1
|
Tian H, Guo H, Liu J, Du Y, Ren H, Li H. Polymeric nanoparticles in radiopharmaceutical delivery strategies. J Mater Chem B 2025; 13:1270-1285. [PMID: 39693049 DOI: 10.1039/d4tb02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The potential applications of polymer nanoparticles (NPs) in the biomedical field have been the subject of extensive research. Radiopharmaceuticals that combine radionuclides and drugs using polymer nanoparticles (NPs) as carriers can be externally labelled, internally labelled or interfacially labelled with radionuclides at different sites. Consequently, they can be employed as delivery agents for a range of diseases. Currently, polymeric nanoparticles can deliver isotopes via active targeting, passive targeting and stimuli-responsive release systems. The objective is to deliver drugs and nuclides to the target site in an efficient manner, thereby maximizing efficacy and minimizing side effects. The development of drug release systems has the potential to address the growing social and economic challenges currently facing modern healthcare. This paper presents a detailed synthesis of the methods used to create polymer nanoparticles (NPs) and strategies for the targeted delivery of radiopharmaceuticals with radionuclides labelled at different locations. Additionally, the paper outlines the current progress of polymer NPs for use in imaging and therapeutic applications, as well as the future challenges that lie ahead in this field.
Collapse
Affiliation(s)
- Haidong Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
| | - Huijun Guo
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jiadi Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| | - Yongpeng Du
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100039, China
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| |
Collapse
|
2
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
3
|
Bandaru S, George N, Sharma B, Palanivel M, Mukherjee A, Wu WY, Ghosh KK, Ball WB, Gulyas B, Padmanabhan P, Ghosh S, Chakrabortty S. Aqueous based ultra-small magnetic Cr-doped CdSe quantum dots as a potential dual imaging probe in biomedicine. Biomater Sci 2024. [PMID: 39479922 DOI: 10.1039/d4bm00811a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The substitution of semiconductor quantum dots (QDs) by a small number of transition-metal ions with magnetic properties gives rise to magnetic-doped semiconductors. With a balance of optical and magnetic properties, these magnetic semiconductors are widely used in spintronics, bioimaging and magnetic resonance imaging (MRI) applications. To facilitate their usage in bio-applications, it is critical to synthesize water-soluble magnetic QDs with a stabilized structure while maintaining their optical and magnetic properties. Here in our work, we have developed a facile substituted synthetic route to achieve Cr-doped CdSe (Cr-CdSe) via hydrothermal method. The effects of doping on the structural, optical, and magnetic properties of Cr-CdSe were studied using X-ray diffraction, UV-visible spectroscopy, and photoluminescence lifetime. We then explored their chemical nature and change in morphology with an increase in doping concentration via X-ray photoelectron spectroscopy and transmission electron microscopy. Water-soluble QDs have been used as bioimaging probes for the past few decades due to their strong fluorescence, photostability and improved tissue or cellular penetration. However, incorporating magnetic material into a fluorescent entity harnesses the ability to control the strengths of both modalities, which enhances diagnostic accuracy and facilitates its application in bio-systems, especially in early accurate diagnosis. Finally, we demonstrate the competency of Cr-CdSe as a dual-imaging probe with fluorescent cellular imaging and MRI applications.
Collapse
Affiliation(s)
- Shamili Bandaru
- Department of Chemistry, SRM University, AP - Andhra Pradesh, Andhra Pradesh, 522 240, India.
| | - Nilja George
- Department of Physics, SRM University, AP - Andhra Pradesh, Andhra Pradesh, 522 240, India.
| | - Bhargy Sharma
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 50 Nanyang Avenue, Singapore 639798
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921.
| | - Arunima Mukherjee
- Department of Biological Sciences, SRM University AP Andhra Pradesh, Andhra Pradesh 522240, India
| | - Wen-Ya Wu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921.
| | - Writoban Basu Ball
- Department of Biological Sciences, SRM University AP Andhra Pradesh, Andhra Pradesh 522240, India
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921.
- Cognitive Neuroimaging center, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
- Department of Clinical Neurosciences, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921.
- Cognitive Neuroimaging center, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Siddhartha Ghosh
- Department of Physics, SRM University, AP - Andhra Pradesh, Andhra Pradesh, 522 240, India.
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University, AP - Andhra Pradesh, Andhra Pradesh, 522 240, India.
| |
Collapse
|
4
|
Mazaheri Tehrani M, Erfani M, Amiri M, Goudarzi M. Technetium-99m radiolabeling of graphene quantum dots (GQDs) as a new probe for glioblastoma tumor imaging. Int J Radiat Biol 2024:1-8. [PMID: 39325664 DOI: 10.1080/09553002.2024.2404460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Cancer diagnosis involves a multi-step process. Accurate identification of the tumor, staging and development of cancer cells is crucial for selecting optimal treatments to minimize disease recurrence. Quantum dots (QDs) represent an exciting class of fluorescent nanoprobes in molecular detection and targeted tumor imaging. MATERIALS AND METHODS In this study, graphene quantum dots (GQDs) were synthesized by pyrolysis of citric acid (CA) as a carbon precursor under high temperatures. The morphology of the obtained GQDs was first characterized using physical (TEM and DLS) and spectroscopic (fluorescence, FTIR and UV-Vis) methods. In the following,99mTc-labeled GQDs were prepared in the presence of SnCl2.2H2O as a reducing agent between 95 and 100 °C. The biodistribution and tumor targeting efficiency of radiolabeled GQDs as a novel agent for C6 glioma tumor scintigraphy in an animal model were evaluated. Furthermore, organ uptake, human serum albumin binding and tumor accumulation were measured. RESULTS The TEM image of the prepared GQDs showed a relatively uniform size distribution in the range of diameter 6-9 nm and spherical shape. Radiolabeled GQDs showed a radiochemical yield of >97% (n = 3). Through incubation in human serum, almost 15% of 99mTc-labeled GQDs degraded after 6 h. The amount of uptake in xenograft models of glioma C6 rats was 1.10 ± 0.36% of injection dose per gram after 1 h. The kidneys, intestinal and glioma tumor sites were observed via scintigraphy imaging. CONCLUSION Our data suggest that 99mTc-labeled GQDs, as a new radiotracer, efficiently accumulate in the tumor site and could be included as a radiotracer for detecting glioma tumors.
Collapse
Affiliation(s)
- Maryam Mazaheri Tehrani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mojtaba Amiri
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Goudarzi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
5
|
Najdian A, Beiki D, Abbasi M, Gholamrezanezhad A, Ahmadzadehfar H, Amani AM, Ardestani MS, Assadi M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24:127. [PMID: 39304961 DOI: 10.1186/s40644-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Multimodal imaging unfolds as an innovative approach that synergistically employs a spectrum of imaging techniques either simultaneously or sequentially. The integration of computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (OI) results in a comprehensive and complementary understanding of complex biological processes. This innovative approach combines the strengths of each method and overcoming their individual limitations. By harmoniously blending data from these modalities, it significantly improves the accuracy of cancer diagnosis and aids in treatment decision-making processes. Nanoparticles possess a high potential for facile functionalization with radioactive isotopes and a wide array of contrast agents. This strategic modification serves to augment signal amplification, significantly enhance image sensitivity, and elevate contrast indices. Such tailored nanoparticles constructs exhibit a promising avenue for advancing imaging modalities in both preclinical and clinical setting. Furthermore, nanoparticles function as a unified nanoplatform for the co-localization of imaging agents and therapeutic payloads, thereby optimizing the efficiency of cancer management strategies. Consequently, radiolabeled nanoparticles exhibit substantial potential in driving forward the realms of multimodal imaging and theranostic applications. This review discusses the potential applications of molecular imaging in cancer diagnosis, the utilization of nanotechnology-based radiolabeled materials in multimodal imaging and theranostic applications, as well as recent advancements in this field. It also highlights challenges including cytotoxicity and regulatory compliance, essential considerations for effective clinical translation of nanoradiopharmaceuticals in multimodal imaging and theranostic applications.
Collapse
Affiliation(s)
- Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen, Dortmund, Germany
- Department of Nuclear Medicine, Institute of Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
6
|
Wu J, Huang J, Yu J, Xu M, Liu J, Pu K. Exosome-Inhibiting Polymeric Sonosensitizer for Tumor-Specific Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400762. [PMID: 38445783 DOI: 10.1002/adma.202400762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Combination cancer immunotherapy based on electromagnetic energy and immunotherapy shows potent anti-cancer efficacy. However, as a factor that mediates tumor metastasis and immune suppression, the impact of tumor exosomes on therapy under electromagnetic energy stimulation remains unclear. Herein, findings indicate that sonodynamic therapy (SDT) increases serum exosome levels by inducing apoptotic exosomes and loosening the tumor extracellular matrix, promoting lung metastasis. To address this problem, an exosome-inhibiting polymeric sonosensitizer (EIPS) selectively inhibiting tumor exosome generation in response to the tumor biomarker is synthesized. EIPS consists of a semiconducting polymer backbone capable of inducing SDT and a poly(ethylene glycol) layer conjugated with a tumor-specific enzyme-responsive exosome inhibitor prodrug. After being cleaved by tumor Cathepsin B, EIPS releases active exosome inhibitors, preventing tumor exosome-mediated immune suppression and lung metastasis. As a result, EIPS elicits robust antitumor effects through the synergistic effect of SDT and tumor exosome inhibition, completely preventing lung metastasis and establishing a long-term immune memory effect. This is the first example showing that combining SDT with tumor-specific exosome inhibition can elicit a potent immune response without the help of typical immune agonists.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| |
Collapse
|
7
|
Xu R, Lai S, Zhang Y, Zhang X. Research Progress of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:832. [PMID: 38786788 PMCID: PMC11124338 DOI: 10.3390/nano14100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we discussed the hazards of heavy-metal-containing quantum dots (QDs), such as environmental pollution and human health risks. Next, the main representatives of heavy-metal-free QDs were introduced, such as InP, ZnE (E=S, Se and Te), CuInS2, Ag2S, and so on. In the next section, we discussed the synthesis methods of heavy-metal-free QDs, including the hot injection (HI) method, the heat up (HU) method, the cation exchange (CE) method, the successful ionic layer adsorption and reaction (SILAR) method, and so on. Finally, important progress in the development of heavy-metal-free QLEDs was summarized in three aspects (QD emitter layer, hole transport layer, and electron transport layer).
Collapse
Affiliation(s)
| | | | | | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Physics and Opto-Electronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (R.X.); (S.L.); (Y.Z.)
| |
Collapse
|
8
|
Teng M, Liang X, Liu H, Li Z, Gao X, Zhang C, Cheng H, Chen H, Liu G. Cerenkov radiation shining a light for cancer theranostics. NANO TODAY 2024; 55:102174. [DOI: 10.1016/j.nantod.2024.102174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
9
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Wu J, Pu K. Leveraging Semiconducting Polymer Nanoparticles for Combination Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308924. [PMID: 37864513 DOI: 10.1002/adma.202308924] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Cancer immunotherapy has become a promising method for cancer treatment, bringing hope to advanced cancer patients. However, immune-related adverse events caused by immunotherapy also bring heavy burden to patients. Semiconducting polymer nanoparticles (SPNs) as an emerging nanomaterial with high biocompatibility, can eliminate tumors and induce tumor immunogenic cell death through different therapeutic modalities, including photothermal therapy, photodynamic therapy, and sonodynamic therapy. In addition, SPNs can work as a functional nanocarrier to synergize with a variety of immunomodulators to amplify anti-tumor immune responses. In this review, SPNs-based combination cancer immunotherapy is comprehensively summarized according to the SPNs' therapeutic modalities and the type of loaded immunomodulators. The in-depth understanding of existing SPNs-based therapeutic modalities will hopefully inspire the design of more novel nanomaterials with potent anti-tumor immune effects, and ultimately promote their clinical translation.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
11
|
Zhang X, Li J, Wang T, Liu N, Su X. Cerenkov radiation-mediated in situ activation of silicon nanocrystals for NIR optical imaging. Chem Commun (Camb) 2023; 59:13990-13992. [PMID: 37937992 DOI: 10.1039/d3cc04468h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Cerenkov radiation from radiopharmaceuticals (18F-FDG) serves as an internal light source to excite UV-responsive silicon nanocrystals for near-infrared luminescence imaging that offers deeper tissue penetration and high signal-to-noise ratio.
Collapse
Affiliation(s)
- Xun Zhang
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jingchao Li
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Tingting Wang
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- School of Medicine, Xiamen University, Xiamen 361005, China
| | - Nian Liu
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
12
|
Ahmadi M, Emzhik M, Mosayebnia M. Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging. Drug Deliv Transl Res 2023; 13:1546-1583. [PMID: 36811810 DOI: 10.1007/s13346-023-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Abstract
Providing accurate molecular imaging of the body and biological process is critical for diagnosing disease and personalizing treatment with the minimum side effects. Recently, diagnostic radiopharmaceuticals have gained more attention in precise molecular imaging due to their high sensitivity and appropriate tissue penetration depth. The fate of these radiopharmaceuticals throughout the body can be traced using nuclear imaging systems, including single-photon emission computed tomography (SPECT) and positron emission tomography (PET) modalities. In this regard, nanoparticles are attractive platforms for delivering radionuclides into targets because they can directly interfere with the cell membranes and subcellular organelles. Moreover, applying radiolabeled nanomaterials can decrease their toxicity concerns because radiopharmaceuticals are usually administrated at low doses. Therefore, incorporating gamma-emitting radionuclides into nanomaterials can provide imaging probes with valuable additional properties compared to the other carriers. Herein, we aim to review (1) the gamma-emitting radionuclides used for labeling different nanomaterials, (2) the approaches and conditions adopted for their radiolabeling, and (3) their application. This study can help researchers to compare different radiolabeling methods in terms of stability and efficiency and choose the best way for each nanosystem.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Emzhik
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Niayesh Junction, Vali-E-Asr Ave, Tehran, 14155-6153, Iran.
| |
Collapse
|
13
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
14
|
Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023; 14:15. [PMID: 36865684 PMCID: PMC9968708 DOI: 10.1186/s12645-023-00165-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.
Collapse
Affiliation(s)
- Muskan Goel
- Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India
| | - Yuri Mackeyev
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| |
Collapse
|
15
|
Ghauri MS, Reddy AJ, Tabaie E, Issagholian L, Brahmbhatt T, Seo Y, Dang A, Nawathey N, Bachir A, Patel R. Evaluating the Utilization of Ethylenediaminetetraacetic Acid as a Treatment Supplement for Gliomas. Cureus 2022; 14:e31617. [DOI: 10.7759/cureus.31617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 11/18/2022] Open
|
16
|
Liu N, Su X, Sun X. Cerenkov radiation-activated probes for deep cancer theranostics: a review. Theranostics 2022; 12:7404-7419. [PMID: 36438500 PMCID: PMC9691350 DOI: 10.7150/thno.75279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Cerenkov radiation (CR) from radionuclides and megavoltage X-ray radiation can act as an in situ light source for deep cancer theranostics, overcoming the limitations of external light sources. Despite the blue-weighted emission and low quantum yield of CR, activatable probes-mediated CR can enhance the in-vivo diagnostic signals by Cerenkov resonance energy transfer and also can produce therapeutic effects by reactive species generation/drug release, greatly promoting the biomedical applications of CR. In this review, we describe the principles and sources of CR, construction of CR-activated probes and their application to tumor optical imaging and therapy. Finally, future prospects for the design and biomedical application of CR-activated probes are discussed.
Collapse
Affiliation(s)
- Nian Liu
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Bentivoglio V, Varani M, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: PET Use (Part 2). Biomolecules 2022; 12:1517. [PMID: 36291726 PMCID: PMC9599877 DOI: 10.3390/biom12101517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
The use of radiolabelled nanoparticles (NPs) is a promising nuclear medicine tool for diagnostic and therapeutic purposes. Thanks to the heterogeneity of their material (organic or inorganic) and their unique physical and chemical characteristics, they are highly versatile for their use in several medical applications. In particular, they have shown interesting results as radiolabelled probes for positron emission tomography (PET) imaging. The high variability of NP types and the possibility to use several isotopes in the radiolabelling process implies different radiolabelling methods that have been applied over the previous years. In this review, we compare and summarize the different methods for NP radiolabelling with the most frequently used PET isotopes.
Collapse
Affiliation(s)
- Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
18
|
Bianfei S, Fang L, Zhongzheng X, Yuanyuan Z, Tian Y, Tao H, Jiachun M, Xiran W, Siting Y, Lei L. Application of Cherenkov radiation in tumor imaging and treatment. Future Oncol 2022; 18:3101-3118. [PMID: 36065976 DOI: 10.2217/fon-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cherenkov radiation (CR) is the characteristic blue glow that is generated during radiotherapy or radioisotope decay. Its distribution and intensity naturally reflect the actual dose and field of radiotherapy and the location of radioisotope imaging agents in vivo. Therefore, CR can represent a potential in situ light source for radiotherapy monitoring and radioisotope-based tumor imaging. When used in combination with new imaging techniques, molecular probes or nanomedicine, CR imaging exhibits unique advantages (accuracy, low cost, convenience and fast) in tumor radiotherapy monitoring and imaging. Furthermore, photosensitive nanomaterials can be used for CR photodynamic therapy, providing new approaches for integrating tumor imaging and treatment. Here the authors review the latest developments in the use of CR in tumor research and discuss current challenges and new directions for future studies.
Collapse
Affiliation(s)
- Shao Bianfei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Fang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Zhongzheng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Yuanyuan
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tian
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - He Tao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Jiachun
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Xiran
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Siting
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Lei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Theranostic Radiolabeled Nanomaterials for Molecular Imaging and potential Immunomodulation Effects. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Copper-based nanomaterials (Cu-based NMs) with favorable biocompatibility and unique properties have attracted the attention of many biomedical researchers. Cu-based NMs are one of the most widely studied materials in cancer treatment. In recent years, great progress has been made in the field of biomedicine, especially in the treatment and diagnosis of tumors. This review begins with the classification of Cu-based NMs and the recent synthetic strategies of Cu-based NMs. Then, according to the abundant and special properties of Cu-based NMs, their application in biomedicine is summarized in detail. For biomedical imaging, such as photoacoustic imaging, positron emission tomography imaging, and multimodal imaging based on Cu-based NMs are summarized, as well as strategies to improve the diagnostic effectiveness. Moreover, a series of unique structures and functions as well as the underlying property activity relationship of Cu-based NMs were shown to highlight their promising therapeutic performance. Cu-based NMs have been widely used in monotherapies, such as photothermal therapy (PTT) and chemodynamic therapy (CDT). Moreover, the sophisticated design in composition, structure, and surface fabrication of Cu-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. To further improve the efficiency of cancer treatment, combined therapy based on Cu-based NMs was introduced in detail. Finally, the challenges, critical factors, and future prospects for the clinical translation of Cu-based NMs as multifunctional theranostic agents were also considered and discussed. The aim of this review is to provide a better understanding and key consideration for the rational design of this increasingly important new paradigm of Cu-based NMs as theranostic agents. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiaoyan Zhong
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
22
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
23
|
Self-assembly of semiconductor quantum dots with porphyrin chromophores: Energy relaxation processes and biomedical applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart
131
I‐Labeled Self‐Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Kai Feng
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Wenyu Wu
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Xiuping Han
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Guoqiang Shao
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
25
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart 131 I-Labeled Self-Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021; 60:21884-21889. [PMID: 34374188 DOI: 10.1002/anie.202107231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Stimulating photosensitizers (PS) by Cerenkov radiation (CR) can overcome the light penetration limitation in traditional photodynamic therapy. However, separate injection of radiopharmaceuticals and PS cannot guarantee their efficient interaction in tumor areas, while co-delivery of radionuclides and PS face the problem of nonnegligible phototoxicity in normal tissues. Here, we describe a 131 I-labeled smart photosensitizer, composed of pyropheophorbide-a (photosensitizer), a diisopropylamino group (pH-sensitive group), an 131 I-labeled tyrosine group (CR donor), and polyethylene glycol, which can self-assemble into nanoparticles (131 I-sPS NPs). The 131 I-sPS NPs showed low phototoxicity in normal tissues due to aggregation-caused quenching effect, but could self-produce reactive oxygen species in tumor sites upon disassembly. Upon intravenous injection, 131 I-sPS NPs showed great tumor inhibition capability in subcutaneous 4T1-tumor-bearing Balb/c mice and orthotopic VX2 liver tumor bearing rabbits. We believed 131 I-sPS NPs could expand the application of CR and provide an effective strategy for deep tumor theranostics.
Collapse
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
26
|
Morselli G, Villa M, Fermi A, Critchley K, Ceroni P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. NANOSCALE HORIZONS 2021; 6:676-695. [PMID: 34264247 DOI: 10.1039/d1nh00260k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper indium sulfide (CIS) quantum dots are ideal for bioimaging applications, by being characterized by high molar absorption coefficients throughout the entire visible spectrum, high photoluminescence quantum yield, high tolerance to the presence of lattice defects, emission tunability from the red to the near-infrared spectral region by changing their dimensions and composition, and long lifetimes (hundreds of nanoseconds) enabling time-gated detection to increase signal-to-noise ratio. The present review collects: (i) the most common procedures used to synthesize stable CIS QDs and the possible strategies to enhance their colloidal stability in aqueous environment, a property needed for bioimaging applications; (ii) their photophysical properties and parameters that affect the energy and brightness of their photoluminescence; (iii) toxicity and bioimaging applications of CIS QDs, including tumor targeting, time-gated detection and multimodal imaging, as well as theranostics. Future perspectives are analyzed in view of advantages and potential limitations of CIS QDs compared to most traditional QDs.
Collapse
Affiliation(s)
- Giacomo Morselli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, 40126, Italy.
| | | | | | | | | |
Collapse
|
27
|
Tian M, He X, Jin C, He X, Wu S, Zhou R, Zhang X, Zhang K, Gu W, Wang J, Zhang H. Transpathology: molecular imaging-based pathology. Eur J Nucl Med Mol Imaging 2021; 48:2338-2350. [PMID: 33585964 PMCID: PMC8241651 DOI: 10.1007/s00259-021-05234-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022]
Abstract
Pathology is the medical specialty concerned with the study of the disease nature and causes, playing a key role in bridging basic researches and clinical medicine. In the course of development, pathology has significantly expanded our understanding of disease, and exerted enormous impact on the management of patients. However, challenges facing pathology, the inherent invasiveness of pathological practice and the persistent concerns on the sample representativeness, constitute its limitations. Molecular imaging is a noninvasive technique to visualize, characterize, and measure biological processes at the molecular level in living subjects. With the continuous development of equipment and probes, molecular imaging has enabled an increasingly precise evaluation of pathophysiological changes. A new pathophysiology visualization system based on molecular imaging is forming and shows the great potential to reform the pathological practice. Several improvements in "trans-," including trans-scale, transparency, and translation, would be driven by this new kind of pathological practice. Pathological changes could be evaluated in a trans-scale imaging mode; tissues could be transparentized to better present the underlying pathophysiological information; and the translational processes of basic research to the clinical practice would be better facilitated. Thus, transpathology would greatly facilitate in deciphering the pathophysiological events in a multiscale perspective, and supporting the precision medicine in the future.
Collapse
Affiliation(s)
- Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| | - Xuexin He
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiao He
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Weizhong Gu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Li SL, Jiang P, Hua S, Jiang FL, Liu Y. Near-infrared Zn-doped Cu 2S quantum dots: an ultrasmall theranostic agent for tumor cell imaging and chemodynamic therapy. NANOSCALE 2021; 13:3673-3685. [PMID: 33538734 DOI: 10.1039/d0nr07537j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Theranostic agents that integrated chemodynamic therapy (CDT) and imaging functions have great potential application in personalized cancer therapy. However, most theranostic agents were fabricated by chemically coupling two or more independent functional units with diagnostic or therapeutic capabilities, and therefore have a large size. To date, one-step synthesis of unmodified ultrasmall quantum dots (QDs) integrating CDT and fluorescence imaging capabilities remains a challenge. Herein, we reported a simple one-step synthesis method of ultrasmall (2.46 nm) Zn-doped Cu2S (Zn:Cu2S) QDs with inherent properties of both high CDT activity and near-infrared fluorescence imaging capability. The fluorescence of Cu2S QDs was significantly enhanced approximately tenfold after Zn doping due to the compensation of defects. In vitro and in vivo experiments demonstrated that the Zn:Cu2S QDs could specifically and significantly inhibit the cancer cell growth (inhibition rate exceeded 65%) without damaging the normal cells. Furthermore, the CDT mechanism study suggested that a Fenton-like reaction occurred after the Zn:Cu2S QDs entered the tumor cells, inducing apoptosis via the mitochondrial signaling pathway, and activating the production of reactive oxygen species (ROS) and autophagy to selectively eliminate tumor cells to achieve CDT. This work proposed a simple one-step synthesis of unmodified ultrasmall QDs with fluorescence imaging and CDT, which provides a promising strategy for QDs to act as multi-functional theranostic agents.
Collapse
Affiliation(s)
- Shu-Lan Li
- Department of Chemistry & Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | |
Collapse
|
29
|
Ramya AN, Arya JS, Madhukrishnan M, Shamjith S, Vidyalekshmi MS, Maiti KK. Raman Imaging: An Impending Approach Towards Cancer Diagnosis. Chem Asian J 2021; 16:409-422. [PMID: 33443291 DOI: 10.1002/asia.202001340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Indexed: 12/18/2022]
Abstract
In accordance with the recent studies, Raman spectroscopy is well experimented as a highly sensitive analytical and imaging technique in biomedical research, mainly for various disease diagnosis including cancer. In comparison with other imaging modalities, Raman spectroscopy facilitate numerous assistances owing to its low background signal, immense spatial resolution, high chemical specificity, multiplexing capability, excellent photo stability and non-invasive detection capability. In cancer diagnosis Raman imaging intervened as a promising investigative tool to provide molecular level information to differentiate the cancerous vs non-cancerous cells, tissues and even in body fluids. Anciently, spontaneous Raman scattering is very feeble due to its low signal intensity and long acquisition time but new advanced techniques like coherent Raman scattering (CRS) and surface enhanced Raman scattering (SERS) gradually superseded these issues. So, the present review focuses on the recent developments and applications of Raman spectroscopy-based imaging techniques for cancer diagnosis.
Collapse
Affiliation(s)
- Adukkadan N Ramya
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayadev S Arya
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Murali Madhukrishnan
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shanmughan Shamjith
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Murukan S Vidyalekshmi
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
30
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
31
|
Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent Advances in Nanomedicine for the Diagnosis and Treatment of Prostate Cancer Bone Metastasis. Molecules 2021; 26:E384. [PMID: 33450939 PMCID: PMC7828457 DOI: 10.3390/molecules26020384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.
Collapse
Affiliation(s)
- Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Raniv D. Rojo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
32
|
Mao Y, Yu S, Kang Y, Zhang D, Wu S, Zhang J, Xiong Y, Li M, Zhang J, Wang J, Wang K, Wan X. CuInS/ZnS quantum dots modified intraocular lens for photothermal therapy of posterior capsule opacification. Exp Eye Res 2020; 202:108282. [PMID: 33049272 DOI: 10.1016/j.exer.2020.108282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 11/18/2022]
Abstract
Posterior capsule opacification (PCO) after cataract surgery is one of the leading causes of visual impairment and blindness. The cause of PCO is the capsule fibrosis developed on implanted Intraocular Lens (IOLs) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing epithelial mesenchymal transition. How to prevent PCO has been a challenge to scientists and ophthalmologists for decades. Here we demonstrated the use of carboxylated CuInS/ZnS quantum dots (ZCIS QDs), which are free of toxic heavy metals and are more biocompatible, as photothermal nanomedicines. The ZCIS QDs are modified onto the non-optical section of IOLs by a facial activation-immersion method. Under mild NIR laser irradiation, ZCIS QDs modified IOLs (QDs-IOLs) will generate localized heat and prevent the proliferation of LECs onto the surface of QDs-IOLs. Our findings provide experimental evidence for further application of combined nanotechnology and photothermal therapy for the clinical treatment of PCO.
Collapse
Affiliation(s)
- Yingyan Mao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Shirong Yu
- Najing Technology Corporation LTD., Hangzhou, Zhejiang, PR China
| | - Yongyin Kang
- Najing Technology Corporation LTD., Hangzhou, Zhejiang, PR China
| | | | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Ying Xiong
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Meng Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Jingshang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Jinda Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Kaijie Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Xiuhua Wan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China.
| |
Collapse
|
33
|
Pirovano G, Roberts S, Kossatz S, Reiner T. Optical Imaging Modalities: Principles and Applications in Preclinical Research and Clinical Settings. J Nucl Med 2020; 61:1419-1427. [PMID: 32764124 DOI: 10.2967/jnumed.119.238279] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
With the ability to noninvasively image and monitor molecular processes within tumors, molecular imaging represents a fundamental tool for cancer scientists. In the current review, we describe emergent optical technologies for molecular imaging. We aim to provide the reader with an overview of the fundamental principles on which each imaging strategy is based, to introduce established and future applications, and to provide a rationale for selecting optical technologies for molecular imaging depending on disease location, biology, and anatomy. To accelerate clinical translation of imaging techniques, we also describe examples of practical applications in patients. Elevating these techniques into standard-of-care tools will transform patient stratification, disease monitoring, and response evaluation.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar, Technical University Munich, Munich, Germany.,Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Weill Cornell Medical College, New York, New York; and.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
Wu L, Zou H, Wang H, Zhang S, Liu S, Jiang Y, Chen J, Li Y, Shao M, Zhang R, Li X, Dong J, Yang L, Wang K, Zhu X, Sun X. Update on the development of molecular imaging and nanomedicine in China: Optical imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1660. [PMID: 32725869 DOI: 10.1002/wnan.1660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Molecular imaging has received increased attention worldwide, including in China, because it offers noninvasive characterization of widely diverse clinically significant pathologies. To achieve these goals, nanomedicine has evolved into a broad interdisciplinary field with flexible designs to accommodate and concentrate imaging and therapeutic payloads into pathological cells through selective binding to disease specific cell membrane biomarkers. This concept of personalized medicine reflects the vision of "magic bullets" proposed by German biochemist Paul Ehrlich over 100 years ago. As happening worldwide, Chinese scientists are contributing to this tsunami of science and technologies through impactful national programs and international research collaborations. This review provides a comprehensive update of Chinese innovations to address intractable unmet medical need in China and worldwide in the optical sciences. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Hongyan Zou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | | | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Ying Jiang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Chen
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yingbo Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Mengping Shao
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Ruixin Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xiaona Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Dong
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lili Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Liu N, Shi J, Wang Q, Guo J, Hou Z, Su X, Zhang H, Sun X. In Vivo Repeatedly Activated Persistent Luminescence Nanoparticles by Radiopharmaceuticals for Long-Lasting Tumor Optical Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001494. [PMID: 32510845 DOI: 10.1002/smll.202001494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) with rechargeable near-infrared afterglow properties attract much attention for tumor diagnosis in living animals since they can avoid tissue autofluorescence and greatly improve the signal-to-background ratio. Using UV, visible light, or X-ray as excitation sources to power up persistent luminescence (PL) faces the challenges such as limited tissue penetration, inefficient charging capability, or tissue damage caused by irradiation. Here, it is proved that radiopharmaceuticals can efficiently excite ZnGa2 O4 :Cr3+ nanoparticles (ZGCs) for both fluorescence and afterglow luminescence via Cerenkov resonance energy transfer as well as ionizing radiation. 18 F-FDG, a clinically approved tumor-imaging radiopharmaceutical with a short decay half-life around 110 min, is successfully used as the internal light source to in vivo excite intravenously injected ZGCs for tumor luminescence imaging over 3 h. The luminescence with similar decay time can be re-obtained for multiple times upon injection of 18 F-FDG at any time needed with no health concern. It is believed this strategy can not only provide tumor luminescence imaging with high sensitivity, high contrast, and long decay time at desired time, but also guarantee the patients much less radiation exposure, greatly benefiting image-guided surgery in the future.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Junpeng Shi
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qiang Wang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenyu Hou
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Hongwu Zhang
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Chemistry and Materials, Ludong University, Yantai, 264025, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| |
Collapse
|
36
|
Su D, Gao L, Gao F, Zhang X, Gao X. Peptide and protein modified metal clusters for cancer diagnostics. Chem Sci 2020; 11:5614-5629. [PMID: 32874504 PMCID: PMC7444476 DOI: 10.1039/d0sc01201g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The biomedical features of metal clusters have been explored in tumor diagnostic applications in recent years. Peptide or protein protected metal clusters with low toxicity, ultra-small size and good biocompatibility are ideal bioanalytical tools, and exhibit better cancer diagnostic properties that have been attractive to oncologists. This perspective provides a rigorous but succinct overview of cancer diagnosis as a working concept for metal clusters by reporting the latest significant advances in the applications of metal clusters in tumor-related bioanalysis and diagnosis. The materials design principles, bioanalytical mechanisms and biomedical applications of metal clusters are described, and then the potential challenges and prospects of metal clusters in cancer diagnosis are discussed. A perspective addressing the role of metal clusters in this field is required to understand their effects and functions, as well as for the scientific community to further advance the development of metal clusters for broader diagnostic applications.
Collapse
Affiliation(s)
- Dongdong Su
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| | - Liang Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| | - Fuping Gao
- Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangchun Zhang
- Tea Research Institute , Chinese Academy of Agricultural Sciences , Hangzhou , 310008 , China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| |
Collapse
|
37
|
Dogra P, Butner JD, Nizzero S, Ruiz Ramírez J, Noureddine A, Peláez MJ, Elganainy D, Yang Z, Le AD, Goel S, Leong HS, Koay EJ, Brinker CJ, Cristini V, Wang Z. Image-guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1628. [PMID: 32314552 PMCID: PMC7507140 DOI: 10.1002/wnan.1628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug-loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size-dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non-invasive in vivo imaging modalities. This allows for visualization and quantification of the whole-body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non-invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state-of-the-art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Sara Nizzero
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Javier Ruiz Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - María J Peláez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Applied Physics Graduate Program, Rice University, Houston, Texas, USA
| | - Dalia Elganainy
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhen Yang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anh-Dung Le
- Nanoscience and Microsystems Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - Shreya Goel
- Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
38
|
Russell LM, Liu CH, Grodzinski P. Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials 2020; 242:119926. [PMID: 32169771 DOI: 10.1016/j.biomaterials.2020.119926] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Nanomedicines have been developing very rapidly and have started to play a significant role in several cancer therapeutic modalities. Early on, the nanomedicine field focused on optimizing pharmacokinetics, toxicity, and/or biodistribution of an agent through nanoparticle formulation. In other cases, where materials science is employed more decisively, nanomedicine can include the creation of new agents that take advantage of nanoscale materials properties to enhance treatment efficacy through unique mode of action, molecular targeting, or controlled drug release. Both current and future nanomedicines will seek to contribute to the therapeutic and diagnostic landscape through creative leveraging of mechanical, electrical, optical, magnetic, and biological nanomaterial properties. In this work, we discuss how by modulating these material properties, one can design more diverse and more effective cancer interventions. We focus on six areas in cancer management, including in vitro diagnostics, clinical imaging, theranostics, combination therapy, immunotherapy, and gene therapy.
Collapse
Affiliation(s)
- Luisa M Russell
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina H Liu
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
39
|
Tian Y, Liu Z, Tan H, Hou J, Wen X, Yang F, Cheng W. New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer. Int J Nanomedicine 2020; 15:401-418. [PMID: 32021187 PMCID: PMC6982438 DOI: 10.2147/ijn.s201208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ultrasound-mediated targeted delivery (UMTD), a novel delivery modality of therapeutic materials based on ultrasound, shows great potential in biomedical applications. By coupling ultrasound contrast agents with therapeutic materials, UMTD combines the advantages of ultrasound imaging and carrier, which benefit deep tissue penetration and high concentration aggregation. In this paper we introduced recent advances in ultrasound contrast agents and applications in tumor therapy. Ultrasound contrast agents were categorized by their functions, mainly including thermosensitive, pH-sensitive and photosensitive ultrasound contrast agents. The various applications of UMTD in tumor treatment were summarized as follows: drug therapy, transfection of anti-oncogene, RNA interference, vaccine immunotherapy, monoclonal antibody immunotherapy, adoptive cellular immunotherapy, cytokine immunotherapy, and so on. In the end, we elaborated on the current challenges and provided perspectives of UMTD for clinical applications.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Jiahui Hou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Xin Wen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Fan Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| |
Collapse
|
40
|
Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020; 8:3772-3788. [DOI: 10.1039/d0tb00262c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this Review, recent advances in fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy are described, and the current challenges and perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Feng Qiu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital
- National Clinical Research Centre for Oral Diseases
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London
- UK
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
41
|
Zhao M, van Straten D, Broekman ML, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020; 10:1355-1372. [PMID: 31938069 PMCID: PMC6956816 DOI: 10.7150/thno.38147] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
The current achievements in treating glioblastoma (GBM) patients are not sufficient because many challenges exist, such as tumor heterogeneity, the blood brain barrier, glioma stem cells, drug efflux pumps and DNA damage repair mechanisms. Drug combination therapies have shown increasing benefits against those challenges. With the help of nanocarriers, enhancement of the efficacy and safety could be gained using synergistic combinations of different therapeutic agents. In this review, we will discuss the major issues for GBM treatment, the rationales of drug combinations with or without nanocarriers and the principle of enhanced permeability and retention effect involved in nanomedicine-based tumor targeting and promising nanodiagnostics or -therapeutics. We will also summarize the recent progress and discuss the clinical perspectives of nanocarrier-based combination therapies. The goal of this article was to provide better understanding and key considerations to develop new nanomedicine combinations and nanotheranostics options to fight against GBM.
Collapse
Affiliation(s)
- Mengnan Zhao
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1 73.12, 1200 Brussels, Belgium
| | - Demian van Straten
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Marike L.D. Broekman
- Department of Neurosurgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1 73.12, 1200 Brussels, Belgium
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
42
|
Shin SJ, Koo JJ, Lee JK, Chung TD. Unique Luminescence of Hexagonal Dominant Colloidal Copper Indium Sulphide Quantum Dots in Dispersed Solutions. Sci Rep 2019; 9:20144. [PMID: 31882977 PMCID: PMC6934773 DOI: 10.1038/s41598-019-56762-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 12/04/2022] Open
Abstract
Luminescent hexagonal dominant copper indium sulphide (h-dominant CIS) quantum dots (QDs) by precursor-injection of mixed metal-dialkyldithiocarbamate precursors. Owing to the different reactivity of the precursors, this method allowed the CIS QDs to grow while retaining the crystallinity of the hexagonal nucleus. The photoluminescence (PL) spectra exhibited dual emission (600–700 nm red emission and 700–800 nm NIR emission) resulting from the combined contributions of the hexagonal (wurtzite) h-CIS and tetragonal (chalcopyrite) t-CIS QDs, i.e. the NIR and red emissions were due to the h-CIS QDs and coexisting t-CIS QDs (weight ratio of h-CIS/t-CIS ~ 10), respectively. The PL intensities of the h-CIS as well as t-CIS QDs were enhanced by post-synthetic heat treatment; the t-CIS QDs were particularly sensitive to the heat treatment. By separating h-CIS and t-CIS successfully, it was demonstrated that this phenomenon was not affected by size and composition but by the donor-acceptor pair states and defect concentration originating from their crystal structure. The h-dominant CIS QDs in this work provide a new technique to control the optical property of Cu-In-S ternary NCs.
Collapse
Affiliation(s)
- Samuel Jaeho Shin
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja-Jung Koo
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyu Lee
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea.,Technology Research Centre, LG Chem, Seoul, 07796, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea. .,Advanced Institutes of Convergence Technology, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
43
|
Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2019; 228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Nuclear medicine imaging has been developed as a powerful diagnostic approach for cancers by detecting gamma rays directly or indirectly from radionuclides to construct images with beneficial characteristics of high sensitivity, infinite penetration depth and quantitative capability. Current nuclear medicine imaging modalities mainly include single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that require administration of radioactive tracers. In recent years, a vast number of radioactive tracers have been designed and constructed to improve nuclear medicine imaging performance toward early and accurate diagnosis of cancers. This review will discuss recent progress of nuclear medicine imaging tracers and associated biomedical imaging applications. Radiolabeling nanomaterials for rational development of tracers will be comprehensively reviewed with highlights on radiolabeling approaches (surface coupling, inner incorporation and interface engineering), providing profound understanding on radiolabeling chemistry and the associated imaging functionalities. The applications of radiolabeled nanomaterials in nuclear medicine imaging-related multimodality imaging will also be summarized with typical paradigms described. Finally, key challenges and new directions for future research will be discussed to guide further advancement and practical use of radiolabeled nanomaterials for imaging of cancers.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Qianyi Zhang
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
44
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Radionuclide-Activated Nanomaterials and Their Biomedical Applications. Angew Chem Int Ed Engl 2019; 58:13232-13252. [PMID: 30779286 PMCID: PMC6698437 DOI: 10.1002/anie.201900594] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Radio-nanomedicine, or the use of radiolabeled nanoparticles in nuclear medicine, has attracted much attention in the last few decades. Since the discovery of Cerenkov radiation and its employment in Cerenkov luminescence imaging, the combination of nanomaterials and Cerenkov radiation emitters has been revolutionizing the way nanomaterials are perceived in the field: from simple inert carriers of radioactivity to activatable nanomaterials for both diagnostic and therapeutic applications. Herein, we provide a comprehensive review on the types of nanomaterials that have been used to interact with Cerenkov radiation and the gamma and beta scintillation of radionuclides, as well as on their biological applications.
Collapse
Affiliation(s)
- Carolina A. Ferreira
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Zachary T. Rosenkrans
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
45
|
Li C, Wu P. Cu-doped quantum dots: a new class of near-infrared emitting fluorophores for bioanalysis and bioimaging. LUMINESCENCE 2019; 34:782-789. [PMID: 31297953 DOI: 10.1002/bio.3679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/25/2023]
Abstract
Transition metal ion-doped quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over undoped QDs, such as larger Stokes shift to avoid self-absorption/energy transfer, longer excited-state lifetimes, wider spectral window, and improved chemical and thermal stability. Among the doped QDs emitters, Cu is widely introduced into the doped QDs as novel, efficient, stable, and tunable optical materials that span a wide spectrum from blue to near-infrared (NIR) light. Their unique physical and chemical characteristics enable the use of Cu-doped QDs as NIR labels for bioanalysis and bioimaging. In this review, we discuss doping mechanisms and optical properties of Cu-doped QDs that are capable of NIR emission. Applications of Cu-doped QDs in in vitro biosensing and in in vivo bioimaging are highlighted. Moreover, a prospect of the future of Cu-doped QDs for bioanalysis and bioimaging are also summarized.
Collapse
Affiliation(s)
- Chenghui Li
- Analytical & Testing Centre, Sichuan University, Chengdu, China
| | - Peng Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Radionuklidaktivierte Nanomaterialien und ihre biomedizinische Anwendung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Carolina A. Ferreira
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Dalong Ni
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Zachary T. Rosenkrans
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Weibo Cai
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| |
Collapse
|
47
|
Fluorescent protein nanoparticles: Synthesis and recognition of cellular oxidation damage. Colloids Surf B Biointerfaces 2019; 177:219-227. [PMID: 30743069 DOI: 10.1016/j.colsurfb.2019.01.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
Intracellular reactive oxygen species (ROS) generation are associated with many diseases. Lots of studies focus on the detection of intracellular ROS by small fluorescent molecules. However, ROS recognized by biocompatible nanoparticles are relatively less reported. It is widely known that albumin-based nanomaterials possess unique advantages in biomedical applications because they are biodegradable and biocompatible. Herein, fluorescent protein nanoparticles (PNPs) were prepared using BSA as a starting material without introducing extra fluorescent molecules. The blue fluorescent PNPs were well characterized by FL, FTIR, CD, TEM, DLS, etc. It was revealed that the PNPs exhibited two types of emissive centers through FL spectra and the fluorescence lifetimes. Further mechanism study indicated that the fluorescence of the PNPs was mainly derived from three kinds of aromatic amino acids, namely tryptophan, tyrosine and phenylalanine. Moreover, the fluorescence properties of the PNPs were tightly related to pH. The PNPs displayed excellent stabilities under harsh conditions as well as physiological conditions. In addition, the PNPs (200 μg/mL) were nontoxic to HeLa and GES-1 cell lines, showing good biocompatibility. The cellular uptake of PNPs was occurred only when the cells were stressed with glucose oxidase or H2O2, thereafter the bright blue fluorescence was observed, indicating that it could be utilized for the recognition of cellular oxidation damage. These findings will offer novel clues for the future synthesis of even brighter protein nanoparticles and their biomedical applications.
Collapse
|
48
|
Wang S, Zhou Z, Wang Z, Liu Y, Jacobson O, Shen Z, Fu X, Chen ZY, Chen X. Gadolinium Metallofullerene-Based Activatable Contrast Agent for Tumor Signal Amplification and Monitoring of Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900691. [PMID: 30913380 PMCID: PMC6472981 DOI: 10.1002/smll.201900691] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/14/2019] [Indexed: 05/07/2023]
Abstract
Activatable imaging probes are promising to achieve increased signal-to-noise ratio for accurate tumor diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is a noninvasive imaging technique with excellent anatomic spatial resolution and unlimited tissue penetration depth. However, most of the activatable MRI contrast agents suffer from metal ion-associated potential long-term toxicity, which may limit their bioapplications and clinical translation. Herein, an activatable MRI agent with efficient MRI performance and high safety is developed for drug (doxorubicin) loading and tumor signal amplification. The agent is based on pH-responsive polymer and gadolinium metallofullerene (GMF). This GMF-based contrast agent shows high relaxivity and low risk of gadolinium ion release. At physiological pH, both GMF and drug molecules are encapsulated into the hydrophobic core of nanoparticles formed by the pH-responsive polymer and shielded from the aqueous environment, resulting in relatively low longitudinal relativity and slow drug release. However, in acidic tumor microenvironment, the hydrophobic-to-hydrophilic conversion of the pH-responsive polymer leads to amplified MR signal and rapid drug release simultaneously. These results suggest that the prepared activatable MRI contrast agent holds great promise for tumor detection and monitoring of drug release.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China, Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi-Yi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China,
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA,
| |
Collapse
|
49
|
Himmelstoß SF, Hirsch T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl Fluoresc 2019; 7:022002. [PMID: 30822759 DOI: 10.1088/2050-6120/ab0bfa] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The right choice of a fluorescent probe is essential for successful luminescence imaging and sensing and especially concerning in vivo and in vitro applications, the development of new classes have gained more and more attention in the last years. One of the most promising class are upconversion nanoparticles (UCNPs)-inorganic nanocrystals capable to convert near-infrared light in high energy radiation. In this review we will compare UCNPs with other fluorescent probes in terms of (a) the optical properties of the probes, such as their brightness, photostability and excitation wavelength; (b) their chemical properties such as the dispersibility, stability under experimental or physiological conditions, availability of chemical modification strategies for labelling; and (c) the potential toxicity and biocompatibility of the probe. Thereby we want to provide a better understanding of the advantages and drawbacks of UCNPs and address future challenges in the design of the nanocrystals.
Collapse
Affiliation(s)
- Sandy F Himmelstoß
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
50
|
Ni D, Ehlerding EB, Cai W. Multimodality Imaging Agents with PET as the Fundamental Pillar. Angew Chem Int Ed Engl 2019; 58:2570-2579. [PMID: 29968300 PMCID: PMC6314921 DOI: 10.1002/anie.201806853] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) provides quantitative information in vivo with ultra-high sensitivity but is limited by its relatively low spatial resolution. Therefore, PET has been combined with other imaging modalities, and commercial systems such as PET/computed tomography (CT) and PET/magnetic resonance (MR) have become available. Inspired by the emerging field of nanomedicine, many PET-based multimodality nanoparticle imaging agents have been developed in recent years. This Minireview highlights recent progress in the design of PET-based multimodality imaging nanoprobes with an aim to overview the major advances and key challenges in this field and substantially improve our knowledge of this fertile research area.
Collapse
Affiliation(s)
- Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin
– Madison, Madison, Wisconsin 53705, United States
| | - Emily B. Ehlerding
- Departments of Radiology and Medical Physics, University of Wisconsin
– Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin
– Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|