (HPAM) polymers were imaged as they flowed through arrays of microscale posts. From the trajectories of the particles, we calculated the velocity distributions and thereafter obtained the longitudinal and transverse dispersion coefficients. Particles flowed in the shear-thinning HPAM solution through periodic arrays of microposts were more likely to switch between streamlines, due to elastic instabilities. As a result, the distributions of particle velocity were broader in HPAM solutions than in glycerol-water mixtures for ordered geometries. In a disordered array of microposts, however, there was little difference between the velocity distributions obtained in glycerol-water and in HPAM solutions. Correspondingly, particles flowed through ordered post arrays in HPAM solutions exhibited enhanced transverse dispersion. This result suggests that periodic geometric order amplifies the effects of the elasticity-induced velocity fluctuations, whereas geometric disorder of barriers effectively averages out the fluctuations.
Collapse
Affiliation(s)
- Jack D C Jacob
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ramanan Krishnamoorti
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C Conrad
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
19
|
Collins DJ, Ma Z, Han J, Ai Y. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. LAB ON A CHIP 2016; 17:91-103. [PMID: 27883136 DOI: 10.1039/c6lc01142j] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.
Collapse
Affiliation(s)
- David J Collins
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore. and Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
| | - Zhichao Ma
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
20
|
Poling-Skutvik R, Mongcopa KIS, Faraone A, Narayanan S, Conrad JC, Krishnamoorti R. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Antonio Faraone
- National Institute
of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Suresh Narayanan
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | |
Collapse
|
21
|
Pryamitsyn V, Ganesan V. Noncontinuum effects on the mobility of nanoparticles in unentangled polymer solutions. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Victor Pryamitsyn
- Department of Chemical Engineering; University of Texas at Austin; Austin Texas 78712
| | - Venkat Ganesan
- Department of Chemical Engineering; University of Texas at Austin; Austin Texas 78712
| |
Collapse
|
22
|
Babayekhorasani F, Dunstan DE, Krishnamoorti R, Conrad JC. Nanoparticle dispersion in disordered porous media with and without polymer additives. SOFT MATTER 2016; 12:5676-5683. [PMID: 27328208 DOI: 10.1039/c6sm00502k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In purely viscous Newtonian fluids, mechanical mixing of the fluid stream as it moves through an unstructured porous medium controls the long-time dispersion of molecular tracers. In applications ranging from environmental remediation to materials processing, however, particles are transported through porous media in polymer solutions and melts, for which the fluid properties depend on the shear rate and extent of deformation. How the flow characteristics of polymer solutions affect the spreading of finite-sized particles remains poorly understood - both on the microscopic scale as local velocity profiles, and on the macroscale as dispersion. Here, we show across a range of flow rates and disordered porous media configurations that the long-time transport coefficients of particles flowed in water, in a viscous Newtonian fluid, and in a non-Newtonian shear-thinning polymer solution collapse onto scaling curves, independent of the fluid rheology. Thus the addition of polymer does not impact nanoparticle dispersion through disordered porous media.
Collapse
Affiliation(s)
| | - Dave E Dunstan
- Chemical and Biomolecular Engineering, University of Melbourne, 3010, Australia
| | - Ramanan Krishnamoorti
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA. and Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C Conrad
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
23
|
Wang D, Chin HY, He C, Stoykovich MP, Schwartz DK. Polymer Surface Transport Is a Combination of in-Plane Diffusion and Desorption-Mediated Flights. ACS Macro Lett 2016; 5:509-514. [PMID: 35607234 DOI: 10.1021/acsmacrolett.6b00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies of polymer motion at solid/liquid interfaces described the transport in the context of a continuous time random walk (CTRW) process, in which diffusion switches between desorption-mediated "flights" (i.e., hopping) and surface-adsorbed waiting-time intervals. However, it has been unclear whether the waiting times represented periods of complete immobility or times during which molecules engaged in a different (e.g., slower or confined) mode of interfacial transport. Here we designed high-throughput, single-molecule tracking measurements to address this question. Specifically, we studied polymer dynamics on either chemically homogeneous or nanopatterned surfaces (hexagonal diblock copolymer films) with chemically distinct domains, where polymers were essentially excluded from the low-affinity domains, eliminating the possibility of significant continuous diffusion in the absence of desorption-mediated flights. Indeed, the step-size distributions on homogeneous surfaces exhibited an additional diffusive mode that was missing on the chemically heterogeneous nanopatterned surfaces, confirming the presence of a slow continuous mode due to 2D in-plane diffusion. Kinetic Monte Carlo simulations were performed to test this model and, with the theoretical in-plane diffusion coefficient of D2D = 0.20 μm2/s, we found a good agreement between simulations and experimental data on both chemically homogeneous and nanopatterned surfaces.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Huai-Ying Chin
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Chunlin He
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark P. Stoykovich
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
24
|
Jacob JDC, He K, Retterer ST, Krishnamoorti R, Conrad JC. Diffusive dynamics of nanoparticles in ultra-confined media. SOFT MATTER 2015; 11:7515-24. [PMID: 26278883 DOI: 10.1039/c5sm01437a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200-400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3-5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accounted for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Together, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.
Collapse
Affiliation(s)
- Jack Deodato C Jacob
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
| | | | | | | | | |
Collapse
|
25
|
Skaug MJ, Schwartz DK. Tracking Nanoparticle Diffusion in Porous Filtration Media. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503895b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael J. Skaug
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|