1
|
Michaliski LF, Ióca LP, Oliveira LS, Crnkovic CM, Takaki M, Freire VF, Berlinck RGS. Improvement of Targeted Fungi Secondary Metabolite Production Using a Systematic Experimental Design and Chemometrics Analysis. Methods Protoc 2023; 6:77. [PMID: 37736960 PMCID: PMC10514814 DOI: 10.3390/mps6050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Fungi are well-known producers of chemically diverse and biologically active secondary metabolites. However, their production yields through fermentation may hamper structural analysis and biological activity downstream investigations. Herein, a systematic experimental design that varies multiple cultivation parameters, followed by chemometrics analysis on HPLC-UV-MS or UHPLC-HRMS/MS data, is presented to enhance the production yield of fungal natural products. The overall procedure typically requires 3-4 months of work when first developed, and up to 3 months as a routine procedure.
Collapse
Affiliation(s)
- Lamonielli F. Michaliski
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Laura P. Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Leandro S. Oliveira
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Camila M. Crnkovic
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo CEP 05508-000, SP, Brazil;
| | - Mirelle Takaki
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Vitor F. Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| |
Collapse
|
2
|
da Silva Oliveira L, Crnkovic CM, de Amorim MR, Navarro-Vázquez A, Paz TA, Freire VF, Takaki M, Venâncio T, Ferreira AG, de Freitas Saito R, Chammas R, Berlinck RGS. Phomactinine, the First Nitrogen-Bearing Phomactin, Produced by Biatriospora sp. CBMAI 1333. JOURNAL OF NATURAL PRODUCTS 2023; 86:2065-2072. [PMID: 37490470 DOI: 10.1021/acs.jnatprod.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Metabolomics analyses and improvement of growth conditions were applied toward diversification of phomactin terpenoids by the fungus Biatriospora sp. CBMAI 1333. Visualization of molecular networking results on Gephi assisted the observation of phomactin diversification and guided the isolation of new phomactin variants by applying a modified version of chemometrics based on a fractional factorial design. Consequentially, the first nitrogen-bearing phomactin, phomactinine (1), with a new rearranged carbon skeleton, was isolated and identified. The strategy combining metabolomics and chemometrics can be extended to include bioassay potency, structure novelty, and metabolic diversification connected or not to genomic analyses.
Collapse
Affiliation(s)
- Leandro da Silva Oliveira
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Camila M Crnkovic
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP Brazil
| | - Marcelo R de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitária CEP, 50.740-540 Recife, PE Brazil
| | - Tiago A Paz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP Brazil
| | - Vitor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Mirelle Takaki
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Tiago Venâncio
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP Brazil
| | - Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 251 - Cerqueira César, 01246-000, São Paulo, SP Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 251 - Cerqueira César, 01246-000, São Paulo, SP Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| |
Collapse
|
3
|
Liu S, Nie Q, Liu Z, Patil S, Gao X. Fungal P450 Deconstructs the 2,5-Diazabicyclo[2.2.2]octane Ring En Route to the Complete Biosynthesis of 21 R-Citrinadin A. J Am Chem Soc 2023; 145:14251-14259. [PMID: 37352463 PMCID: PMC11025717 DOI: 10.1021/jacs.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Prenylated indole alkaloids (PIAs) possess great structural diversity and show biological activities. Despite significant efforts in investigating the biosynthetic mechanism, the key step in the transformation of 2,5-diazabicyclo[2.2.2]octane-containing PIAs into a distinct class of pentacyclic compounds remains unknown. Here, using a combination of gene deletion, heterologous expression, and biochemical characterization, we show that a unique fungal P450 enzyme CtdY catalyzes the cleavage of the amide bond in the 2,5-diazabicyclo[2.2.2]octane system, followed by a decarboxylation step to form the 6/5/5/6/6 pentacyclic ring in 21R-citrinadin A. We also demonstrate the function of a subsequent cascade of stereospecific oxygenases to further modify the 6/5/5/6/6 pentacyclic intermediate en route to the complete 21R-citrinadin A biosynthesis. Our findings reveal a key enzyme CtdY for the pathway divergence in the biosynthesis of PIAs and uncover the complex late-stage post-translational modifications in 21R-citrinadin A biosynthesis.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Siddhant Patil
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
4
|
Xavier LA, do Nascimento Odilair LM, de Sousa GP, Souza ECA, Pilau EJ, Porto C, de Souza AQL, de Souza ADL, Flach A, da Costa LAMA. Ultra-high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry and molecular networking analysis to investigate the chemodiversity of bioactive extracts of Annona jahnii Saff. fungi from the Brazilian Amazon. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9356. [PMID: 35866211 DOI: 10.1002/rcm.9356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Annona species are of interest for the isolation of bioactive molecules; however, studies of Annona jahnii Saff. are limited. The exploration of bioactive metabolites of endophytes isolated from this species is unprecedented and allows the preservation of the host plant, in addition to enabling the discovery of compounds with promising biological activities. METHODS Ethyl acetate extracts from the cultured media of five fungi were obtained. The antioxidant capacity of the extracts was measured using the 1,1-diphenyl-2-picrylhydrazyl free radical method. Antimicrobial activity was determined using the microdilution method in broth in 96-well plates. The exploration of the metabolic profile of the extracts and dereplication of the compounds were performed using ultra-high-performance liquid chromatography/electrospray ionization/tandem mass spectrometry (UHPLC/ESI-MS/MS) combined with analysis using molecular networking (MN). RESULTS A total of 1818 MS features were detected in the five selected extracts, of which 39 compounds were putatively identified. The secondary metabolites with the highest abundance were alkaloids, naphthopyrons, and cytochalasins. Other secondary metabolites include fumonisins, coumarin, and a meroterpenoid. Most of these compounds are related to specific biological properties such as antioxidant, anti-inflammatory, antimicrobial, antiviral, and antitumor activities. Extracts F398 and F403 showed inhibitory activity of the four pathogens tested. Extracts F475 and F506 did not inhibit the growth of Staphylococcus aureus, and F407 did not inhibit the growth of Escherichia coli in addition to having potent antioxidant activity, with IC50 values of 10 μg/mL or less. CONCLUSIONS The use of UHPLC/ESI-MS/MS data combined with MN proved useful in the dereplication of bioactive molecules of complex extracts that are still unexplored. These initial investigations should significantly assist in further research and increase the efficiency and speed in the discovery of new sources of secondary metabolites and new natural products.
Collapse
Affiliation(s)
- Luciana Araújo Xavier
- Universidade Federal de Roraima-Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia, Boa Vista, RR, Brazil
| | | | - Gilmara Prado de Sousa
- Universidade Federal de Roraima-Programa de Pós-graduação em Recursos Naturais, Boa Vista, RR, Brazil
| | - Edineide Cristina A Souza
- Universidade Federal de Roraima-Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia, Boa Vista, RR, Brazil
| | - Eduardo Jorge Pilau
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Carla Porto
- MS Bioscience-Incubadora Tecnológica de Maringá-Complexo UEM, Maringá, PR, Brazil
| | - Antônia Queiroz Lima de Souza
- Universidade Federal do Amazonas-Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia, Manaus, AM, Brazil
| | - Afonso Duarte Leão de Souza
- Universidade Federal do Amazonas-Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia, Manaus, AM, Brazil
| | - Adriana Flach
- Universidade Federal de Roraima-Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia, Boa Vista, RR, Brazil
| | - Luiz Antonio M A da Costa
- Universidade Federal de Roraima-Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia, Boa Vista, RR, Brazil
| |
Collapse
|
5
|
Preparative high‐performance liquid chromatography: Isolation of natural chemical compounds for identification and characterization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Yadav J, Chaudhary RP. A review on advances in synthetic methodology and biological profile of spirothiazolidin‐4‐ones. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| | - Ram Pal Chaudhary
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| |
Collapse
|
7
|
Pareek A, Sivanandan ST, Bhagat S, Namboothiri IN. [3+2]-annulation of oxindolinyl-malononitriles with Morita–Baylis–Hillman acetates of nitroalkenes for the regio- and diastereoselective synthesis of spirocyclopentane-indolinones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Khattab AR, Farag MA. Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. Crit Rev Biotechnol 2021; 42:403-430. [PMID: 34266351 DOI: 10.1080/07388551.2021.1940087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endophytic fungi are a kind of fungi that colonizes living plant tissues presenting a myriad of microbial adaptations that have been developed in such a hidden environment. Owing to its large diversity and particular habituation, they present a golden mine for research in the field of drug discovery. Endophytic fungal communities possess unique biocatalytic machinery that furnishes a myriad of complex natural product scaffolds. Xanthone compounds are examples of endophytic secondary metabolic products with pronounced biological activity to include: antioxidant, antimicrobial, anti-inflammatory, antithrombotic, antiulcer, choleretic, diuretic, and monoamine oxidase inhibiting activity.The current review compiles the recent progress made on the microbiological production of xanthones using fungal endophytes obtained from both marine and terrestrial origins, with comparisons being made among both natural resources. The biosynthesis of xanthones in endophytic fungi is outlined along with its decoding enzymes. Biotransformation reactions reported to be carried out using different endophytic microbial models are also outlined for xanthones structural modification purposes and the production of novel molecules.A promising application of novel computational tools is presented as a future direction for the goal of optimizing microbial xanthones production to include establishing metabolic pathway databases and the in silico analysis of microbial interactions. Metagenomics methods and related bioinformatics platforms are highlighted as unexplored tools for the biodiversity analysis of endophytic microbial communities that are difficult to be cultured.
Collapse
Affiliation(s)
- Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
9
|
Siva Sankara C, Namboothiri INN. Regio- and Stereoselective Synthesis of Dispiro-bisoxindoles via [3+2] Annulation Involving Nitroisatylidene as a Vinylogous Michael Donor. Org Lett 2021; 23:4618-4623. [PMID: 34038641 DOI: 10.1021/acs.orglett.1c01360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cascade [3+2] annulation, involving a γ-selective vinylogous Michael addition of nitroalkylideneoxindoles to various electron deficient alkenes followed by an intramolecular Michael addition, provides access to dispiro-bis-oxindoles and spiro-oxindoles. Up to four contiguous chiral centers, including two quaternary spirocenters, are generated in this high-yield regio- and diastereoselective transformation that also provides a convenient entry into conformationally constrained γ-amino acid derivatives.
Collapse
|
10
|
Lin C, Xing Q, Xie H. A formal intermolecular [4 + 1] cycloaddition reaction of 3-chlorooxindole and o-quinone methides: a facile synthesis of spirocyclic oxindole scaffolds. RSC Adv 2021; 11:18576-18579. [PMID: 35480909 PMCID: PMC9033455 DOI: 10.1039/d1ra01086g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Herein, we developed an efficient and straightforward method for the rapid synthesis of spirocyclic oxindole scaffolds via the [4 + 1] cyclization reaction of 3-chlorooxindole with o-quinone methides (o-QMs), which were generated under mild conditions. The products could be obtained in excellent yields with numerous types of 3-chlorooxindole. This methodology features mild reaction conditions, high atom-economy and broad substrate scope. Herein, we developed an efficient and straightforward method for the rapid synthesis of spirocyclic oxindole scaffolds via the [4 + 1] cyclization reaction of 3-chlorooxindole with o-quinone methides (o-QMs), which were generated under mild conditions.![]()
Collapse
Affiliation(s)
- Chao Lin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| | - Qi Xing
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| | - Honglei Xie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
11
|
Daley SK, Cordell GA. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. JOURNAL OF NATURAL PRODUCTS 2021; 84:871-897. [PMID: 33534564 DOI: 10.1021/acs.jnatprod.0c01195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A selection of the established and recently characterized alkaloids from the exploration of plant- and some marine-associated endophytic fungi is reviewed, with reference to alkaloids of biological significance.
Collapse
Affiliation(s)
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
12
|
Phenylhydrazone and Quinazoline Derivatives from the Cold-Seep-Derived Fungus Penicillium oxalicum. Mar Drugs 2020; 19:md19010009. [PMID: 33379196 PMCID: PMC7824341 DOI: 10.3390/md19010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022] Open
Abstract
Three new phenylhydrazones, penoxahydrazones A-C (compounds 1-3), and two new quinazolines, penoxazolones A (compound 4) and B (compound 5), with unique linkages were isolated from the fungus Penicillium oxalicum obtained from the deep sea cold seep. Their structures and relative configurations were assigned by analysis of 1D/2D NMR and mass spectroscopic data, and the absolute configurations of 1, 4, and 5 were established on the basis of X-ray crystallography or ECD calculations. Compound 1 represents the first natural phenylhydrazone-bearing steroid, while compounds 2 and 3 are rarely occurring phenylhydrazone tautomers. Compounds 4 and 5 are enantiomers that feature quinazoline and cinnamic acid units. Some isolates exhibited inhibition of several marine phytoplankton species and marine-derived bacteria.
Collapse
|
13
|
Wan Q, Chen L, Li S, Kang Q, Yuan Y, Du Y. Enantioselective Synthesis of Multisubstituted Spirocyclopentane Oxindoles Enabled by Pd/Chiral Rh(III) Complex Synergistic Catalysis. Org Lett 2020; 22:9539-9544. [PMID: 33263254 DOI: 10.1021/acs.orglett.0c03588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Wan
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Shiwu Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Qiang Kang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Yaofeng Yuan
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| |
Collapse
|
14
|
Selegato DM, Freire RT, Pilon AC, Biasetto CR, de Oliveira HC, de Abreu LM, Araujo AR, da Silva Bolzani V, Castro-Gamboa I. Improvement of bioactive metabolite production in microbial cultures-A systems approach by OSMAC and deconvolution-based 1 HNMR quantification. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:458-471. [PMID: 30993742 DOI: 10.1002/mrc.4874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Traditionally, the screening of metabolites in microbial matrices is performed by monocultures. Nonetheless, the absence of biotic and abiotic interactions generally observed in nature still limit the chemical diversity and leads to "poorer" chemical profiles. Nowadays, several methods have been developed to determine the conditions under which cryptic genes are activated, in an attempt to induce these silenced biosynthetic pathways. Among those, the one strain, many compounds (OSMAC) strategy has been applied to enhance metabolic production by a systematic variation of growth parameters. The complexity of the chemical profiles from OSMAC experiments has required increasingly robust and accurate techniques. In this sense, deconvolution-based 1 HNMR quantification have emerged as a promising methodology to decrease complexity and provide a comprehensive perspective for metabolomics studies. Our present work shows an integrated strategy for the increased production and rapid quantification of compounds from microbial sources. Specifically, an OSMAC design of experiments (DoE) was used to optimize the microbial production of bioactive fusaric acid, cytochalasin D and 3-nitropropionic acid, and Global Spectral Deconvolution (GSD)-based 1 HNMR quantification was carried out for their measurement. The results showed that OSMAC increased the production of the metabolites by up to 33% and that GSD was able to extract accurate NMR integrals even in heavily coalescence spectral regions. Moreover, GSD-1 HNMR quantification was reproducible for all species and exhibited validated results that were more selective and accurate than comparative methods. Overall, this strategy up-regulated important metabolites using a reduced number of experiments and provided fast analyte monitor directly in raw extracts.
Collapse
Affiliation(s)
- Denise Medeiros Selegato
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Alan César Pilon
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas, São Paulo University (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carolina Rabal Biasetto
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica, Núcleo de Proteômica, Faculdade de Ciências Farmacêuticas de Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Angela Regina Araujo
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Vanderlan da Silva Bolzani
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ian Castro-Gamboa
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
15
|
Morrill LA, Susick RB, Chari JV, Garg NK. Total Synthesis as a Vehicle for Collaboration. J Am Chem Soc 2019; 141:12423-12443. [PMID: 31356068 DOI: 10.1021/jacs.9b05588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
"Collaboration" is not the first word most would associate with the field of total synthesis. In fact, the spirit of total synthesis is all-too-often reputed as being more competitive, rather than collaborative, sometimes even within individual laboratories. However, recent studies in total synthesis have inspired a number of collaborative efforts that strategically blend synthetic methodology, biocatalysis, biosynthesis, computational chemistry, and drug discovery with complex molecule synthesis. This Perspective highlights select recent advances in these areas, including collaborative syntheses of chlorolissoclimide, nigelladine A, artemisinin, ingenol, hippolachnin A, communesin A, and citrinalin B. The legendary Woodward-Eschenmoser collaboration that led to the total synthesis of vitamin B12 is also discussed.
Collapse
Affiliation(s)
- Lucas A Morrill
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Robert B Susick
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Jason V Chari
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
16
|
Secondary Metabolites of Endophytic Actinomycetes: Isolation, Synthesis, Biosynthesis, and Biological Activities. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 108 2019; 108:207-296. [DOI: 10.1007/978-3-030-01099-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Li X, Guo L, Peng C, Han B. Organocatalytic Asymmetric Cascade Reactions Based on Gamma-Nitro Carbonyl Compound. CHEM REC 2018; 19:394-423. [PMID: 30019511 DOI: 10.1002/tcr.201800047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
The significant advancements in asymmetric organocascade reactions have been accomplished during the past decades, paving the way to the efficient and stereoselective construction of structurally complex scaffolds from simple and readily available starting materials. Nitro-containing cyclic compounds have become a privileged molecular library given their broad and promising activities in various therapeutic areas. In various approaches to build these valuable scaffolds, the utility of γ-nitrocarbonyl intermediates is one of the most efficient approaches due to its high efficiency, reliability and versatility. The strategies and catalyst systems described here highlight recent advances in the enantioselective synthesis of nitro-containing cyclic molecules via organocascade strategies based on γ-nitrocarbonyl intermediates. Various organocatalysts with distinct activation modes have found application in providing these sophisticated compounds. This review is organized according to the types of organocatalyst. These methods are of importance for the construction of complex chiral cyclic frameworks and the design of new pharmaceutical compounds. We believe that compounds based on nitro-containing cyclic skeletons have the potential to provide novel therapeutic agents and useful biological tools.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Ministry of Education Key Laboratory of Standardization of Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Kildgaard S, de Medeiros LS, Phillips E, Gotfredsen CH, Frisvad JC, Nielsen KF, Abreu LM, Larsen TO. Cyclopiamines C and D: Epoxide Spiroindolinone Alkaloids from Penicillium sp. CML 3020. JOURNAL OF NATURAL PRODUCTS 2018; 81:785-790. [PMID: 29488766 DOI: 10.1021/acs.jnatprod.7b00825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclopiamines C (1) and D (2) were isolated from the extract of Penicillium sp. CML 3020, a fungus sourced from an Atlantic Forest soil sample. Their structures and relative configuration were determined by 1D and 2D NMR, HRMS, and UV/vis data analysis. Cyclopiamines C and D belong to a small subset of rare spiroindolinone compounds containing an alkyl nitro group and a 4,5-dihydro-1 H-pyrrolo[3,2,1- ij]quinoline-2,6-dione ring system. NMR and MS/HRMS data confirmed the presence of an epoxide unit (C-17-O-C-18) and a hydroxy group at C-5, not observed for their known congeners. Cytotoxic and antimicrobial activities were evaluated.
Collapse
Affiliation(s)
- Sara Kildgaard
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| | - Lívia S de Medeiros
- Departamento de Química , Universidade Federal de São Paulo (UNIFESP) , Rua São Nicolau, 210 , CEP 09913-030 , Diadema - SP , Brazil
| | - Emma Phillips
- German Cancer Research Center , Brain Tumor Translational Targets , Im Neuenheimer Feld 580 , Heidelberg D-69120 , Germany
| | - Charlotte H Gotfredsen
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , DK-2800 Kgs. Lyngby , Denmark
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| | - Kristian F Nielsen
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| | - Lucas M Abreu
- Departamento de Fitopatologia , Universidade Federal de Viçosa (UFV) , Avenida P.H. Rolfs, s/n.° CEP 36570-000 , Viçosa - MG , Brazil
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
19
|
Recent Advances in the Synthesis of Spiroheterocycles via N-Heterocyclic Carbene Organocatalysis. Molecules 2017; 22:molecules22111882. [PMID: 29117098 PMCID: PMC6150278 DOI: 10.3390/molecules22111882] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 12/01/2022] Open
Abstract
Spiroheterocycles are regarded as a privileged framework because of their wide distribution in various natural products and synthetic molecules and promising bioactivities. This review focuses on the recent advances in the synthesis of spiroheterocycles by using the strategy of N-heterocyclic carbene (NHC) organocatalysis, and is organized based on the stereoselectivity and the reactive intermediates. According to the stereochemistry, this review was divided into two main parts, covering racemic and enantioselective versions. In each part, we firstly describe the synthetic transformations using nucleophilic Breslow intermediates, and then discuss the reactions that employ electrophilic acylazolium or radical cation intermediates. With those distinct catalytic activation modes of NHC organocatlysis, we expect this synthetic protocol will possibly produce new molecules with structural novelty and complexity, which may warrant further research in the field of drug discovery.
Collapse
|
20
|
Du Y, Li J, Chen K, Wu C, Zhou Y, Liu H. Construction of highly enantioenriched spirocyclopentaneoxindoles containing four consecutive stereocenters via thiourea-catalyzed asymmetric Michael-Henry cascade reactions. Beilstein J Org Chem 2017; 13:1342-1349. [PMID: 28781700 PMCID: PMC5530720 DOI: 10.3762/bjoc.13.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/21/2017] [Indexed: 01/28/2023] Open
Abstract
The thiourea-catalyzed asymmetric synthesis of highly enantioenriched spirocyclopentaneoxindoles containing chiral amide functional groups using simple 3-substituted oxindoles and nitrovinylacetamide as starting materials was achieved successfully. This protocol features operational simplicity, high atom economy, and high catalytic asymmetry, thus representing a versatile approach to the synthesis of highly enantioenriched spirocyclopentaneoxindoles.
Collapse
Affiliation(s)
- Yonglei Du
- Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, China
| | - Jian Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Shanghai 201203, China
| | - Kerong Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Shanghai 201203, China
| | - Chenglin Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
21
|
Talukdar S, Talukdar M, Buragohain M, Yadav A, Yadav RNS, Bora TC. Enhanced candicidal compound production by a new soil isolate Penicillium verruculosum MKH7 under submerged fermentation. BMC Microbiol 2016; 16:288. [PMID: 27938325 PMCID: PMC5225592 DOI: 10.1186/s12866-016-0713-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Microorganisms are a rich source of structurally diverse secondary metabolites that exert a major impact on the control of infectious diseases and other medical conditions. The biosynthesis of these metabolites can be improved by manipulating the nutritional or environmental factors. This work evaluates the effects of fermentation parameters on the production of a lactone compound effective against Candida albicans by Penicillium verruculosum MKH7 under submerged fermentation. Design-Expert version8.0 software was used for construction of the experimental design and statistical analysis of the experimental data. RESULTS The important factors influencing antibiotic production selected in accordance with the Plackett-Burman design were found to be initial pH, temperature, peptone, MgSO4.7H2O. Orthogonal central composite design and response surface methodology were adopted to further investigate the mutual interaction between the variables and identify the optimum values that catalyse maximum metabolite production. The determination coefficient (R2) of the fitted second order model was 0.9852. The validation experiments using optimized conditions of initial pH 7.4, temperature 27 °C, peptone 9.2 g/l and MgSO4.7H2O 0.39 g/l resulted in a significant increase (almost 7 fold from 30 to 205.5 mg/l) in the metabolite production which was in agreement with the prediction (211.24 mg/l). Stability of the compound was also assessed on the basis of its response to physical and chemical stresses. CONCLUSIONS So far as our knowledge goes, till date there are no reports available on the production of antibiotics by Penicillium verruculosum through media optimization using RSM. Optimization not only led to a 7 fold increase in metabolite yield but the same was achieved at much lesser time (8-10 days compared to the earlier 12-15 days). The enhanced yield of the antibiotic strongly suggests that the fungus P. verruculosum MKH7 can be efficiently used for antibiotic production on a large scale.
Collapse
Affiliation(s)
- Shruti Talukdar
- Biotechnology Division, CSIR-North-East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - Madhumita Talukdar
- Biotechnology Division, CSIR-North-East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - Manorama Buragohain
- Biotechnology Division, CSIR-North-East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - Archana Yadav
- Biotechnology Division, CSIR-North-East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - R N S Yadav
- Department of Life Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - T C Bora
- Biotechnology Division, CSIR-North-East Institute of Science & Technology, Jorhat, 785006, Assam, India.
| |
Collapse
|
22
|
Chen S, Wang J, Lin X, Zhao B, Wei X, Li G, Kaliaperumal K, Liao S, Yang B, Zhou X, Liu J, Xu S, Liu Y. Chrysamides A–C, Three Dimeric Nitrophenyl trans-Epoxyamides Produced by the Deep-Sea-Derived Fungus Penicillium chrysogenum SCSIO41001. Org Lett 2016. [DOI: 10.1021/acs.orglett.6b01699 pmid: 274400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengtian Chen
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Junfeng Wang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiuping Lin
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bingxin Zhao
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoyi Wei
- Key
Laboratory of Plant Conservation and Sustainable Utilization, South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guangqiang Li
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Kumaravel Kaliaperumal
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shengrong Liao
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Juan Liu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shihai Xu
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yonghong Liu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
23
|
Paek SM, Jeong M, Jo J, Heo YM, Han YT, Yun H. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis. Molecules 2016; 21:E951. [PMID: 27455209 PMCID: PMC6274556 DOI: 10.3390/molecules21070951] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.
Collapse
Affiliation(s)
- Seung-Mann Paek
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju daero, Jinju 52828, Korea.
| | - Myeonggyo Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Yu Mi Heo
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju daero, Jinju 52828, Korea.
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan 31116, Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
24
|
Chen S, Wang J, Lin X, Zhao B, Wei X, Li G, Kaliaperumal K, Liao S, Yang B, Zhou X, Liu J, Xu S, Liu Y. Chrysamides A–C, Three Dimeric Nitrophenyl trans-Epoxyamides Produced by the Deep-Sea-Derived Fungus Penicillium chrysogenum SCSIO41001. Org Lett 2016; 18:3650-3. [DOI: 10.1021/acs.orglett.6b01699] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shengtian Chen
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Junfeng Wang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiuping Lin
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bingxin Zhao
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoyi Wei
- Key
Laboratory of Plant Conservation and Sustainable Utilization, South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guangqiang Li
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Kumaravel Kaliaperumal
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shengrong Liao
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Juan Liu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shihai Xu
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yonghong Liu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Matria Medica/RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
25
|
de Castro MV, Ióca LP, Williams DE, Costa BZ, Mizuno CM, Santos MFC, de Jesus K, Ferreira ÉLF, Seleghim MHR, Sette LD, Pereira Filho ER, Ferreira AG, Gonçalves NS, Santos RA, Patrick BO, Andersen RJ, Berlinck RGS. Condensation of Macrocyclic Polyketides Produced by Penicillium sp. DRF2 with Mercaptopyruvate Represents a New Fungal Detoxification Pathway. JOURNAL OF NATURAL PRODUCTS 2016; 79:1668-1678. [PMID: 27227682 DOI: 10.1021/acs.jnatprod.6b00295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Application of a refined procedure of experimental design and chemometric analysis to improve the production of curvularin-related polyketides by a marine-derived Penicillium sp. DRF2 resulted in the isolation and identification of cyclothiocurvularins 6-8 and cyclosulfoxicurvularins 10 and 11, novel curvularins condensed with a mercaptolactate residue. Two additional new curvularins, 3 and 4, are also reported. The structures of the sulfur-bearing curvularins were unambiguously established by analysis of spectroscopic data and by X-ray diffraction analysis. Analysis of stable isotope feeding experiments with [U-(13)C3(15)N]-l-cysteine confirmed the presence of the 2-hydroxy-3-mercaptopropanoic acid residue in 6-8 and the oxidized sulfoxide in 10 and 11. Cyclothiocurvularins A (6) and B (7) are formed by spontaneous reaction between 10,11-dehydrocurvularin (2) and mercaptopyruvate (12) obtained by transamination of cysteine. High ratios of [U-(13)C3(15)N]-l-cysteine incorporation into cyclothiocurvularin B (7), the isolation of two diastereomers of cyclothiocurvularins, the lack of cytotoxicity of cyclothiocurvularin B (7) and its methyl ester (8), and the spontaneous formation of cyclothiocurvularins from 10,11-dehydrocurvularin and mercaptopyruvate provide evidence that the formation of cyclothiocurvularins may well correspond to a 10,11-dehydrocurvularin detoxification process by Penicillium sp. DRF2.
Collapse
Affiliation(s)
- Marcos V de Castro
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Laura P Ióca
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Bruna Z Costa
- Instituto de Quimica, Universidade Estadual de Campinas , Caixa Postal 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Carolina M Mizuno
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Mario F C Santos
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Karen de Jesus
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Éverton L F Ferreira
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Campus Rio Claro, Avenida 24-A, 1515, Rio Claro, SP, Brazil
| | - Edenir R Pereira Filho
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Natália S Gonçalves
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Raquel A Santos
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Roberto G S Berlinck
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
26
|
|
27
|
Nicoletti R, Trincone A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar Drugs 2016; 14:md14020037. [PMID: 26901206 PMCID: PMC4771990 DOI: 10.3390/md14020037] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Agricultural Economy Analysis, Rome 00184, Italy.
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli 80078, Italy.
| |
Collapse
|
28
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Ferreira ELF, Williams DE, Ióca LP, Morais-Urano RP, Santos MFC, Patrick BO, Elias LM, Lira SP, Ferreira AG, Passarini MRZ, Sette LD, Andersen RJ, Berlinck RGS. Structure and Biogenesis of Roussoellatide, a Dichlorinated Polyketide from the Marine-Derived Fungus Roussoella sp. DLM33. Org Lett 2015; 17:5152-5. [PMID: 26444492 DOI: 10.1021/acs.orglett.5b02060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of the fungal metabolite roussoellatide (1) has been established by spectroscopic and X-ray diffraction analyses. Results from feeding experiments with [1-(13)C]acetate, [2-(13)C]acetate, and [1,2-(13)C]acetate were consistent with a biosynthetic pathway to the unprecedented skeleton of 1 involving Favorskii rearrangements in separate pentaketides, subsequently joined via an intermolecular Diels-Alder reaction.
Collapse
Affiliation(s)
- Everton L F Ferreira
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Mario F C Santos
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Brian O Patrick
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Luciana M Elias
- Departamento de Ciências Exatas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo , CP 9, Agronomia, CEP 13418-900, Piracicaba, SP, Brazil
| | - Simone P Lira
- Departamento de Ciências Exatas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo , CP 9, Agronomia, CEP 13418-900, Piracicaba, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos , 13565-905, São Carlos, SP, Brazil
| | - Michel R Z Passarini
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas , CEP 13140-000, Paulínia, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" , 1515, Rio Claro, SP, Brazil
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
30
|
Mercado-Marin EV, Sarpong R. Unified Approach to Prenylated Indole Alkaloids: Total Syntheses of (-)-17-Hydroxy-Citrinalin B, (+)-Stephacidin A, and (+)-Notoamide I. Chem Sci 2015; 6:5048-5052. [PMID: 26417428 PMCID: PMC4583210 DOI: 10.1039/c5sc01977j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
A unified strategy for the synthesis of congeners of the prenylated indole alkaloids is presented. This strategy has yielded the first synthesis of the natural product (-)-17-hydroxy-citrinalin B as well as syntheses of (+)-stephacidin A and (+)-notoamide I. An enolate addition to an in situ generated isocyanate was utilized in forging a key bicyclo[2.2.2]diazaoctane moiety, and in this way connected the two structural classes of the prenylated indole alkaloids through synthesis.
Collapse
Affiliation(s)
| | - Richmond Sarpong
- Department of Chemistry , University of California–Berkeley , Berkeley , CA 94720 , USA .
| |
Collapse
|
31
|
Lee C, Sohn JH, Jang JH, Ahn JS, Oh H, Baltrusaitis J, Hwang IH, Gloer JB. Cycloexpansamines A and B: spiroindolinone alkaloids from a marine isolate of Penicillium sp. (SF-5292). J Antibiot (Tokyo) 2015; 68:715-8. [DOI: 10.1038/ja.2015.56] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/03/2015] [Accepted: 04/13/2015] [Indexed: 01/11/2023]
|
32
|
Abstract
The first total synthesis of aspeverin, a prenylated indole alkaloid isolated from Aspergillus versicolor in 2013, is described. Key steps utilized to assemble the core structure of the target include a highly diastereoselective Diels-Alder reaction, a Curtius rearrangement, and a unique strategy for installation of the geminal dimethyl group. A novel iodine(III)-initiated cyclization was then used to install the bicyclic urethane linkage distinctive to the natural product.
Collapse
Affiliation(s)
- Adam M. Levinson
- Tri-Institutional PhD Program in Chemical Biology, Laboratory for Bioorganic Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
33
|
Mercado-Marin EV, Garcia-Reynaga P, Romminger S, Pimenta EF, Romney DK, Lodewyk MW, Williams DE, Andersen RJ, Miller SJ, Tantillo DJ, Berlinck RGS, Sarpong R. Total synthesis and isolation of citrinalin and cyclopiamine congeners. Nature 2014; 509:318-324. [PMID: 24828190 PMCID: PMC4117207 DOI: 10.1038/nature13273] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/21/2014] [Indexed: 11/09/2022]
Abstract
Many natural products that contain basic nitrogen atoms--for example alkaloids like morphine and quinine-have the potential to treat a broad range of human diseases. However, the presence of a nitrogen atom in a target molecule can complicate its chemical synthesis because of the basicity of nitrogen atoms and their susceptibility to oxidation. Obtaining such compounds by chemical synthesis can be further complicated by the presence of multiple nitrogen atoms, but it can be done by the selective introduction and removal of functional groups that mitigate basicity. Here we use such a strategy to complete the chemical syntheses of citrinalin B and cyclopiamine B. The chemical connections that have been realized as a result of these syntheses, in addition to the isolation of both 17-hydroxycitrinalin B and citrinalin C (which contains a bicyclo[2.2.2]diazaoctane structural unit) through carbon-13 feeding studies, support the existence of a common bicyclo[2.2.2]diazaoctane-containing biogenetic precursor to these compounds, as has been proposed previously.
Collapse
Affiliation(s)
| | | | - Stelamar Romminger
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, CP 780, CEP 13560-970, Sao Carlos, SP, Brazil
| | - Eli F Pimenta
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, CP 780, CEP 13560-970, Sao Carlos, SP, Brazil
| | - David K Romney
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, USA
| | - Michael W Lodewyk
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - David E Williams
- Department of Chemistry and Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, V6T IZI, Canada
| | - Raymond J Andersen
- Department of Chemistry and Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, V6T IZI, Canada
| | - Scott J Miller
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Roberto G S Berlinck
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, CP 780, CEP 13560-970, Sao Carlos, SP, Brazil
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
|
35
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
36
|
Yu C, Zheng W, Zhan J, Sun Y, Miao Z. Highly regio- and diastereoselective construction of spirocyclopenteneoxindole phosphonates through a phosphine-catalyzed [3 + 2] annulation reaction. RSC Adv 2014. [DOI: 10.1039/c4ra12997k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A phosphine-catalyzed [3 + 2] annulation of MBH phosphonates with isatylidene malononitriles is developed, which represents a novel approach to highly regioselective and diastereoselective synthesis of spirocyclopenteneoxindole phosphonates.
Collapse
Affiliation(s)
- Chengbin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071, People's Republic of China
| | - Weiping Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071, People's Republic of China
| | - Junchen Zhan
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071, People's Republic of China
| | - Yuchao Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071, People's Republic of China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300071, People's Republic of China
| |
Collapse
|
37
|
Ióca LP, Allard PM, Berlinck RGS. Thinking big about small beings – the (yet) underdeveloped microbial natural products chemistry in Brazil. Nat Prod Rep 2014; 31:646-75. [DOI: 10.1039/c3np70112c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Kossuga MH, Ferreira AG, Sette LD, Berlinck RGS. Two Polyketides from a Co-culture of Two Marine-derived Fungal Strains. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Co-cultivation of the fungal strains Penicillium sp. Ma(M3)V and Trichoderma sp. Gc(M2)1 in malt 2% medium led to the production of two novel, unusual polyketides, ( Z)-2-ethylhex-2-enedioic acid and ( E)-4-oxo-2-propylideneoct-7-enoic acid. Analysis of spectroscopic data enabled the structure determination of both compounds.
Collapse
Affiliation(s)
- Miriam H. Kossuga
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560–970, São Carlos, SP, Brazil
| | - Antonio G. Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Lara D. Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560–970, São Carlos, SP, Brazil
| |
Collapse
|
39
|
Gulder TAM, Hong H, Correa J, Egereva E, Wiese J, Imhoff JF, Gross H. Isolation, structure elucidation and total synthesis of lajollamide A from the marine fungus Asteromyces cruciatus. Mar Drugs 2013; 10:2912-35. [PMID: 23342379 PMCID: PMC3528133 DOI: 10.3390/md10122912] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The marine-derived filamentous fungus Asteromyces cruciatus 763, obtained off the coast of La Jolla, San Diego, USA, yielded the new pentapeptide lajollamide A (1), along with the known compounds regiolone (2), hyalodendrin (3), gliovictin (4), 1N-norgliovicitin (5), and bis-N-norgliovictin (6). The planar structure of lajollamide A (1) was determined by Nuclear Magnetic Resonance (NMR) spectroscopy in combination with mass spectrometry. The absolute configuration of lajollamide A (1) was unambiguously solved by total synthesis which provided three additional diastereomers of 1 and also revealed that an unexpected acid-mediated partial racemization (2:1) of the L-leucine and L-N-Me-leucine residues occurred during the chemical degradation process. The biological activities of the isolated metabolites, in particular their antimicrobial properties, were investigated in a series of assay systems.
Collapse
Affiliation(s)
- Tobias A. M. Gulder
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk Str. 1, Bonn 53121, Germany; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (T.A.M.G.); (H.G.); Tel.: +49-228-735797 (T.A.M.G.); Fax: +49-228-739712 (T.A.M.G.); Tel.: +49-7071-2976970 (H.G.); Fax: +49-7071-295250 (H.G.)
| | - Hanna Hong
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk Str. 1, Bonn 53121, Germany; E-Mail:
| | - Jhonny Correa
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn 53115, Germany; E-Mails: (J.C.); (E.E.)
| | - Ekaterina Egereva
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn 53115, Germany; E-Mails: (J.C.); (E.E.)
| | - Jutta Wiese
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Helmholtz-Zentrum für Ozeanforschung GEOMAR, Am Kiel-Kanal 44, Kiel 24106, Germany; E-Mails: (J.W.); (J.F.I.)
| | - Johannes F. Imhoff
- Kieler Wirkstoff-Zentrum (KiWiZ) at the Helmholtz-Zentrum für Ozeanforschung GEOMAR, Am Kiel-Kanal 44, Kiel 24106, Germany; E-Mails: (J.W.); (J.F.I.)
| | - Harald Gross
- Institute for Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Authors to whom correspondence should be addressed; E-Mails: (T.A.M.G.); (H.G.); Tel.: +49-228-735797 (T.A.M.G.); Fax: +49-228-739712 (T.A.M.G.); Tel.: +49-7071-2976970 (H.G.); Fax: +49-7071-295250 (H.G.)
| |
Collapse
|
40
|
Morais-Urano RP, Chagas ACS, Berlinck RGS. Acaricidal action of destruxins produced by a marine-derived Beauveria felina on the bovine tick Rhipicephalus (Boophilus) microplus. Exp Parasitol 2012; 132:362-6. [PMID: 22955115 DOI: 10.1016/j.exppara.2012.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 11/17/2022]
Abstract
The increasing resistance of Rhipicephalus (Boophilus) microplus tick to commercial insecticides requires alternative methods for the control of this cattle plague. The enthomopathogenic fungus Beauveria felina produces destruxins in culture media, cyclic depsipeptides which display an array of biological activities. The present investigation aimed to evaluate the acaricide action of destruxins isolated from B. felina culture media on R. (B.) microplus engorged females. B. felina was grown in MF medium under 19 different growth conditions. HPLC-PDA analysis of chromatographic fractions obtained from the 19 different growth media extracts indicated the presence of destruxins in all lipophylic fractions. Such fractions were combined and subjected to separation by HPLC. Fractions containing distinct destruxins composition were tested against R. (B.) microplus. Two fractions, composed of destruxin Ed(1) and pseudodestruxin B and/or pseudodestruxin C (fraction P1) as well as by hydroxyhomodestruxin B and/or destruxin D and/or roseotoxin C (fraction P7), displayed 30% and 28.7% acaricidal efficacy, respectively. This activity profile in such low concentration is adequate to consider destruxins as potential leading compounds to be developed for tick biological control.
Collapse
Affiliation(s)
- Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | |
Collapse
|
41
|
Lopes FC, Tichota DM, Sauter IP, Meira SMM, Segalin J, Rott MB, Rios AO, Brandelli A. Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0532-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Rocha LC, Luiz RF, Rosset IG, Raminelli C, Seleghim MHR, Sette LD, Porto ALM. Bioconversion of iodoacetophenones by marine fungi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:396-401. [PMID: 22653656 DOI: 10.1007/s10126-012-9463-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 10/30/2011] [Indexed: 06/01/2023]
Abstract
Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.
Collapse
Affiliation(s)
- Lenilson C Rocha
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador, São-carlense, 400, CP 780, 13560-970, São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Huehls CB, Hood TS, Yang J. Diastereoselective Synthesis of C3-Quaternary Indolenines Using α,β-UnsaturatedN-Aryl Ketonitrones and Activated Alkynes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Huehls CB, Hood TS, Yang J. Diastereoselective synthesis of C3-quaternary indolenines using α,β-unsaturated N-aryl ketonitrones and activated alkynes. Angew Chem Int Ed Engl 2012; 51:5110-3. [PMID: 22488854 DOI: 10.1002/anie.201200860] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Indexed: 01/12/2023]
Affiliation(s)
- C Bryan Huehls
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | | | | |
Collapse
|
45
|
Frisvad JC. Media and growth conditions for induction of secondary metabolite production. Methods Mol Biol 2012; 944:47-58. [PMID: 23065607 DOI: 10.1007/978-1-62703-122-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|