1
|
Agrawal S, Chavan P, Dufossé L. Hidden Treasure: Halophilic Fungi as a Repository of Bioactive Lead Compounds. J Fungi (Basel) 2024; 10:290. [PMID: 38667961 PMCID: PMC11051466 DOI: 10.3390/jof10040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The pressing demand for novel compounds to address contemporary health challenges has prompted researchers to venture into uncharted territory, including extreme ecosystems, in search of new natural pharmaceuticals. Fungi capable of tolerating extreme conditions, known as extremophilic fungi, have garnered attention for their ability to produce unique secondary metabolites crucial for defense and communication, some of which exhibit promising clinical significance. Among these, halophilic fungi thriving in high-salinity environments have particularly piqued interest for their production of bioactive molecules. This review highlights the recent discoveries regarding novel compounds from halotolerant fungal strains isolated from various saline habitats. From diverse fungal species including Aspergillus, Penicillium, Alternaria, Myrothecium, and Cladosporium, a plethora of intriguing molecules have been elucidated, showcasing diverse chemical structures and bioactivity. These compounds exhibit cytotoxicity against cancer cell lines such as A549, HL60, and K-562, antimicrobial activity against pathogens like Escherichia coli, Bacillus subtilis, and Candida albicans, as well as radical-scavenging properties. Notable examples include variecolorins, sclerotides, alternarosides, and chrysogesides, among others. Additionally, several compounds display unique structural motifs, such as spiro-anthronopyranoid diketopiperazines and pentacyclic triterpenoids. The results emphasize the significant promise of halotolerant fungi in providing bioactive compounds for pharmaceutical, agricultural, and biotechnological uses. However, despite their potential, halophilic fungi are still largely unexplored as sources of valuable compounds.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research (ICMR), V Ramalingaswami Bhawan, Ansari Nagar-AIIMS (All India Institute of Medical Sciences), Delhi 110029, India
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Pruthviraj Chavan
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, ChemBioPro, Université de La Réunion, Ecole Supérieure d’Ingénieurs—Réunion, Océan Indien ESIROI Agroalimentaire, 97410 Saint-Denis, France
| |
Collapse
|
2
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Li Q, Li S, Li S, Hao X, Wang A, Si S, Xu Y, Shu J, Gan M. Antimicrobial and Anti-inflammatory Cyclic Tetrapeptides from the Co-cultures of Two Marine-Derived Fungi. JOURNAL OF NATURAL PRODUCTS 2024; 87:365-370. [PMID: 38276888 DOI: 10.1021/acs.jnatprod.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Violaceotides B-E (1-4), four new cyclic tetrapeptides, along with seven known compounds, were identified from the sponge-associated Aspergillus insulicola IMB18-072 co-cultivated with the marine-derived Alternaria angustiovoidea IMB20-805. Their structures were elucidated by extensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and MS/MS data. The absolute configurations were determined by the advanced Marfey's method. Compounds 2, 3, and violaceotide A (5) displayed selective antimicrobial activities against the aquatic pathogenic bacteria Edwardsiella tarda and E. ictaluri. In addition, compounds 1-5 showed inhibitory activities against the LPS-induced expression of the inflammatory mediator IL-6 in RAW264.7 cells at a concentration of 10 μM.
Collapse
Affiliation(s)
- Qin Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shunwang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Anqi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
4
|
Wang W, Gu L, Wang J, Hu X, Wei B, Zhang H, Wang H, Chen J. Recent Advances in Polypeptide Antibiotics Derived from Marine Microorganisms. Mar Drugs 2023; 21:547. [PMID: 37888482 PMCID: PMC10608164 DOI: 10.3390/md21100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
In the post-antibiotic era, the rapid development of antibiotic resistance and the shortage of available antibiotics are triggering a new health-care crisis. The discovery of novel and potent antibiotics to extend the antibiotic pipeline is urgent. Small-molecule antimicrobial peptides have a wide variety of antimicrobial spectra and multiple innovative antimicrobial mechanisms due to their rich structural diversity. Consequently, they have become a new research hotspot and are considered to be promising candidates for next-generation antibiotics. Therefore, we have compiled a collection of small-molecule antimicrobial peptides derived from marine microorganisms from the last fifteen years to show the recent advances in this field. We categorize these compounds into three classes-cyclic oligopeptides, cyclic depsipeptides, and cyclic lipopeptides-according to their structural features, and present their sources, structures, and antimicrobial spectrums, with a discussion of the structure activity relationships and mechanisms of action of some compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Hafez Ghoran S, Taktaz F, Sousa E, Fernandes C, Kijjoa A. Peptides from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2023; 21:510. [PMID: 37888445 PMCID: PMC10608792 DOI: 10.3390/md21100510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Exploring Potential of Aspergillus sclerotiorum: Secondary Metabolites and Biotechnological Relevance. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
8
|
Pinedo-Rivilla C, Aleu J, Durán-Patrón R. Cryptic Metabolites from Marine-Derived Microorganisms Using OSMAC and Epigenetic Approaches. Mar Drugs 2022; 20:84. [PMID: 35200614 PMCID: PMC8879561 DOI: 10.3390/md20020084] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Marine microorganisms have proven to be a source of new natural products with a wide spectrum of biological activities relevant in different industrial sectors. The ever-increasing number of sequenced microbial genomes has highlighted a discrepancy between the number of gene clusters potentially encoding the production of natural products and the actual number of chemically characterized metabolites for a given microorganism. Homologous and heterologous expression of these biosynthetic genes, which are often silent under experimental laboratory culture conditions, may lead to the discovery of new cryptic natural products of medical and biotechnological interest. Several new genetic and cultivation-based strategies have been developed to meet this challenge. The OSMAC approach (one strain-many compounds), based on modification of growth conditions, has proven to be a powerful strategy for the discovery of new cryptic natural products. As a direct extension of this approach, the addition of chemical elicitors or epigenetic modifiers have also been used to activate silent genes. This review looks at the structures and biological activities of new cryptic metabolites from marine-derived microorganisms obtained using the OSMAC approach, the addition of chemical elicitors, and enzymatic inhibitors and epigenetic modifiers. It covers works published up to June 2021.
Collapse
Affiliation(s)
- Cristina Pinedo-Rivilla
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
9
|
Long J, Chen Y, Chen W, Wang J, Zhou X, Yang B, Liu Y. Cyclic Peptides from the Soft Coral-Derived Fungus Aspergillus sclerotiorum SCSIO 41031. Mar Drugs 2021; 19:701. [PMID: 34940700 PMCID: PMC8703611 DOI: 10.3390/md19120701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
Three novel cyclic hexapeptides, sclerotides C-E (1-3), and a new lipodepsipeptide, scopularide I (4), together with a known cyclic hexapeptide sclerotide A (5), were isolated from fermented rice cultures of a soft coral-derived fungus: Aspergillus sclerotiorum SCSIO 41031. The structures of the new peptides were determined by 1D and 2D NMR spectroscopic analysis, Marfey's method, ESIMS/MS analysis, and single crystal X-ray diffraction analysis. Scopularide I (4) exhibited acetylcholinesterase inhibitory activity with an IC50 value of 15.6 μM, and weak cytotoxicity against the human nasopharyngeal carcinoma cell line HONE-EBV with IC50 value of 10.1 μM.
Collapse
Affiliation(s)
- Jieyi Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Gao H, Wang Y, Luo Q, Yang L, He X, Wu J, Kachanuban K, Wilaipun P, Zhu W, Wang Y. Bioactive Metabolites From Acid-Tolerant Fungi in a Thai Mangrove Sediment. Front Microbiol 2021; 11:609952. [PMID: 33552019 PMCID: PMC7862741 DOI: 10.3389/fmicb.2020.609952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
Despite being potentially useful extremophile resources, there have been few reports on acid-tolerant fungi and their bioactive metabolites. Acidophilic/aciduric fungi (n = 237) were isolated from Thai mangrove sediments in an acidic medium. Using fungal identification technology (including morphologic observation, chemical screening, and sequence comparisons) all the isolates were identified and 41 representative isolates were selected for analysis of the phylogenetic relationships (ITS rDNA, β-tubulin, calmodulin, and actin gene sequences). There were seven genera identified – Penicillium; Aspergillus; Talaromyces; Cladosporium; Allophoma; Alternaria; and Trichoderma – in four taxonomic orders of the phylum Ascomycota, and Penicillium, Aspergillus, and Talaromyces were the dominant genera. Acidity tolerance was evaluated and 95% of the isolates could grow under extremely acidic conditions (pH 2). Six strains were classed as acidophilic fungi that cannot survive under pH 7, all of which had an extraordinarily close genetic relationship and belonged to the genus Talaromyces. This is the first report on the acidophilic characteristics of this genus. The antimicrobial, anti-tumor, and antiviral activities of the fermentation extracts were evaluated. Nearly three-quarters of the extracts showed cytotoxic activity, while less than a quarter showed antimicrobial or anti-H1N1 activity. The typical aciduric fungus Penicillium oxalicum OUCMDZ-5207 showed similar growth but completely different chemical diversity at pH 3 and 7. The metabolites of OUCMDZ-5207 that were obtained only at pH 3 were identified as tetrahydroauroglaucin (1), flavoglaucin (2), and auroglaucin (3), among which auroglaucin showed strong selective inhibition of A549 cells with an IC50 value of 5.67 μM. These results suggest that acid stress can activate silent gene clusters to expand the diversity of secondary metabolites, and the bioprospecting of aciduric/acidophilic microorganism resources in Thai mangrove sediments may lead to the discovery of compounds with potential medicinal applications.
Collapse
Affiliation(s)
- Hai Gao
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanan Wang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiao Luo
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liyuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xingxing He
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | | | | | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Liao Y, Hong X, Yang J, Qin JJ, Zhang B, Lin J, Shao Z, Wang W. Structure elucidation of a novel cyclic tripeptide from the marine-derived fungus Aspergillus ochraceopetaliformis DSW-2. Nat Prod Res 2021; 36:3572-3578. [PMID: 33397147 DOI: 10.1080/14786419.2020.1869969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel cyclic tripeptide, sclerotiotide M (1), was isolated from the culture of a marine derived fungus Aspergillus ochraceopetaliformis DSW-2, together with four known compounds (2-5). The planar structure of 1 was established by 1 D and 2 D NMR data, supported by mass spectrometry, and the relative configuration was established by calculated NMR chemical shifts coupled with a statistical method (DP4+). All the compounds (1-5) displayed weak cytotoxic activities against cancer cell lines HPAC and BXPC3, with IC50 values over 20 μM.
Collapse
Affiliation(s)
- Yanyan Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xuan Hong
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen, China
| | - Jing Yang
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Beibei Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jianhui Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Weiyi Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
13
|
Sun C, Zhang Z, Ren Z, Yu L, Zhou H, Han Y, Shah M, Che Q, Zhang G, Li D, Zhu T. Antibacterial Cyclic Tripeptides from Antarctica-Sponge-Derived Fungus Aspergillus insulicola HDN151418. Mar Drugs 2020; 18:md18110532. [PMID: 33114712 PMCID: PMC7694092 DOI: 10.3390/md18110532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Three new aspochracin-type cyclic tripeptides, sclerotiotides M–O (1–3), together with three known analogues, sclerotiotide L (4), sclerotiotide F (5), and sclerotiotide B (6), were obtained from the ethyl acetate extract of the fungus Aspergillus insulicola HDN151418, which was isolated from an unidentified Antarctica sponge. Spectroscopic and chemical approaches were used to elucidate their structures. The absolute configuration of the side chain in compound 4 was elucidated for the first time. Compounds 1 and 2 showed broad antimicrobial activity against a panel of pathogenic strains, including Bacillus cereus, Proteus species, Mycobacterium phlei, Bacillus subtilis, Vibrio parahemolyticus, Edwardsiella tarda, MRCNS, and MRSA, with MIC values ranging from 1.56 to 25.0 µM.
Collapse
Affiliation(s)
- Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Ziping Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Zilin Ren
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Liu Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Huan Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Yaxin Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Mudassir Shah
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (D.L.); (T.Z.); Tel.: +86-532-82031619 (D.L.); +86-532-82031632 (T.Z.)
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (C.S.); (Z.Z.); (Z.R.); (L.Y.); (H.Z.); (Y.H.); (M.S.); (Q.C.); (G.Z.)
- Correspondence: (D.L.); (T.Z.); Tel.: +86-532-82031619 (D.L.); +86-532-82031632 (T.Z.)
| |
Collapse
|
14
|
Wilson ZE, Brimble MA. Molecules derived from the extremes of life: a decade later. Nat Prod Rep 2020; 38:24-82. [PMID: 32672280 DOI: 10.1039/d0np00021c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: Early 2008 until the end of 2019Microorganisms which survive (extreme-tolerant) or even prefer (extremophilic) living at the limits of pH, temperature, salinity and pressure found on earth have proven to be a rich source of novel structures. In this update we summarise the wide variety of new molecules which have been isolated from extremophilic and extreme-tolerant microorganisms since our original 2009 review, highlighting the range of bioactivities these molecules have been reported to possess.
Collapse
Affiliation(s)
- Zoe E Wilson
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | |
Collapse
|
15
|
Kurhekar JV. Antimicrobial lead compounds from marine plants. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020. [PMCID: PMC7153345 DOI: 10.1016/b978-0-12-817890-4.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Marine environment is a home to a very wide diversity of flora and fauna, which includes an array of genetically diverse coastline and under seawater plant species, animal species, microbial species, their habitats, ecosystems, and supporting ecological processes. The Earth is home to an estimated 10 million species, of which a large chunk belongs to marine environment. Marine plants are a store house of a variety of antimicrobial compounds like classes of marine flavonoids—flavones and flavonols, terpenoids, alkaloids, peptides, carbohydrates, fatty acids, polyketides, polysaccharides, phenolic compounds, and steroids. Lot of research today is directed toward marine species, which have proved to be a potent source of structurally widely diverse and yet highly bioactive secondary metabolites. Varied species of phylum Porifera, algae including diatoms, Chlorophyta, Euglenophyta, Dinoflagellata, Chrysophyta, cyanobacteria, Rhodophyta, and Phaeophyta, bacteria, fungi, and weeds have been exploited by mankind for their inherent indigenous biological antimicrobial compounds, produced under the extreme stressful underwater conditions of temperature, atmospheric pressure, light, and nutrition. The present study aims at presenting a brief review of bioactive marine compounds possessing antimicrobial potency.
Collapse
|
16
|
Hautbergue T, Jamin EL, Debrauwer L, Puel O, Oswald IP. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep 2019; 35:147-173. [PMID: 29384544 DOI: 10.1039/c7np00032d] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungal secondary metabolites are defined by bioactive properties that ensure adaptation of the fungus to its environment. Although some of these natural products are promising sources of new lead compounds especially for the pharmaceutical industry, others pose risks to human and animal health. The identification of secondary metabolites is critical to assessing both the utility and risks of these compounds. Since fungi present biological specificities different from other microorganisms, this review covers the different strategies specifically used in fungal studies to perform this critical identification. Strategies focused on the direct detection of the secondary metabolites are firstly reported. Particularly, advances in high-throughput untargeted metabolomics have led to the generation of large datasets whose exploitation and interpretation generally require bioinformatics tools. Then, the genome-based methods used to study the entire fungal metabolic potential are reported. Transcriptomic and proteomic tools used in the discovery of fungal secondary metabolites are presented as links between genomic methods and metabolomic experiments. Finally, the influence of the culture environment on the synthesis of secondary metabolites by fungi is highlighted as a major factor to consider in research on fungal secondary metabolites. Through this review, we seek to emphasize that the discovery of natural products should integrate all of these valuable tools. Attention is also drawn to emerging technologies that will certainly revolutionize fungal research and to the use of computational tools that are necessary but whose results should be interpreted carefully.
Collapse
Affiliation(s)
- T Hautbergue
- Toxalim (Research Centre in Food Toxicology) Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027 Toulouse, France.
| | | | | | | | | |
Collapse
|
17
|
Ma LY, Zhang HB, Kang HH, Zhong MJ, Liu DS, Ren H, Liu WZ. New Butenolides and Cyclopentenones from Saline Soil-Derived Fungus Aspergillus Sclerotiorum. Molecules 2019; 24:molecules24142642. [PMID: 31330867 PMCID: PMC6680918 DOI: 10.3390/molecules24142642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 02/08/2023] Open
Abstract
Three new γ-hydroxyl butenolides (1–3), a pair of new enantiomeric spiro-butenolides (4a and 4b), a pair of enantiomeric cyclopentenones (5a new and 5b new natural), and six known compounds (6–11), were isolated from Aspergillus sclerotiorum. Their structures were established by spectroscopic data and electronic circular dichroism (ECD) spectra. Two pairs of enantiomers [(+)/(–)-6c and (+)/(–)-6d] obtained from the reaction of 6 with acetyl chloride (AcCl) confirmed that 6 was a mixture of two pairs of enantiomers. In addition, the X-ray data confirmed that 7 was also a racemate. The new metabolites (1−5) were evaluated for their inhibitory activity against cancer and non-cancer cell lines. As a result, compound 1 exhibited moderate cytotoxicity to HL60 and A549 with IC50 values of 6.5 and 8.9 µM, respectively, and weak potency to HL-7702 with IC50 values of 17.6 µM. Furthermore, compounds 1−9 were screened for their antimicrobial activity using the micro-broth dilution method. MIC values of 200 μg/mL were obtained for compounds 2 and 3 towards Staphylococcus aureus and Escherichia coli, while compound 8 exhibited a MIC of 50 μ/mL towards Candida albicans.
Collapse
Affiliation(s)
- Li-Ying Ma
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Huai-Bin Zhang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Hui-Hui Kang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Mei-Jia Zhong
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - De-Sheng Liu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Hong Ren
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wei-Zhong Liu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
18
|
Jiang B, Wang Z, Xu C, Liu W, Jiang D. Screening and identification of Aspergillus activity against Xanthomonas oryzae pv. oryzae and analysis of antimicrobial components. J Microbiol 2019; 57:597-605. [PMID: 31073897 DOI: 10.1007/s12275-019-8330-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/24/2023]
Abstract
To screen for Aspergillus activity against Xanthomonas oryzae pv. oryzae and analyse the antimicrobial components involved, 60 Aspergillus spp. were isolated and purified from fruits, soil and other habitats. As-75, an Aspergillus strain that can antagonize Xanthomonas oryzae pv. oryzae, was identified based on the zone of inhibition formed during co-culture. According to morphological, ITS rDNA gene sequencing and phylogenetic tree results, the strain showed close homology to Aspergillus sclerotiorum. The biochemical characterization tests showed that the fermentation broth of strain As-75 exhibited a high capacity for environmental adaptation. The results of the antimicrobial spectrum experiments demonstrated that As-75 exhibited fairly strong antagonistic activity against five plant pathogenic fungi and six plant pathogenic bacteria in vitro. The fermentation broth of strain As-75 displayed maximum stability under fluorescent illumination at temperatures below 60°C at pH 6.5. A substance with antagonistic activity was obtained from strain As-75 via fractional extraction, silica gel column chromatography and thin-layer chromatography. Through mass spectrometry, nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) analyses, the target compound was identified as (2Z)-2-butenedioic acid-2-(1-methylethenyl)-4-methyl ester; its molecular weight of 170.06 daltons and formula of C8H10O4 identify it as a novel compound. Trials of the preventative and curative effects demonstrated that compound S1 exhibited a better control efficiency than the control against rice bacterial blight. Additionally, the M1 processing method was better, and the efficiency of compound S1 in preventing rice bacterial blight in six rice varieties, TN1, IR24, ZF802, Zhonghua 11, Wuyunjing 21, and Nipponbare, was 78.3%, 77.5%, 74.2%, 75.3%, 70.9%, and 72.1%, respectively.
Collapse
Affiliation(s)
- Bei Jiang
- College of Chemistry and Life Science, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Zhiying Wang
- College of Chemistry and Life Science, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Chuxuan Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Weijia Liu
- College of Chemistry and Life Science, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Donghua Jiang
- College of Chemistry and Life Science, Zhejiang Normal University, Zhejiang, 321004, P. R. China.
| |
Collapse
|
19
|
Zhao P, Xue Y, Li X, Li J, Zhao Z, Quan C, Gao W, Zu X, Bai X, Feng S. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 2019; 113:52-65. [PMID: 30738838 DOI: 10.1016/j.peptides.2019.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Lipopeptide antibiotics have linear or cyclic structures with one or more hydrocarbon tails linked to the N-terminus of a short oligopeptide that may be chemically modified and/or contain unusual amino acid residues in their structures. They possess huge potential as pharmaceutical drugs and biocontrol agents, and ˜30 representative genera of fungi are known to produce them. Some chemically synthesised derivatives have already been developed into commercial products or subjected to clinical trials, including cilofungin, caspofungin, micafungin, anidulafungin, rezafungin, emodepside, fusafungine and destruxins. This review summarizes 200 fungi-derived compounds reported since 2000, including 95 cyclic depsipeptides, 67 peptaibiotics (including 35 peptaibols, eight lipoaminopeptides, and five lipopeptaibols), and 38 non-depsipeptide and non-peptaibiotic lipopeptides. Their sources, structural sequences, antibiotic activities (e.g. antibacterial, antifungal, antiviral, antimycobacterial, antimycoplasmal, antimalarial, antileishmanial, insecticidal, antitrypanosomal and nematicidal), structure-activity relationships, mechanisms of action, and specific relevance are discussed. These compounds have attracted considerable interest within the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xin Li
- Life Science College, Yuncheng University, Yuncheng, 044000, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
20
|
Arockianathan PM, Mishra M, Niranjan R. Recent Status and Advancements in the Development of Antifungal Agents: Highlights on Plant and Marine Based Antifungals. Curr Top Med Chem 2019; 19:812-830. [PMID: 30977454 DOI: 10.2174/1568026619666190412102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.
Collapse
Affiliation(s)
- P Marie Arockianathan
- PG & Research Department of Biochemistry, St. Joseph's College of Arts & Science (Autonomous), Cuddalore-607001, Tamil Nadu, India
| | - Monika Mishra
- Neurobiology laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry 605006, India
| |
Collapse
|
21
|
Lee SR, Lee D, Yu JS, Benndorf R, Lee S, Lee DS, Huh J, de Beer ZW, Kim YH, Beemelmanns C, Kang KS, Kim KH. Natalenamides A⁻C, Cyclic Tripeptides from the Termite-Associated Actinomadura sp. RB99. Molecules 2018; 23:molecules23113003. [PMID: 30453579 PMCID: PMC6278286 DOI: 10.3390/molecules23113003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
In recent years, investigations into the biochemistry of insect-associated bacteria have increased. When combined with analytical dereplication processes, these studies provide a powerful strategy to identify structurally and/or biologically novel compounds. Non-ribosomally synthesized cyclic peptides have a broad bioactivity spectrum with high medicinal potential. Here, we report the discovery of three new cyclic tripeptides: natalenamides A–C (compounds 1–3). These compounds were identified from the culture broth of the fungus-growing termite-associated Actinomadura sp. RB99 using a liquid chromatography (LC)/ultraviolet (UV)/mass spectrometry (MS)-based dereplication method. Chemical structures of the new compounds (1–3) were established by analysis of comprehensive spectroscopic methods, including one-dimensional (1H and 13C) and two-dimensional (1H-1H-COSY, HSQC, HMBC) nuclear magnetic resonance spectroscopy (NMR), together with high-resolution electrospray ionization mass spectrometry (HR-ESIMS) data. The absolute configurations of the new compounds were elucidated using Marfey’s analysis. Through several bioactivity tests for the tripeptides, we found that compound 3 exhibited significant inhibitory effects on 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production. The effect of compound 3 was similar to that of kojic acid, a compound extensively used as a cosmetic material with a skin-whitening effect.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Sullim Lee
- College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea.
| | - Dong-Soo Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Jungmoo Huh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea.
| | - Z Wilhelm de Beer
- Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa.
| | - Yong Ho Kim
- SKKU-Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea.
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
22
|
Wu Y, Chen Y, Huang X, Pan Y, Liu Z, Yan T, Cao W, She Z. α-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from the Mangrove Endophytic Fungus Aspergillus flavus QQSG-3. Mar Drugs 2018; 16:md16090307. [PMID: 30200400 PMCID: PMC6165285 DOI: 10.3390/md16090307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/04/2023] Open
Abstract
Two new diphenyl ethers (1 and 2) and four new phenolic bisabolane sesquiterpenoids (3–6), together with five known related derivatives, were isolated from the culture of the endophytic fungus Aspergillus flavus QQSG-3 obtained from a fresh branch of Kandelia obobata, which was collected from Huizhou city in the province of Guangdong, China. The structures of compounds 1–6 were determined by analyzing NMR and HRESIMS data. The absolute configurations of 5 and 6 were assigned by comparing their experimental ECD spectra with those reported for similar compounds in the literature. All isolates were evaluated for their α-glucosidase inhibitory activity, of which compounds 3, 5, 10, and 11 showed strong inhibitory effects with IC50 values in the range of 1.5–4.5 μM.
Collapse
Affiliation(s)
- Yingnan Wu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yan Chen
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xishan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yahong Pan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
- State Key Laboratory of Applied Microbiology, Southern China, Guangdong Institute of Microbiology, Guangzhou 510075, China.
| | - Tao Yan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Wenhao Cao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Wang L, Han X, Zhu G, Wang Y, Chairoungdua A, Piyachaturawat P, Zhu W. Polyketides From the Endophytic Fungus Cladosporium sp. Isolated From the Mangrove Plant Excoecaria agallocha. Front Chem 2018; 6:344. [PMID: 30155461 PMCID: PMC6102696 DOI: 10.3389/fchem.2018.00344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023] Open
Abstract
Five new polyketides (2–6) and ten known compounds (1 and 7–15) were obtained from the fermentation products of the endophytic fungus Cladosporium sp. OUCMDZ-302 with the mangrove plant, Excoecaria agallocha (Euphorbiaceae). The new structures of 2–6 were established on the basis of ECD, specific rotation and spectroscopic data as well as the chemical calculation. Compound 7 showed cytotoxicity against H1975 cell line with an IC50 value of 10.0 μM. Compounds 4 and 8–10 showed radical scavenging activity against DPPH with the IC50 values of 2.65, 0.24, 5.66, and 6.67 μM, respectively. In addition, the absolute configuration of compound 1 was solidly determined by X-ray and sugar analysis of the acidic hydrolysates for the first time as well as those of compounds 8–10 in this paper.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiuli Han
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,College of Life Sciences, Shandong University of Technology, Zibo, China
| | - Guoliang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Liu J, Gu B, Yang L, Yang F, Lin H. New Anti-inflammatory Cyclopeptides From a Sponge-Derived Fungus Aspergillus violaceofuscus. Front Chem 2018; 6:226. [PMID: 29963550 PMCID: PMC6010530 DOI: 10.3389/fchem.2018.00226] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
Three new cyclic peptides including a cyclic tetrapeptide (1), an aspochracin-type cyclic tripeptide sclerotiotide L (2) and a diketopiperazine dimer (3), have been isolated from the ethyl acetate extract of a marine sponge-derived fungus Aspergillus violaceofuscus. The structures of all compounds were unambiguously elucidated on the basis of HRESIMS, 1D and 2D NMR spectroscopic data, MS/MS experiments and chemical methods. Compounds 1 and 3 showed anti-inflammatory activity against IL-10 expression of the LPS-induced THP-1 cells with inhibitory rates of 84.3 and 78.1% respectively at concentration of 10 μM.
Collapse
Affiliation(s)
- Jingtang Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binbin Gu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianjuan Yang
- The Fungal Reference Laboratory of Shanghai Dermatology Hospital, Shanghai, China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ. Novel Natural Products from Extremophilic Fungi. Mar Drugs 2018; 16:md16060194. [PMID: 29867059 PMCID: PMC6025453 DOI: 10.3390/md16060194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022] Open
Abstract
Extremophilic fungi have been found to develop unique defences to survive extremes of pressure, temperature, salinity, desiccation, and pH, leading to the biosynthesis of novel natural products with diverse biological activities. The present review focuses on new extremophilic fungal natural products published from 2005 to 2017, highlighting the chemical structures and their biological potential.
Collapse
Affiliation(s)
- Xuan Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Shou-Jie Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Jin-Jie Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Zi-Zhen Liang
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Chang-Qi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
26
|
Zhao L, Wang Z, Zhang H, Li W, Yue Q, Jin Y. Design, Preparation of 3-Hydroxy Isoindolinone Cyclotripeptides, and the In Vitro
Antitumor Activities Against Cervical Carcinoma HeLa Cells. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lishuang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Zhiqiang Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Hongyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Wenting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| |
Collapse
|
27
|
Frisvad J. A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2294] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A very large number of filamentous fungi has been reported to produce the small lactone mycotoxins patulin, penicillic acid and moniliformin. Among the 167 reported fungal producers of patulin, only production by 29 species could be confirmed. Patulin is produced by 3 Aspergillus species, 3 Paecilomyces species, 22 Penicillium species from 7 sections of Penicillium, and one Xylaria species. Among 101 reported producers of penicillic acid, 48 species could produce this mycotoxin. Penicillic acid is produced by 23 species in section Aspergillus subgenus Circumdati section Circumdati, by Malbranchea aurantiaca and by 24 Penicillium species from 9 sections in Penicillium and one species that does not actually belong to Penicillium (P. megasporum). Among 40 reported producers of moniliformin, five species have been regarded as doubtful producers of this mycotoxin or are now regarded as taxonomic synonyms. Moniliformin is produced by 34 Fusarium species and one Penicillium species. All the accepted producers of patulin, penicillic acid and moniliformin were revised according to the new one fungus – one name nomenclatural system, and the most recently accepted taxonomy of the species.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Peng X, Wang Y, Zhu G, Zhu W. Fatty acid derivatives from the halotolerant fungus Cladosporium cladosporioides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:18-24. [PMID: 28847042 DOI: 10.1002/mrc.4659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Halotolerant fungus Cladosporium cladosporioides OUCMDZ-187 was isolated from the mangrove plant Rhizophora stylosa collected in Shankou, Guangxi Province of China. Three new fatty acid esters cladosporesters A-C (1-3) and 5 new fatty acids cladosporacids A-E (4-8) were isolated from the ethyl acetate extract of the fermentation broth of OUCMDZ-187 in a hypersaline (10% salt) medium. Their structures were elucidated by UV, IR, MS, specific rotation, and 1D and 2D NMR data.
Collapse
Affiliation(s)
- Xiaoping Peng
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guoliang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
29
|
Wang X, Lin M, Xu D, Lai D, Zhou L. Structural Diversity and Biological Activities of Fungal Cyclic Peptides, Excluding Cyclodipeptides. Molecules 2017; 22:E2069. [PMID: 29186926 PMCID: PMC6150023 DOI: 10.3390/molecules22122069] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022] Open
Abstract
Cyclic peptides are cyclic compounds formed mainly by the amide bonds between either proteinogenic or non-proteinogenic amino acids. This review highlights the occurrence, structures and biological activities of fungal cyclic peptides (excluding cyclodipeptides, and peptides containing ester bonds in the core ring) reported until August 2017. About 293 cyclic peptides belonging to the groups of cyclic tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, undeca-, dodeca-, tetradeca-, and octadecapeptides as well as cyclic peptides containing ether bonds in the core ring have been isolated from fungi. They were mainly isolated from the genera Aspergillus, Penicillium, Fusarium, Acremonium and Amanita. Some of them were screened to have antimicrobial, antiviral, cytotoxic, phytotoxic, insecticidal, nematicidal, immunosuppressive and enzyme-inhibitory activities to show their potential applications. Some fungal cyclic peptides such as the echinocandins, pneumocandins and cyclosporin A have been developed as pharmaceuticals.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Minyi Lin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Front Pharmacol 2017; 8:828. [PMID: 29209209 PMCID: PMC5702503 DOI: 10.3389/fphar.2017.00828] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Debabrata Acharya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Alok Adholeya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Sunil K Deshmukh
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| |
Collapse
|
31
|
Peng X, Wang Y, Zhu T, Zhu W. Pyrazinone derivatives from the coral-derived Aspergillus ochraceus LCJ11-102 under high iodide salt. Arch Pharm Res 2017; 41:184-191. [DOI: 10.1007/s12272-017-0928-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
|
32
|
Li Y, Wang J, He W, Lin X, Zhou X, Liu Y. One Strain-Many Compounds Method for Production of Polyketide Metabolites Using the Sponge-Derived Fungus Arthrinium arundinis ZSDS1-F3. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1994-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Zhao L, Zhang H, Cui J, Zhao M, Wang Z, Yue Q, Jin Y. Photo-induced synthesis and in vitro antitumor activity of Fenestin A analogs. NEW J CHEM 2017. [DOI: 10.1039/c7nj03363j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two bioactive Fenestin A analogs were synthesized by photo-induced cyclization.
Collapse
Affiliation(s)
- Lishuang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Hongyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Jianing Cui
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Meiqi Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Zhiqiang Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| |
Collapse
|
34
|
Wang C, Guo L, Hao J, Wang L, Zhu W. α-Glucosidase Inhibitors from the Marine-Derived Fungus Aspergillus flavipes HN4-13. JOURNAL OF NATURAL PRODUCTS 2016; 79:2977-2981. [PMID: 27933892 DOI: 10.1021/acs.jnatprod.6b00766] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three new butenolide derivatives, flavipesolides A-C (1-3), along with 13 known compounds (4-13, aspulvinone Q, monochlorosulochrin, and dihydrogeodin), were isolated from the marine-derived Aspergillus flavipes HN4-13 from a Lianyungang coastal sediment sample. The structures were elucidated by spectroscopic evidence. Compounds 4-6 and 9 were noncompetitive α-glucosidase inhibitors with Ki/IC50 values of 0.43/34, 2.1/37, 0.79/19, and 2.8/90 μM, respectively. Compounds 1-3, 8, 10, and 13 are mixed α-glucosidase inhibitors with Ki/IC50 values of (2.5, 19)/44, (3.4, 14)/57, (9.2, 4.7)/95, (6.3, 5.5)/55, (1.4, 0.60)/9.9, and (2.5, 7.2)/33 μM, respectively (IC50 101 μM for acarbose and 79 μM for 1-deoxynojirimycin).
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Lei Guo
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
- Jiangsu Marine Resources Development Research Institute, School of Marine Life and Fisheries, Huaihai Institute of Technology , Lianyungang 222004, People's Republic of China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Liping Wang
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| |
Collapse
|
35
|
El-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, Abdelmohsen UR. Antifungal potential of marine natural products. Eur J Med Chem 2016; 126:631-651. [PMID: 27936443 DOI: 10.1016/j.ejmech.2016.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022]
Abstract
Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source.
Collapse
Affiliation(s)
- Ebaa M El-Hossary
- National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, Cairo, Egypt
| | - Cheng Cheng
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Mostafa M Hamed
- Drug Design and Optimization Department, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | | | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
36
|
Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J Mycol Med 2016; 27:1-19. [PMID: 27842800 DOI: 10.1016/j.mycmed.2016.10.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. METHODS An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. REVIEW A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. CONCLUSION Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti-Candida compounds from plants and organisms but also to carried out details on molecules from already known anti-Candida compounds and to more elucidate mechanisms of action.
Collapse
|
37
|
Xin D, Burgess K. Anthranilic acid-containing cyclic tetrapeptides: at the crossroads of conformational rigidity and synthetic accessibility. Org Biomol Chem 2016; 14:5049-58. [PMID: 27173439 PMCID: PMC4916954 DOI: 10.1039/c6ob00693k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Each amino acid in a peptide contributes three atom units to main-chains, hence natural cyclic peptides can be 9, 12, 15, …. i.e. 3n membered-rings, where n is the number of amino acids. Cyclic peptides that are 9 or 12-membered ring compounds tend to be hard to prepare because of strain, while their one amino acid homologs (15-membered cyclic pentapeptides) are not conformationally homogeneous unless constrained by strategically placed proline or d-amino acid residues. We hypothesized that replacing one genetically encoded amino acid in a cyclic tetrapeptide with a rigid β-amino acid would render peptidomimetic designs that rest at a useful crossroads between synthetic accessibility and conformational rigidity. Thus this research explored non-proline containing 13-membered ring peptides 1 featuring one anthranilic acid (Anth) residue. Twelve cyclic peptides of this type were prepared, and in doing so the viability of both solution- and solid-phase methods was demonstrated. The library produced contained a complete set of four diastereoisomers of the sequence 1aaf (i.e. cyclo-AlaAlaPheAnth). Without exception, these four diastereoisomers each adopted one predominant conformation in solution; basically these conformations feature amide N-H vectors puckering above and below the equatorial plane, and approximately oriented their N-H[combining low line] atoms towards the polar axis. Moreover, the shapes of these conformers varied in a logical and predictable way (NOE, temperature coefficient, D/H exchange, circular dichroism). Comparisons were made of the side-chain orientations presented by compounds 1aaa in solution with ideal secondary structures and protein-protein interaction interfaces. Various 1aaa stereoisomers in solution present side-chains in similar orientations to regular and inverse γ-turns, and to the most common β-turns (types I and II). Consistent with this, compounds 1aaa have a tendency to mimic various turns and bends at protein-protein interfaces. Finally, proteolytic- and hydrolytic stabilities of the compounds at different pHs indicate they are robust relative to related linear peptides, and rates of permeability through an artificial membrane indicate their structures are conducive to cell permeability.
Collapse
Affiliation(s)
- Dongyue Xin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | | |
Collapse
|
38
|
Ványolós A, Dékány M, Kovács B, Krámos B, Bérdi P, Zupkó I, Hohmann J, Béni Z. Gymnopeptides A and B, Cyclic Octadecapeptides from the Mushroom Gymnopus fusipes. Org Lett 2016; 18:2688-91. [PMID: 27194202 DOI: 10.1021/acs.orglett.6b01158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycochemical study of the mushroom Gymnopus fusipes led to the discovery of two new cyclopeptides. The two compounds, named as gymnopeptides A and B, are unprecedented highly N-methylated cyclic octadecapeptides. Detailed spectroscopic studies, Marfey's analysis, and a preliminary molecular modeling study suggested that both are natural cyclic β hairpins. The isolated compounds exhibited striking antiproliferative activity on several human cancer cell lines, with nanomolar IC50 values.
Collapse
Affiliation(s)
| | - Miklós Dékány
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | | | - Balázs Krámos
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | | | | | | | - Zoltán Béni
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| |
Collapse
|
39
|
Kong F, Zhao C, Hao J, Wang C, Wang W, Huang X, Zhu W. New α-glucosidase inhibitors from a marine sponge-derived fungus, Aspergillus sp. OUCMDZ-1583. RSC Adv 2015. [DOI: 10.1039/c5ra11185d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
18 new compounds named aspergones A–Q and 6-O-demethylmonocerin, along with five known analogues, were isolated from the fermentation broth of Aspergillus sp. OUCMDZ-1583 associated with an unidentified marine sponge from the Xisha Islands of China.
Collapse
Affiliation(s)
- Fandong Kong
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Chengying Zhao
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Jiejie Hao
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Cong Wang
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Wei Wang
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Xiaolong Huang
- College of Agriculture
- Hainan University
- Haikou 570228
- China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
40
|
Bills G, Li Y, Chen L, Yue Q, Niu XM, An Z. New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. Nat Prod Rep 2014; 31:1348-75. [PMID: 25156669 DOI: 10.1039/c4np00046c] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are a primary modality for fungal peptidic natural product assembly and are responsible for some of the best known, most useful, and most destructive fungal metabolites. Through genome sequencing and computer-assisted recognition of modular motifs of catalytic domains, one can now confidently identify most NRPS biosynthetic genes of a fungal strain. The biosynthetic gene clusters responsible for two of the most important classes of NRP fungal derived drugs, cyclosporine and the echinocandins, have been recently characterized by genomic sequencing and annotation. Complete biosynthetic gene clusters for the pneumocandins and echinocandins have been mapped at the genetic level and functionally characterized to some extent. Genomic sequencing of representative strains of most of the variants in the echinocandin family, including the wild-type of the three fungal strains employed for industrial-scale production of caspofungin, micafungin and anidulofungin, has enabled characterization of the basic architecture of the echinocandin NRPS pathways. A comparative analysis of how pathway genes cause variations in lipoinitiation, biosynthesis of the non-proteinogenic amino acids, amino acid substitutions, and hydroxylations and sulfonations of the core peptide and contribute to the molecular diversity of the family is presented. We also review new information on the natural functions of NRPs, the differences between fungal and bacterial NRPSs, and functional characterization of selected NRPS gene clusters. Continuing discovery of the new fungal nonribosomal peptides has contributed new structural diversity and potential insights into their biological functions among other natural peptides and peptaibiotics. We therefore provide an update on new peptides, depsipeptides and peptaibols discovered in the Fungi since 2009.
Collapse
Affiliation(s)
- Gerald Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Centre at Houston, Houston, Texas 77054, USA.
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Kong F, Wang Y, Liu P, Dong T, Zhu W. Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. JOURNAL OF NATURAL PRODUCTS 2014; 77:132-137. [PMID: 24370114 DOI: 10.1021/np400802d] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Three new thiodiketopiperazines, named phomazines A-C (1-3), along with 10 known analogues (4-13), were isolated from the fermentation broth of an endophytic fungus, Phoma sp. OUCMDZ-1847, associated with the mangrove plant Kandelia candel. The structures including the absolute configurations of the new compounds were unambiguously elucidated by spectroscopic, X-ray crystallographic, and Mosher's methods along with quantum ECD and (13)C NMR calculations. Compounds 2, 4, 5, 11, and 12 showed cytotoxicities against the HL-60, HCT-116, K562, MGC-803, and A549 cell lines with IC50 values in the range 0.05 to 8.5 μM.
Collapse
Affiliation(s)
- Fandong Kong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Pestalafuranones F-J, five new furanone analogues from the endophytic fungus Nigrospora sp. BM-2. Molecules 2014; 19:819-25. [PMID: 24434694 DOI: 10.3390/molecules19010819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 11/17/2022] Open
Abstract
Five new 2(5H)-furanone-type derivatives, pestalafuranones F-J (compounds 3-7), together with two known compounds, pestalafuranones A (1) and B (2), were isolated from the ethyl acetate extract from the fermentation broth of the endophytic fungus Nigrospora sp. BM-2 in a hypersaline medium. The structures of these metabolites were elucidated by EIMS, HREIMS and NMR spectroscopic data. Compounds 1-7 exhibited no cytotoxic activities against the MDA-MB-231 and Caski cancer cell lines.
Collapse
|
44
|
Li Y, Sun KL, Wang Y, Fu P, Liu PP, Wang C, Zhu WM. A cytotoxic pyrrolidinoindoline diketopiperazine dimer from the algal fungus Eurotium herbariorum HT-2. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 2013; 17:963-71. [DOI: 10.1007/s00792-013-0578-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022]
|
46
|
|
47
|
Jokela J, Oftedal L, Herfindal L, Permi P, Wahlsten M, Døskeland SO, Sivonen K. Anabaenolysins, novel cytolytic lipopeptides from benthic Anabaena cyanobacteria. PLoS One 2012; 7:e41222. [PMID: 22829929 PMCID: PMC3400675 DOI: 10.1371/journal.pone.0041222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/19/2012] [Indexed: 11/26/2022] Open
Abstract
Two novel cyclic lipopeptides, anabaenolysin A and anabaenolysin B, were isolated from two benthic cyanobacterial strains of the genus Anabaena. This novel class of cyanobacterial lipopeptides has a general structure of a small peptide ring consisting of four amino acids from which two are proteinogenic and two unusual; glycine1, glycine2, 2-(3-amino-5-oxytetrahydrofuran-2-yl)-2-hydroxyacetic acid3 and a long unsaturated C18 β-amino acid4 with a conjugated triene structure. They are distinguished by the presence of a conjugated dienic structure in the C18 β-amino acid present in anabaenolysin A but not in anabaenolysin B. Conjugated triene structure generates a typical UV spectrum for anabaenolysins for easy recognition. Anabaenolysin A constituted up to 400 ppm of the cyanobacterial dry weight. We found evidence of thirteen variants of anabaenolysins in one cyanobacterial strain. This suggests that the anabaenolysins are an important class of secondary metabolites in benthic Anabaena cyanobacteria. Both anabaenolysin A and B had cytolytic activity on a number of mammalian cell lines.
Collapse
Affiliation(s)
- Jouni Jokela
- Division of Microbiology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Linn Oftedal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Translational Signaling Group, Haukeland University Hospital, Bergen, Norway
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matti Wahlsten
- Division of Microbiology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Kaarina Sivonen
- Division of Microbiology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
48
|
Wu QX, Jin XJ, Draskovic M, Crews MS, Tenney K, Valeriote FA, Yao XJ, Crews P. Unraveling the Numerous Biosynthetic Products of the Marine Sediment-Derived Fungus, Aspergillus insulicola. PHYTOCHEMISTRY LETTERS 2012; 5:114-117. [PMID: 22368725 PMCID: PMC3285095 DOI: 10.1016/j.phytol.2011.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new tripeptide, pre-sclerotiotide F (3), was isolated from a marine sediment-derived fungus, Aspergillus insulicola, along with five known compounds, one of which was new at the time of isolation, scerotiotide F (4). The absolute configuration elucidation of the new compound was determined using a combination of NMR, HR-ESI-MS, and optical rotation analyses. Cytotoxicities were measured in vitro against selected cancer cells. The effects of pre-sclerotiotide F (3) and sclerotiotide F (4) on LPS-induced NF-κB and iNOS expression were also measured.
Collapse
Affiliation(s)
- Q. X. Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - X. J. Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - M. Draskovic
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - M. S. Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - K. Tenney
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - F. A. Valeriote
- Department of Internal Medicine, Division of Hematology and Oncology, Henry Ford Health System, Detroit, Michigan 48202, United States
| | - X. J. Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - P. Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
49
|
Guo ZK, Yan T, Guo Y, Song YC, Jiao RH, Tan RX, Ge HM. p-Terphenyl and diterpenoid metabolites from endophytic Aspergillus sp. YXf3. JOURNAL OF NATURAL PRODUCTS 2012; 75:15-21. [PMID: 22196792 DOI: 10.1021/np200321s] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Six new p-terphenyl derivatives, named 4″-deoxy-3-hydroxyterphenyllin (1), 4″-deoxy-5'-desmethyl-terphenyllin (2), 5'-desmethylterphenyllin (3), 4″-deoxycandidusin A (4), 4,5-dimethoxycandidusin A (5), and terphenolide (6), four new diterpenoids with norcleistanthane (aspergiloid A (12) and aspergiloid B (13)), cleistanthane (aspergiloid C (14)), and isopimarane (aspergiloid D (15)) type skeletons, and five known p-terphenyl compounds (7-11) were isolated from the fermentation broth of the plant endophytic fungus Aspergillus sp. Their structures were elucidated on the basis of detailed spectroscopic analysis and by comparison of their NMR data with those reported in the literature. Compounds 4, 6, 7, and 9 displayed moderate neuraminidase inhibitory activity with IC(50) values ranging from 4.34 to 9.17 μM.
Collapse
Affiliation(s)
- Zhi Kai Guo
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Nikapitiya C. Bioactive secondary metabolites from marine microbes for drug discovery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:363-87. [PMID: 22361200 DOI: 10.1016/b978-0-12-416003-3.00024-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|