1
|
Lee S, Hong VS. Development and Application of a High-Throughput Fluorescence Polarization Assay to Target Pim Kinases. Assay Drug Dev Technol 2016; 14:50-7. [PMID: 26824666 DOI: 10.1089/adt.2015.685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pim proteins consisting of three isoforms (Pim-1, Pim-2, and Pim-3) are a family of serine/threonine kinases that regulate fundamental cellular responses such as cell growth, differentiation, and apoptosis. Overexpression of the Pim kinases has been linked to a wide variety of hematological and solid tumors. Thus, all three Pim kinases have been studied as promising targets for anticancer therapy. Here, we report on the development and optimization of an immobilized metal ion affinity partitioning (IMAP) fluorescence polarization (FP) method for Pim kinases. In this homogeneous 384-well assay method, fluorescein-labeled phosphopeptides are captured on cationic nanoparticles through interactions with immobilized trivalent metals, resulting in high polarization values. The apparent Km values for adenosine triphosphate (ATP) were determined to be 45 ± 7, 6.4 ± 2, and 29 ± 5 μM for Pim-1, Pim-2, and Pim-3, respectively. The assay yielded robustness with Z'-factors of >0.75 and low day-to-day variability (CV <5%) for all three Pim kinases. The IMAP FP assay was further validated by determining IC50 values for staurosporine and a known Pim inhibitor. We have also used an IMAP FP assay to examine whether compound 1, an ATP mimetic inhibitor designed through structure-based drug design, is indeed an ATP-competitive inhibitor of Pim kinases. Kinetic analysis based on Lineweaver-Burk plots showed that the inhibition mechanism of compound 1 is ATP competitive against all three Pim isoforms. The optimized IMAP assay for Pim kinases not only allows for high-throughput screening but also facilitates the characterization of novel Pim inhibitors for drug development.
Collapse
Affiliation(s)
- Seongho Lee
- Department of Chemistry, Keimyung University , Daegu, Korea
| | | |
Collapse
|
2
|
Zitka O, Sochor J, Rop O, Skalickova S, Sobrova P, Zehnalek J, Beklova M, Krska B, Adam V, Kizek R. Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits. Molecules 2011; 16:2914-36. [PMID: 21464799 PMCID: PMC6260627 DOI: 10.3390/molecules16042914] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 12/26/2022] Open
Abstract
Phenols are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potential antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. The objective of this study was to investigate a suitable method for determination of protocatechuic acid, 4-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferulic acid, quercetin, resveratrol and quercitrin from apricot samples. A high-performance liquid chromatograph with electrochemical and UV detectors was used. The method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The lowest limits of detection (3 S/N) using UV detection were estimated for ferulic acid (3 µM), quercitrin (4 µM) and quercetin (4 µM). Using electrochemical detection values of 27 nM, 40 nM and 37 nM were achieved for ferulic acid, quercitrin and quercetin, respectively. It follows from the acquired results that the coulometric detection under a universal potential of 600 mV is more suitable and sensitive for polyphenols determination than UV detection at a universal wavelength of 260 nm. Subsequently, we tested the influence of solvent composition, vortexing and sonication on separation efficiency. Our results showed that a combination of water, acetone and methanol in 20:20:60 ratio was the most effective for p-aminobenzoic acid, chlorgenic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, resveratrol and quercetin, in comparison with other solvents. On the other hand, vortexing at 4 °C produced the highest yield. Moreover, we tested the contents of individual polyphenols in the apricot cultivars Mamaria, Mold and LE-1075. The major phenolic compounds were chlorgenic acid and rutin. Chlorgenic acid was found in amounts of 2,302 mg/100 g in cultivar LE-1075, 546 mg/100 g in cultivar Mamaria and 129 mg/100 g in cultivar Mold. Generally, the cultivar LE-1075 produced the highest polyphenol content values, contrary to Mold, which compared to cultivar LE-1075 was quite poor from the point of view of the phenolics content.
Collapse
Affiliation(s)
- Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Otakar Rop
- Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlin, Namesti T. G. Masaryka 275, CZ-762 72 Zlin, Czech Republic
| | - Sylvie Skalickova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Pavlina Sobrova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Josef Zehnalek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-61242 Brno, Czech Republic
| | - Boris Krska
- Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
3
|
Kumari A, Yadav SK, Pakade YB, Kumar V, Singh B, Chaudhary A, Yadav SC. Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf B Biointerfaces 2010; 82:224-32. [PMID: 20870396 DOI: 10.1016/j.colsurfb.2010.08.046] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/31/2010] [Accepted: 08/31/2010] [Indexed: 01/30/2023]
Abstract
The plant isolated antioxidant quercitrin has been encapsulated on poly-d,l-lactide (PLA) nanoparticles by solvent evaporation method to improve the solubility, permeability and stability of this molecule. The size of quercitrin-PLA nanoparticles is 250±68nm whereas that PLA nanoparticles is 195 ± 55nm. The encapsulation efficiency of nanoencapsulated quercitrin evaluated by HPLC and antioxidant assay is 40%. The in vitro release kinetics of quercitrin under physiological condition reveals initial burst release followed by sustained release. Less fluorescence quenching is observed with equimolar concentration of PLA encapsulated quercitrin than free quercitrin. The presence of quercitrin specific peaks on FTIR of five times washed quercitrin loaded PLA nanoparticles provides an extra evidence for the encapsulation of quercitrin into PLA nanoparticles. These properties of quercitrin nanomedicine provide a new potential for the use of such less useful highly active antioxidant molecule towards the development of better therapeutic for intestinal anti-inflammatory effect and nutraceutical compounds.
Collapse
Affiliation(s)
- Avnesh Kumari
- Nanobiology Lab, Biotechnology Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur 176061, HP, India
| | | | | | | | | | | | | |
Collapse
|