1
|
Oh HS, Kim KJ, Lee J, Kim JB, Ku KH. Unveiling the structural influence of nematic mesogens on customizable temperature and spectral responses. J Colloid Interface Sci 2025; 677:250-258. [PMID: 39146813 DOI: 10.1016/j.jcis.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Rapid and accurate detection and visualization of temperature variations near the human body hold significant importance. This study presents thermochromic colloids capable of adjusting the detectable temperature range and reflection wavelength over a wide spectrum. The systematic investigation focuses on understanding the influence of the molecular structure of nematic mesogens on the morphological dynamics of cholesteric liquid crystal droplets and their associated thermochromic behaviors. A tunable colorimetric temperature range (i.e., from 10 to 40 °C) and high sensitivity (i.e., Δλ ΔT-1 > 100nm °C-1) are realized through precise modulation of the alkyl chain lengths in cyanobiphenyls molecules, combined with a cholesteryl oleyl carbonate as a chiral dopant. We demonstrate the efficiency of a binary mixture of different mesogens, enabling customized structural colors with desired temperature responses. Finally, inspired by the ability of the octopus to camouflage through the elongation or contraction of its pigment cells, thermochromic droplets are embedded within a polymer matrix, resulting in a portable skin patch that offers quick, reversible, and direct temperature visualization of the human body.
Collapse
Affiliation(s)
- Hyeong Seok Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Juyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Bin Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Gonçalves DPN, Ogolla T, Hegmann T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal 2: Lyotropic Chromonic Liquid Crystals. Chemphyschem 2023; 24:e202200685. [PMID: 36197761 PMCID: PMC10092345 DOI: 10.1002/cphc.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The importance of and the difference between molecular versus structural core chirality of substances that form nanomaterials, and their ability to transmit and amplify their chirality to and within a surrounding condensed medium is yet to be exactly understood. Here we demonstrate that neat as well as disodium cromoglycate (DSCG) surface-modified cellulose nanocrystals (CNCs) with both molecular and morphological core chirality can induce homochirality in racemic nematic lyotropic chromonic liquid crystal (rac-N-LCLC) tactoids. In comparison to the parent chiral organic building blocks, D-glucose, endowed only with molecular chirality, both CNCs showed a superior chirality transfer ability. Here, particularly the structurally compatible DSCG-modified CNCs prove to be highly effective since the surface DSCG moieties can insert into the DSCG stacks that constitute the racemic tactoids. Overall, this presents a highly efficient pathway for chiral induction in an aqueous medium and thus for understanding the origins of biological homochirality in a suitable experimental system.
Collapse
Affiliation(s)
- Diana P N Gonçalves
- Advanced Materials and Liquid Crystal Institute and, Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA
| | - Timothy Ogolla
- Materials Science Graduate Program, Kent State University, Kent, OH 44242-0001, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute and, Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.,Materials Science Graduate Program, Kent State University, Kent, OH 44242-0001, USA
| |
Collapse
|
3
|
Poryvai A, Šmahel M, Švecová M, Nemati A, Shadpour S, Ulbrich P, Ogolla T, Liu J, Novotná V, Veverka M, Vejpravová J, Hegmann T, Kohout M. Chiral, Magnetic, and Photosensitive Liquid Crystalline Nanocomposites Based on Multifunctional Nanoparticles and Achiral Liquid Crystals. ACS NANO 2022; 16:11833-11841. [PMID: 35867644 DOI: 10.1021/acsnano.1c10594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles serving as a multifunctional and multiaddressable dopant to modify the properties of liquid crystalline matrices are developed by combining cobalt ferrite nanocrystals with organic ligands featuring a robust photosensitive unit and a source of chirality from the natural pool. These nanoparticles provide a stable nanocomposite when dispersed in achiral liquid crystals, giving rise to chiral supramolecular structures that can respond to UV-light illumination, and, at the same time, the formed nanocomposite possesses strong magnetic response. We report on a nanocomposite that shows three additional functionalities (chirality and responsiveness to UV light and magnetic field) upon the introduction of a single dopant into achiral liquid crystals.
Collapse
Affiliation(s)
- Anna Poryvai
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Michal Šmahel
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Marie Švecová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Ahlam Nemati
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Sasan Shadpour
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague 6, Czech Republic
| | - Timothy Ogolla
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Jiao Liu
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Vladimíra Novotná
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Miroslav Veverka
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Jana Vejpravová
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Torsten Hegmann
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
4
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
5
|
Yuan J, Lu X, Zhang S, Zheng F, Deng Q, Han L, Lu Q. Molecular Chirality and Morphological Structural Chirality of Exogenous Chirality-Induced Liquid Crystalline Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianan Yuan
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Xuemin Lu
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songyang Zhang
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Quanzheng Deng
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Lu Han
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Qinghua Lu
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Nemati A, Querciagrossa L, Callison C, Shadpour S, Nunes Gonçalves DP, Mori T, Cui X, Ai R, Wang J, Zannoni C, Hegmann T. Effects of shape and solute-solvent compatibility on the efficacy of chirality transfer: Nanoshapes in nematics. SCIENCE ADVANCES 2022; 8:eabl4385. [PMID: 35080976 PMCID: PMC8791610 DOI: 10.1126/sciadv.abl4385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chirality, as a concept, is well understood at most length scales. However, quantitative models predicting the efficacy of the transmission of chirality across length scales are lacking. We propose here a modus operandi for a chiral nanoshape solute in an achiral nematic liquid crystal host showing that that chirality transfer may be understood by unusually simple geometric considerations. This mechanism is based on the product of a pseudoscalar chirality indicator and of a geometric shape compatibility factor based on the two-dimensional isoperimetric quotients for each nanoshape solute. The model is tested on an experimental set of precisely engineered gold nanoshapes. These libraries of calculated and in-parallel acquired experimental data among related nanoshapes pave the way for predictive calculations of chirality transfer in nanoscale, macromolecular, and biological systems, from designing chiral discriminators and enantioselective catalysts to developing chiral metamaterials and understanding nature's innate ability to transfer homochirality across length scales.
Collapse
Affiliation(s)
- Ahlam Nemati
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Lara Querciagrossa
- Dipartimento di Chimica Industriale and INSTM, Università di Bologna, Bologna, Italy
| | - Corinne Callison
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Sasan Shadpour
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | | | - Taizo Mori
- Institute for Solid State Physics, The University of Tokyo, Tokyo, Japan
| | - Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale and INSTM, Università di Bologna, Bologna, Italy
- Corresponding author. (C.Z.); (T.H.)
| | - Torsten Hegmann
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Corresponding author. (C.Z.); (T.H.)
| |
Collapse
|
7
|
Zhang M, Wang Y, Zhou Y, Yuan H, Guo Q, Zhuang T. Amplifying inorganic chirality using liquid crystals. NANOSCALE 2022; 14:592-601. [PMID: 34850801 DOI: 10.1039/d1nr06036h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chiral inorganic nanostructures have drawn extensive attention thanks to their unique physical properties as well as multidisciplinary applications. Amplifying inorganic chirality using liquid crystals (LCs) is an efficient way to enhance the parented inorganic asymmetry owing to chirality transfer. Herein, the universal synthetic methods and structural characterizations of chiral inorganic-doped LC hybrids are introduced. Additionally, the current progress and status of recent experiment and theory research about chiral interactions between inorganic nanomaterials (e.g. metal, semiconductor, perovskite, and magnetic oxide) and LCs are summarized in this review. We further present representative applications of these new hybrids in the area of encryption, sensing, optics, etc. Finally, we provide perspectives on this field in terms of material variety, new synthesis, and future practice. It is envisaged that LCs will act as a pivotal part in the amplification of inorganic chirality with versatile applications.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yaxin Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yajie Zhou
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Honghan Yuan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Qi Guo
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Taotao Zhuang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
John N, Mariamma AT. Recent developments in the chiroptical properties of chiral plasmonic gold nanostructures: bioanalytical applications. Mikrochim Acta 2021; 188:424. [PMID: 34811580 PMCID: PMC8608422 DOI: 10.1007/s00604-021-05066-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022]
Abstract
The presence of excess L-amino acid in the Murchison meteorite, circular polarization effect in the genesis of stars and existence of chirality in interstellar molecules contribute to the origin of life on earth. Chiral-sensitive techniques have been employed to untangle the secret of the symmetries of the universe, designing of effective secure drugs and investigation of chiral biomolecules. The relationship between light and chiral molecules was employed to probe and explore such molecules using spectroscopy techniques. The mutual interaction between electromagnetic spectrum and chirality of matter give rise to distinct optical response, which advances vital information contents in chiroptical spectroscopy. Chiral plasmonic gold nanoparticle exhibits distinctive circular dichroism peaks in broad wavelength range thereby crossing the limits of its characterization. The emergence of strong optical activity of gold nanosystem is related to its high polarizability, resulting in plasmonic and excitonic effects on incident photons. Inspired by the development of advanced chiral plasmonic nanomaterials and exploring its properties, this review gives an overview of various chiral gold nanostructures and the mechanism behind its chiroptical properties. Finally, we highlight the application of different chiral gold nanomaterials in the field of catalysis and medical applications with special emphasis to biosensing and biodetection.
Collapse
Affiliation(s)
- Nebu John
- The Post Graduate and Research Department of Chemistry, Mar Thoma College, Mahatma Gandhi University, Tiruvalla, 689103 Kerala India
| | - Anslin Thankachan Mariamma
- The Post Graduate Department of Mathematics, St. Gregorios College, University of Kerala, Kottarakara, 691531 Kerala India
| |
Collapse
|
9
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin-Based Supramolecular Structures. Angew Chem Int Ed Engl 2021; 60:14671-14678. [PMID: 33843119 DOI: 10.1002/anie.202103809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
Herein, we show that chiral metal nanoparticle superlattices can be produced through coassembly of achiral metal nanoparticles and porphyrin-based organic molecules. This chirality transfer from molecules to nanoparticle superstructures across three orders of magnitude in length scale is enabled by the hetero chain-chain van der Waals interactions. As far as we know, these are the first chiral nanoparticle assemblies based on chirality transfer through weak van der Waals forces. The dimensionality of the nanoparticle superlattices (1D chiral chains, 2D chiral sheets (cones), and 3D chiral particles) can be controlled based on a same synthetic chiral porphyrin molecule. Metalation of these porphyrin molecules with zinc cations results in the switching of molecular packing from J-type to H-type, which thereby produces 1D chiral nanoparticle chains. Functionalization of these zinc porphyrins with oleylamine can induce the assembly of nanoparticles into 2D chiral nanoparticle sheets.
Collapse
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
10
|
Gonçalves DPN, Hegmann T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surface‐Modified Cellulose Nanocrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Diana P. N. Gonçalves
- Advanced Materials and Liquid Crystal Institute Kent State University Kent OH 44242-0001 USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute Kent State University Kent OH 44242-0001 USA
- Department of Chemistry and Biochemistry, Materials Science Graduate Program, and Brain Health Research Institute Kent State University Kent OH 44242-0001 USA
| |
Collapse
|
11
|
Gonçalves DPN, Hegmann T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surface-Modified Cellulose Nanocrystals. Angew Chem Int Ed Engl 2021; 60:17344-17349. [PMID: 33949085 DOI: 10.1002/anie.202105357] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The vast majority of nanomaterials studied in light of their ability to transmit chirality to or amplify their chirality in a surrounding medium, constitute an achiral core with chirality solely installed at the surface by conjugation or encapsulation with optically active ligands. Here we present the inverse approach focusing on surface-modified cellulose nanocrystals (CNCs) with core chirality at both the molecular and the morphological level to quantify transmission and amplification of core chirality through space using a host nematic liquid crystal (N-LC) as reporter. We find that CNCs functionalized at the surface with achiral molecules, structurally related to the N-LC, exhibit better N-LC solubility, thereby serving as highly efficient chiral inducers. Moreover, functionalization with chiral molecules only marginally enhances the efficacy of helical distortion in the host N-LC matrix, indicating the high propensity of CNCs to transfer chirality from an inherently chiral core.
Collapse
Affiliation(s)
- Diana P N Gonçalves
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA.,Department of Chemistry and Biochemistry, Materials Science Graduate Program, and Brain Health Research Institute, Kent State University, Kent, OH, 44242-0001, USA
| |
Collapse
|
12
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin‐Based Supramolecular Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
13
|
Xia Q, Meng L, He T, Huang G, Li BS, Tang BZ. Direct Visualization of Chiral Amplification of Chiral Aggregation Induced Emission Molecules in Nematic Liquid Crystals. ACS NANO 2021; 15:4956-4966. [PMID: 33660972 DOI: 10.1021/acsnano.0c09802] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chiral amplification in liquid crystals (LCs) is a well-known strategy. However, current knowledge about the underlying mechanism was still lacking; in particular, how it was realized at the nano scale still remained to be revealed. Here, we provide systematical exploration of chiral amplification of chiral aggregation induced emission (AIE) molecules in LCs from direct visualization of their co-assemblies at the nano scale to theoretical calculation of the molecular packing modes on a single molecular level. Using AFM imaging,we directly visualized the co-assembly formed by chiral AIE molecules/LCs at the nano scale: the chiral AIE molecules self-assembled into helical fibers to serve as the helical template for LCs to bind, while the LCs helically bound to the helical fibers to form the co-assembly, giving the morphology of pearled necklaces or thick rods. Theoretical calculation suggested that chiral AIE molecules were packed into left-handed helical fibers with a large volume of empty space between neighboring molecules, which provided the binding cites for LCs. Structural analysis showed that the π-π stacking between aromatic groups from LCs and TPE groups and the σ-π hyperconjugation between LC aromatic groups and cholesterol aliphatic groups play an important role in stabilizing the binding of LCs in the confined space on the surface of the helical assemblies.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen 518055, China
| | - Luming Meng
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangxi Huang
- Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen 518055, China
| | - Bing Shi Li
- Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Luo ZW, Tao L, Zhong CL, Li ZX, Lan K, Feng Y, Wang P, Xie HL. High-Efficiency Circularly Polarized Luminescence from Chiral Luminescent Liquid Crystalline Polymers with Aggregation-Induced Emission Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhi-Wang Luo
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Lei Tao
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Cheng-Long Zhong
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Zheng-Xing Li
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Kai Lan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yu Feng
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing 100190, China
| | - Ping Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
15
|
Wang L, Urbas AM, Li Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801335. [PMID: 30160812 DOI: 10.1002/adma.201801335] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Indexed: 05/22/2023]
Abstract
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Augustine M Urbas
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
16
|
Lewandowski W, Vaupotič N, Pociecha D, Górecka E, Liz-Marzán LM. Chirality of Liquid Crystals Formed from Achiral Molecules Revealed by Resonant X-Ray Scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905591. [PMID: 32529663 DOI: 10.1002/adma.201905591] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Intensive research on chiral liquid crystals (LCs) has been fueled by their actively tunable physicochemical properties and structural complexity, comparable to those of sophisticated natural materials. Herein, recent progress in the discovery of new classes of chiral LCs, enabled by a combination of nano- and macroscale investigations is reviewed. First, an overview is provided of liquid crystalline phases, made of chiral and achiral low-weight molecules, that exhibit chiral structure and/or chiral morphology. Then, recent progress in the discovery of new classes of chiral LCs, particularly enabled by the application of resonant X-ray scattering is described. It is shown that the method is sensitive to modulations of molecular orientation and therefore provides information hardly accessible by means of other techniques, such as the sense of helical structures or chirality transfer across length scales. Finally, a perspective is presented on the future scope, opportunities, and challenges in the field of chiral LCs, in particular related to nanocomposites.
Collapse
Affiliation(s)
- Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Nataša Vaupotič
- Department of Physics, University of Maribor, Koroška 160, Maribor, 2000, Slovenia
- Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Ewa Górecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Luis M Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
17
|
Krishnasamy V, Qu W, Chen C, Huo H, Ramanagul K, Gothandapani V, Mehl GH, Zhang Q, Liu F. Self-Assembly and Temperature-Driven Chirality Inversion of Cholesteryl-Based Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Velmurugan Krishnasamy
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Wentao Qu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | | | | | - Georg H. Mehl
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| | - Qilu Zhang
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
18
|
Detailed investigation of N-(4-n-pentyl-oxybenzylidene)-4′-n-hexylaniline liquid crystal molecule. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Nemati A, Shadpour S, Querciagrossa L, Mori T, Zannoni C, Hegmann T. Highly Sensitive, Tunable Chirality Amplification through Space Visualized for Gold Nanorods Capped with Axially Chiral Binaphthyl Derivatives. ACS NANO 2019; 13:10312-10326. [PMID: 31424907 DOI: 10.1021/acsnano.9b03787] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The creation and transmission of chirality in molecular systems is a well-known, widely applied notion. Our understanding of how the chirality of nanomaterials can be controlled, measured, transmitted through space, and applied is less well understood. Dynamic assemblies for chiral sensing or metamaterials engineered from chiral nanomaterials require exact methods to determine transmission and amplification of nanomaterial chirality through space. We report the synthesis of a series of gold nanorods (GNRs) with a constant aspect ratio of ∼4.3 capped with C2-symmetric, axially chiral binaphthyl thiols, preparation of dispersions in the nematic liquid crystal 5CB, measurements of the helical pitch, and the determination of the helical twisting power as well as the average distance between the chiral nanomaterial additives. By comparison to the neat organic chiral derivatives, we demonstrate how the amplification of chirality facilitated by GNRs decorated with chiral molecules can be used to clearly distinguish the chiral induction strength of a homologous series of binaphthyl derivatives, differing only in the length of the nontethered aliphatic chain, in the induced chiral nematic liquid crystal phase. Considering systematic errors in sample preparation and optical measurements, these chiral molecules would otherwise be deemed identical with respect to chiral induction. Notably, we find some of the highest ever-reported values of the helical twisting power. We further support our experimentally derived arguments of a more comprehensive understanding of chirality transfer by calculations of a suitable pseudoscalar chirality indicator.
Collapse
Affiliation(s)
- Ahlam Nemati
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44242 , United States
| | - Sasan Shadpour
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44242 , United States
| | - Lara Querciagrossa
- Dipartimento di Chimica Industriale "Toso Montanari" and INSTM , Università di Bologna , Viale Risorgimento 4 , IT-40136 Bologna , Italy
| | - Taizo Mori
- Graduate School of Frontier Science , The University of Tokyo , 5-1-5, Kashiwanoha , Kashiwa 277-0827 , Japan
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale "Toso Montanari" and INSTM , Università di Bologna , Viale Risorgimento 4 , IT-40136 Bologna , Italy
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44242 , United States
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| |
Collapse
|
20
|
Kim DY, Jeong KU. Light responsive liquid crystal soft matters: structures, properties, and applications. LIQUID CRYSTALS TODAY 2019. [DOI: 10.1080/1358314x.2019.1653588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dae-Yoon Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, Korea
| |
Collapse
|
21
|
Murachver MT, Nemati A, Salamończyk M, Bullock C, Sabata Z, Rahmani H, Vorobiova T, Izadnegahdar A, Salili SM, Norman V, Zhu C, Hegmann T, Sprunt SN, Gleeson JT, Jakli AI. Indication of a twist-grain-boundary-twist-bend phase of flexible core bent-shape chiral dimers. SOFT MATTER 2019; 15:3283-3290. [PMID: 30931469 DOI: 10.1039/c8sm02338g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of the molecular chirality of chiral additives on the nanostructure of the twist-bend nematic (NTB) liquid crystal phase with ambidextrous chirality and nanoscale pitch due to spontaneous symmetry breaking is studied. It is found that the ambidextrous nanoscale pitch of the NTB phase increases by 50% due to 3% chiral additive, and the chiral transfer among the biphenyl groups disappears in the NTB* phase. Most significantly, a twist-grain boundary (TGB) type phase is found at c > 1.5 wt% chiral additive concentrations below the usual N* phase and above the non-CD active NTB* phase. In such a TGB type phase, the adjacent blocks of pseudo-layers of the nanoscale pitch rotate across the grain boundaries.
Collapse
Affiliation(s)
- Matthew T Murachver
- Chemical Physics Interdisciplinary Program & Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shadpour S, Vanegas JP, Nemati A, Hegmann T. Amplification of Chirality by Adenosine Monophosphate-Capped Luminescent Gold Nanoclusters in Nematic Lyotropic Chromonic Liquid Crystal Tactoids. ACS OMEGA 2019; 4:1662-1668. [PMID: 31459422 PMCID: PMC6648145 DOI: 10.1021/acsomega.8b03335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 06/01/2023]
Abstract
Amplification of chirality across length scales is a key concept pertinent to many models aiming to unravel the origin of homochirality. Tactoids of lyotropic chromonic liquid crystals formed by DNA, dyes, and other flat ionic molecules in water in the biphasic nematic + isotropic regime turn out to be a particularly relevant system to investigate chirality transfer and amplification. Herein, we present experiments to determine the amplification of chirality by luminescent gold nanoclusters decorated with adenosine monophosphate inducing chiral nematic tactoids formed by disodium cromoglycate in water. Polarized optical microscopy investigations of the induced homochiral tactoids reveal that adenosine monophosphate shows a higher optical activity when bound to the surface of such gold nanoclusters in comparison to free adenosine monophosphate, despite a three-time lower overall concentration. Free adenosine monophosphate also induces the opposite chiral twist both in the bulk nematic phase as shown by induced thin film circular dichroism spectropolarimetry and in the tactoids in comparison to adenosine monophosphate bound to the gold nanocluster. Overall, these experiments demonstrate that lyotropic chromonic liquid crystal tactoids are powerful systems to image and quantify chirality amplification by key biological chiral molecules that would have played a role in the origin of homochirality.
Collapse
Affiliation(s)
- Sasan Shadpour
- Chemical
Physics Interdisciplinary Program, Advanced Materials and
Liquid Crystal Institute and Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| | - Julie P. Vanegas
- Chemical
Physics Interdisciplinary Program, Advanced Materials and
Liquid Crystal Institute and Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| | - Ahlam Nemati
- Chemical
Physics Interdisciplinary Program, Advanced Materials and
Liquid Crystal Institute and Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| | - Torsten Hegmann
- Chemical
Physics Interdisciplinary Program, Advanced Materials and
Liquid Crystal Institute and Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| |
Collapse
|
23
|
Nemati A, Shadpour S, Querciagrossa L, Li L, Mori T, Gao M, Zannoni C, Hegmann T. Chirality amplification by desymmetrization of chiral ligand-capped nanoparticles to nanorods quantified in soft condensed matter. Nat Commun 2018; 9:3908. [PMID: 30254259 PMCID: PMC6156227 DOI: 10.1038/s41467-018-06400-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
Induction, transmission, and manipulation of chirality in molecular systems are well known, widely applied concepts. However, our understanding of how chirality of nanoscale entities can be controlled, measured, and transmitted to the environment is considerably lacking behind. Future discoveries of dynamic assemblies engineered from chiral nanomaterials, with a specific focus on shape and size effects, require exact methods to assess transmission and amplification of nanoscale chirality through space. Here we present a remarkably powerful chirality amplification approach by desymmetrization of plasmonic nanoparticles to nanorods. When bound to gold nanorods, a one order of magnitude lower number of chiral molecules induces a tighter helical distortion in the surrounding liquid crystal-a remarkable amplification of chirality through space. The change in helical distortion is consistent with a quantification of the change in overall chirality of the chiral ligand decorated nanomaterials differing in shape and size as calculated from a suitable pseudoscalar chirality indicator.
Collapse
Affiliation(s)
- Ahlam Nemati
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| | - Sasan Shadpour
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| | - Lara Querciagrossa
- Dipartimento di Chimica Industriale "Toso Montanari" and INSTM, Università di Bologna, Viale Risorgimento 4, IT-40136, Bologna, Italy
| | - Lin Li
- Institute for Smart Liquid Crystals, JITRI, Changshu, 215500, Jiangsu, China
| | - Taizo Mori
- Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Min Gao
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale "Toso Montanari" and INSTM, Università di Bologna, Viale Risorgimento 4, IT-40136, Bologna, Italy
| | - Torsten Hegmann
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242-0001, USA.
| |
Collapse
|
24
|
Kim DY, Lee SA, Kim S, Nah C, Lee SH, Jeong KU. Asymmetric Fullerene Nanosurfactant: Interface Engineering for Automatic Molecular Alignments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702439. [PMID: 29134757 DOI: 10.1002/smll.201702439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Since the molecular self-assembly of nanomaterials is sensitive to their surface properties, the molecular packing structure on the surface is essential to build the desired chemical and physical properties of nanomaterials. Here, a new nanosurfactant is proposed for the automatic construction of macroscopic surface alignment layer for liquid crystal (LC) molecules. An asymmetric nanosurfactant (C60 NS) consisted of mesogenic cyanobiphenyl moieties with flexible alkyl chains and a [60]fullerene nanoatom is newly designed and precisely synthesized. The C60 NS directly introduced in the anisotropic LC medium is self-assembled into the monolayered protrusions on the surface because of its amphiphilic nature originated by asymmetrically programmed structural motif of LC-favoring moieties and LC-repelling groups. The monolayered protrusions constructed by the phase-separation and self-assembly of asymmetric C60 NS nanosurfactant in the anisotropic LC media amplify and transfer the molecular orientational order from surface to bulk, and finally create the automatic vertical molecular alignment on the macroscopic length scale. The asymmetric C60 NS nanosurfactant and its self-assembly described herein can offer the direct guideline of interface engineering for the automatic molecular alignments.
Collapse
Affiliation(s)
- Dae-Yoon Kim
- BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896, South Korea
| | - Sang-A Lee
- BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896, South Korea
| | - Soeun Kim
- BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896, South Korea
| | - Changwoon Nah
- BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896, South Korea
| | - Seung Hee Lee
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, 54896, South Korea
| | - Kwang-Un Jeong
- BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896, South Korea
| |
Collapse
|
25
|
Wang X, Zhang Y, Luo J, Wang D, Gao H, Zhang J, Xing Y, Yang Z, Cao H, He W. Silica aerogel films via ambient pressure drying for broadband reflectors. NEW J CHEM 2018. [DOI: 10.1039/c7nj05159j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This manuscript demonstrates the advantages of silica aerogel films over nanoparticles in broadening the reflection bandwidth of cholesteric liquid crystals.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Yue Zhang
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Jieya Luo
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Dong Wang
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Hong Gao
- China Academy of Space Technology
- Beijing 100094
- P. R. China
| | - Jingjing Zhang
- China Academy of Space Technology
- Beijing 100094
- P. R. China
| | - Yan Xing
- China Academy of Space Technology
- Beijing 100094
- P. R. China
| | - Zhou Yang
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Hui Cao
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Wanli He
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|
26
|
Feng W, Kim JY, Wang X, Calcaterra HA, Qu Z, Meshi L, Kotov NA. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. SCIENCE ADVANCES 2017; 3:e1601159. [PMID: 28275728 PMCID: PMC5332156 DOI: 10.1126/sciadv.1601159] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 12/15/2016] [Indexed: 05/20/2023]
Abstract
Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging.
Collapse
Affiliation(s)
- Wenchun Feng
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ji-Young Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinzhi Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heather A. Calcaterra
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhibei Qu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louisa Meshi
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nicholas A. Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author.
| |
Collapse
|
27
|
Kim DY, Nah C, Kang SW, Lee SH, Lee KM, White TJ, Jeong KU. Free-Standing and Circular-Polarizing Chirophotonic Crystal Reflectors: Photopolymerization of Helical Nanostructures. ACS NANO 2016; 10:9570-9576. [PMID: 27643819 DOI: 10.1021/acsnano.6b04949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The preparation of materials exhibiting structural colors has been intensively studied in biomimetic science and technology. Utilizing a newly synthesized cholesteric liquid-crystal (CLC) monomer (abbreviated as BP1CRM), we have prepared CLC films. Photoinitiated copolymerization of this monomer with a common achiral liquid-crystalline monomer produced free-standing films with homogeneous and nanoscale pitch distributions. Employing the thermal sensitivity of the CLC monomer, chirophotonic crystal reflectors were prepared exhibiting a range of colors. The free-standing and circular-polarizing chirophotonic crystal films maintain excellent thermal, mechanical, and chemical stabilities, and the composition can readily be applied as polarized optical films and smart paints.
Collapse
Affiliation(s)
| | | | | | | | - Kyung Min Lee
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base , Ohio 45433-7750, United States
| | - Timothy J White
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base , Ohio 45433-7750, United States
| | | |
Collapse
|
28
|
Zhou Y, Marson RL, van Anders G, Zhu J, Ma G, Ercius P, Sun K, Yeom B, Glotzer SC, Kotov NA. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS NANO 2016; 10:3248-56. [PMID: 26900920 DOI: 10.1021/acsnano.5b05983] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions.
Collapse
Affiliation(s)
- Yunlong Zhou
- Wenzhou Institute of Biomaterials and Engineering, CNITECH.CAS-Wenzhou Medical University , Wenzhou, Zhejiang 325011, People's Republic of China
| | | | | | | | | | - Peter Ercius
- National Center for Electron Microscopy, the Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | | | - Bongjun Yeom
- Department of Chemical Engineering, Myongji University , Yongin, Gyeonggido 17058, South Korea
| | | | | |
Collapse
|
29
|
Mori T, Sharma A, Hegmann T. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands. ACS NANO 2016; 10:1552-64. [PMID: 26735843 DOI: 10.1021/acsnano.5b07164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle surface is diminished as the size of the particle is reduced. However, in comparison to the free ligands, per chiral molecule all tested gold nanoparticles induce helical distortions in a 10- to 50-fold larger number of liquid crystal host molecules surrounding each particle, indicating a significantly enhanced chiral correlation length. We propose that both the helicity and the chirality transfer efficiency of axially chiral binaphthyl derivatives can be controlled at metal nanoparticle surfaces by adjusting the particle size and curvature as well as the number and density of the chiral ligands to ultimately measure and tune the chiral correlation length.
Collapse
Affiliation(s)
- Taizo Mori
- Liquid Crystal Institute, Chemical Physics Interdisciplinary Program and ‡Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242-0001 United States
| | - Anshul Sharma
- Liquid Crystal Institute, Chemical Physics Interdisciplinary Program and ‡Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242-0001 United States
| | - Torsten Hegmann
- Liquid Crystal Institute, Chemical Physics Interdisciplinary Program and ‡Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242-0001 United States
| |
Collapse
|
30
|
Cseh L, Mang X, Zeng X, Liu F, Mehl GH, Ungar G, Siligardi G. Helically Twisted Chiral Arrays of Gold Nanoparticles Coated with a Cholesterol Mesogen. J Am Chem Soc 2015; 137:12736-9. [DOI: 10.1021/jacs.5b05059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liliana Cseh
- Department
of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Xiaobin Mang
- Department
of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Xiangbing Zeng
- Department
of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Feng Liu
- Department
of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
- State
Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, PR China
| | - Georg H. Mehl
- Department
of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Goran Ungar
- Department
of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Department
of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | | |
Collapse
|
31
|
Ezhov AA, Derikov YI, Chernikova EV, Abramchuk SS, Shandryuk GA, Merekalov AS, Panov VI, Talroze RV. Monochelic copolymer as a matrix for cholesteric composites with gold nanoparticles. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Affiliation(s)
- Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|