1
|
Kong D, Wu Y, Tong B, Liang Y, Xu F, Chi X, Ni L, Tian G, Zhang G, Xu Z. CHES1 modulated tumorigenesis and senescence of pancreas cancer cells through repressing AKR1B10. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167214. [PMID: 38718846 DOI: 10.1016/j.bbadis.2024.167214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/24/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), is characteristic by a heterogeneous tumor microenvironment and gene mutations, conveys a dismal prognosis and low response to chemotherapy and immunotherapy. Here, we found that checkpoint suppressor 1 (CHES1) served as a tumor repressor in PDAC and was associated with patient prognosis. Functional experiments indicated that CHES1 suppressed the proliferation and invasion of PDAC by modulating cellular senescence. To further identify the downstream factor of CHES1 in PDAC, label-free quantitative proteomics analysis was conducted, which showed that the oncogenic Aldo-keto reductase 1B10 (AKR1B10) was transcriptionally repressed by CHES1 in PDAC. And AKR1B10 facilitated the malignant activity and repressed senescent phenotype of PDAC cells. Moreover, pharmaceutical inhibition of AKR1B10 with Oleanolic acid (OA) significantly induced tumor regression and sensitized PDAC cells to gemcitabine, and this combined therapy did not cause obvious side effects. Rescued experiments revealed that CHES1 regulated the tumorigenesis and gemcitabine sensitivity through AKR1B10-mediated senescence in PDAC. In summary, this study revealed that the CHES1/AKR1B10 axis modulated the progression and cellular senescence in PDAC, which might provide revenues for drug-targeting and senescence-inducing therapies for PDAC.
Collapse
Affiliation(s)
- Demin Kong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yingying Wu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China; The Second Medical College, Binzhou Medical University, Yantai, China
| | - Binghua Tong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yonghui Liang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lei Ni
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guilong Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhaowei Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Bombyx mori-derived aldo-keto reductase AKR2E8 detoxifies aldehydes present in mulberry leaves. Chem Biol Interact 2022; 351:109717. [PMID: 34737151 DOI: 10.1016/j.cbi.2021.109717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022]
Abstract
Lepidopterans are agricultural pests. Since the silkworm is a model for lepidopterans, analysis of the enzymes produced by silkworms is of great interest for developing methods of pest control. The aldo-keto reductase (AKR) superfamily catalyzes the reduction of aldehydes by converting a carbonyl group to an alcohol group. Here, we characterized a new AKR present in the silkworm Bombyx mori, which has been designated as AKR2E8. Amino acid sequence and phylogenetic analyses showed that AKR2E8 is similar to human AKR1B1 and AKR1B10. Three amino acid residues in the active site were identical among AKR2E8, AKR1B1, and AKR1B10. Recombinant AKR2E8 overexpressed in Escherichia coli used nicotinamide adenine dinucleotide phosphate as a coenzyme to reduce the aldehydes present in mulberry (Morus alba) leaves. AKR2E8 was found to reduce benzaldehyde, hexanal, heptanal, nonanal, trans-2-nonenal, and citral. No nicotinamide adenine dinucleotide-dependent activity was detected. Akr2e8 mRNA was detected in the testes, ovaries, and fat body; the highest expression was found in the midgut. The substrate specificity and highest observed expression of AKR2E8 in the midgut suggests that AKR2E8 may play a major role in aldehyde detoxification in silkworms. The findings of this study may assist in the development of pest control methods for controlling the population of lepidopterans, such as silkworms, that damage crops.
Collapse
|
3
|
Wu T, Ke Y, Tang H, Liao C, Li J, Wang L. Fidarestat induces glycolysis of NK cells through decreasing AKR1B10 expression to inhibit hepatocellular carcinoma. Mol Ther Oncolytics 2021; 23:420-431. [PMID: 34853813 PMCID: PMC8605295 DOI: 10.1016/j.omto.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aldose reductase inhibitor Fidarestat has been noted to have efficacy in treating a variety of tumors. To define its role in hepatocellular carcinoma (HCC), we induced a HCC xenograft model in mice, which were treated with different doses of Fidarestat. The amounts of natural killer (NK) cells and related inflammatory factors were detected in the serum of the mice. Fidarestat inhibited HCC tumor growth and lung metastasis in vivo and increased NK cell number as well as levels of NK cell-related inflammatory factors in mouse serum. NK cells were then co-cultured with the HCC cell line in vitro to detect effects on HCC cell progression after Fidarestat administration. The glycolysis activity of the NK cells was evaluated by extracellular acidification rate, while aldo-keto reductase family 1 member B10 (AKR1B10) expression was detected by western blot analysis. Administration of Fidarestat downregulated the expression of AKR1B10 in NK cells and promoted NK cell glycolysis to enhance their killing activity against HCC cells. However, depletion of NK cells or upregulation of AKR1B10 attenuated the anticancer activity of Fidarestat. Taken together, Fidarestat downregulated AKR1B10 expression in NK cells to promote NK cell glycolysis, thereby alleviating HCC progression.
Collapse
Affiliation(s)
- Tiangen Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Haoran Tang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Chen Liao
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Jinze Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| |
Collapse
|
4
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
5
|
The expression and significance of AKR1B10 in laryngeal squamous cell carcinoma. Sci Rep 2021; 11:18228. [PMID: 34521883 PMCID: PMC8440551 DOI: 10.1038/s41598-021-97648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Aldosterone reductase family 1 member B10 (AKR1B10) is a nicotinamide adenine dinucleotide phosphate (reduced coenzyme II)-dependent oxidoreductase, and its biological functions include carbonyl detoxification, hormone metabolism, osmotic adjustment, and lipid synthesis. Studies suggested that AKR1B10 is a new biomarker for cancer based on its overexpression in epithelial tumors, such as breast cancer, cervical cancer, and lung cancer. At present, studies on the expression of AKR1B10 in laryngeal cancer have not been reported. However, we found that AKR1B10 is upregulated in laryngeal carcinoma, and its expression was negatively correlated with the degree of differentiation. In addition, AKR1B10 expression was positively correlated with tumor size; lymph node metastasis; alcohol use; and Ki-67, mutant p53, and matrix metalloproteinase 2 expression. AKR1B10 was overexpressed in Hep-2 laryngeal carcinoma cells. Oleanolic acid inhibited AKR1B10 activity and expression in Hep-2 cells and suppressed Hep-2 cell proliferation, migration, and invasion. Therefore, AKR1B10 may be related to the development of laryngeal carcinoma, suggesting its use as a prognostic indicator for laryngeal cancer.
Collapse
|
6
|
CBX7 suppresses urinary bladder cancer progression via modulating AKR1B10-ERK signaling. Cell Death Dis 2021; 12:537. [PMID: 34035231 PMCID: PMC8149849 DOI: 10.1038/s41419-021-03819-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023]
Abstract
The chromobox (CBX) proteins mediate epigenetic gene silencing and have been implicated in the cancer development. By analyzing eight CBX family members in TCGA dataset, we found that chromobox 7 (CBX7) was the most strikingly downregulated CBX family member in urinary bladder cancer (UBC), as compared to normal tissues. Though dysregulation of CBX7 has been reported in multiple cancers, its specific role and clinical relevance in UBC remain unclear. Herein, we found that frequent downregulation of CBX7 in UBC specimens, which was due to its promoter hypermethylation, was correlated with poor prognosis. The ectopic expression of CBX7 suppressed UBC cell proliferation, migration, invasion, and cancer stemness, whereas CBX7 depletion promoted cancer cell aggressiveness. Importantly, CBX7 overexpression in UBC cells inhibited tumorigenicity, whereas CBX7 depletion promoted the tumor development, indicating its tumor-suppressive role in UBC. Using RNA-seq and chromosome immunoprecipitation (ChIP) assays, we identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of CBX7, which was negatively modulated by CBX7 in a PRC1-dependent manner and involved in stimulating ERK signaling. Consistently, AKR1B10 overexpression induced cancer cell aggressiveness, whereas suppression of AKR1B10 by siRNA or its small molecular inhibitor, oleanolic acid, reversed the CBX7 deficiency-induced cellular effects. AKR1B10 overexpression was negatively associated with CBX7 downregulation and predicted poor clinical outcomes in UBC patients. Taken together, our results indicate that CBX7 functions as a tumor suppressor to downregulate AKR1B10 and further inactivates ERK signaling. This CBX7/AKR1B10/ERK signaling axis may provide a new therapeutic strategy against UBC.
Collapse
|
7
|
Endo S, Matsunaga T, Nishinaka T. The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites 2021; 11:332. [PMID: 34063865 PMCID: PMC8224097 DOI: 10.3390/metabo11060332] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
AKR1B10 is a human nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase belonging to the aldo-keto reductase (AKR) 1B subfamily. It catalyzes the reduction of aldehydes, some ketones and quinones, and interacts with acetyl-CoA carboxylase and heat shock protein 90α. The enzyme is highly expressed in epithelial cells of the stomach and intestine, but down-regulated in gastrointestinal cancers and inflammatory bowel diseases. In contrast, AKR1B10 expression is low in other tissues, where the enzyme is upregulated in cancers, as well as in non-alcoholic fatty liver disease and several skin diseases. In addition, the enzyme's expression is elevated in cancer cells resistant to clinical anti-cancer drugs. Thus, growing evidence supports AKR1B10 as a potential target for diagnosing and treating these diseases. Herein, we reviewed the literature on the roles of AKR1B10 in a healthy gastrointestinal tract, the development and progression of cancers and acquired chemoresistance, in addition to its gene regulation, functions, and inhibitors.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan;
| |
Collapse
|
8
|
Li W, Liu C, Huang Z, Shi L, Zhong C, Zhou W, Meng P, Li Z, Wang S, Luo F, Yan J, Wu T. AKR1B10 negatively regulates autophagy through reducing GAPDH upon glucose starvation in colon cancer. J Cell Sci 2021; 134:237788. [PMID: 33758077 DOI: 10.1242/jcs.255273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Autophagy is considered to be an important switch for facilitating normal to malignant cell transformation during colorectal cancer development. Consistent with other reports, we found that the membrane receptor Neuropilin1 (NRP1) is greatly upregulated in colon cancer cells that underwent autophagy upon glucose deprivation. However, the mechanism underlying NRP1 regulation of autophagy is unknown. We found that knockdown of NRP1 inhibits autophagy and largely upregulates the expression of aldo-keto reductase family 1 B10 (AKR1B10). Moreover, we demonstrated that AKR1B10 interacts with and inhibits the nuclear importation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and then subsequently represses autophagy. Interestingly, we also found that an NADPH-dependent reduction reaction could be induced when AKR1B10 interacts with GAPDH, and the reductase activity of AKR1B10 is important for its repression of autophagy. Together, our findings unravel a novel mechanism of NRP1 in regulating autophagy through AKR1B10.
Collapse
Affiliation(s)
- Wanyun Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Zilan Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Lei Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361000, China
| | - Wenwen Zhou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Peipei Meng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Zhenyu Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China.,Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361000, China.,Xiamen University Research Center of Retroperitoneal Tumor Committee of Oncology Society of Chinese Medical Association, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Joint Laboratory of Xiamen University School of Medicine and Shanghai Jiangxia Blood Technology Co., Ltd., Xiamen 361000, China
| |
Collapse
|
9
|
Xiaofei J, Mingqing S, Miao S, Yizhen Y, Shuang Z, Qinhua X, Kai Z. Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway. Biochem Biophys Res Commun 2021; 545:81-88. [PMID: 33548628 DOI: 10.1016/j.bbrc.2021.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Cervical cancer remains the leading cause of cancerous death among women worldwide. Oleanolic acid (OA) is a substance that occurs naturally in the leaves, fruits, and rhizomes of plants and has anti-cancer activity. In this study, tumor-bearing mice were used as the animal model and Hela cells were used as cellular model. In vivo experiments have showed that OA significantly reduced the size and mass of cervical cancer tumors in mice. In vitro experiments have showed that OA significantly reduced the viability and proliferative capacity of Hela cells. In both in vivo and in vitro assays, OA increased the oxidative stress levels and Fe2+ content, and increased the expression of ferroptosis-related proteins. We found that ACSL4 was highly expressed in both xenograft models and cervical carcinoma cells with OA treatment. Further use of siRNA to interfere with ACSL4 expression in cervical cancer cells revealed that the inhibitory effect of OA on cell viability and proliferative capacity was counteracted, while a decrease in ROS levels and GPX4 was detected, suggesting that OA activated ferroptosis in Hela cells by promoting ACSL4 expression, thereby reducing the survival rate of Hela cells. Therefore, promotion of ACSL4-dependent ferroptosis by OA may be a potential approach for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jiang Xiaofei
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Shi Mingqing
- Department of Obstetrics and Gynecology, Lishui Hospital of Chinese Medicine, Lishui, Zhejiang, 323000, China
| | - Sui Miao
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Yuan Yizhen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zhang Shuang
- Zhangjiagang Hospital of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Xia Qinhua
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Zhao Kai
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China.
| |
Collapse
|
10
|
Tanawattanasuntorn T, Thongpanchang T, Rungrotmongkol T, Hanpaibool C, Graidist P, Tipmanee V. (-)-Kusunokinin as a Potential Aldose Reductase Inhibitor: Equivalency Observed via AKR1B1 Dynamics Simulation. ACS OMEGA 2021; 6:606-614. [PMID: 33458512 PMCID: PMC7807751 DOI: 10.1021/acsomega.0c05102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 05/14/2023]
Abstract
(-)-Kusunokinin performed its anticancer potency through CFS1R and AKT pathways. Its ambiguous binding target has, however, hindered the next development phase. Our study thus applied molecular docking and molecular dynamics simulation to predict the protein target from the pathways. Among various candidates, aldo-keto reductase family 1 member B1 (AKR1B1) was finally identified as a (-)-kusunokinin receptor. The predicted binding affinity of (-)-kusunokinin was better than the selected aldose reductase inhibitors (ARIs) and substrates. The compound also had no significant effect on AKR1B1 conformation. An intriguing AKR1B1 efficacy, with respect to the known inhibitors (epalrestat, zenarestat, and minalrestat) and substrates (UVI2008 and prostaglandin H2), as well as a similar interactive insight of the enzyme pocket, pinpointed an ARI equivalence of (-)-kusunokinin. An aromatic ring and a γ-butyrolactone ring shared a role with structural counterparts in known inhibitors. The modeling explained that the aromatic constituent contributed to π-π attraction with Trp111. In addition, the γ-butyrolactone ring bound the catalytic His110 using hydrogen bonds, which could lead to enzymatic inhibition as a consequence of substrate competitiveness. Our computer-based findings suggested that the potential of (-)-kusunokinin could be furthered by in vitro and/or in vivo experiments to consolidate (-)-kusunokinin as a new AKR1B1 antagonist in the future.
Collapse
Affiliation(s)
- Tanotnon Tanawattanasuntorn
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Tienthong Thongpanchang
- Department
of Chemistry, Faculty of Science and Center of Excellence for Innovation
in Chemistry, Mahidol University, Bangkok 10400, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology
Research Unit, Department
of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Graduate School, Chulalongkorn
University, Bangkok 10300, Thailand
| | - Chonnikan Hanpaibool
- Biocatalyst and Environmental Biotechnology
Research Unit, Department
of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Graduate School, Chulalongkorn
University, Bangkok 10300, Thailand
| | - Potchanapond Graidist
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
11
|
Chen X, Niu S, Bremner DH, Zhang X, Zhang H, Zhang Y, Li S, Zhu LM. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym 2020; 247:116672. [PMID: 32829800 DOI: 10.1016/j.carbpol.2020.116672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Nanocomposites as "stevedores" for co-delivery of multidrugs hold great promise in addressing the drawbacks of traditional cancer chemotherapy. In this work, our strategy presents a new avenue for the stepwise release of two co-delivered agents into the tumor cells. The hybrid nanocomposite consists of a pH-responsive chitosan (CS), a thermosensitive poly(N-vinylcaprolactam) (PNVCL) and a functionalized cell-penetrating peptide (H6R6). Doxorubicin (DOX) and oleanolic acid (OA) are loaded into the nanocomposite (H6R6-CS-g-PNVCL). The system displayed a suitable size (∼190 nm), a high DOX loading (13.2 %) and OA loading efficiency (7.3 %). The tumor microenvironment triggered the nanocomposite to be selectively retained in tumor cells, then releasing the drugs. Both in vitro and in vivo studies showed a significant enhancement in antitumor activity of the co-delivered system in comparison to mono-delivery. This approach which relies on redox, pH and temperature effects utilizing co-delivery nanosystems may be beneficial for future applications in cancer chemotherapy.
Collapse
Affiliation(s)
- Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, PR China
| | - David H Bremner
- School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee, DD1 1HG, Scotland, UK
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Hongmei Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, PR China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China.
| |
Collapse
|
12
|
Matsunaga T, Kawabata S, Yanagihara Y, Kezuka C, Kato M, Morikawa Y, Endo S, Chen H, Iguchi K, Ikari A. Pathophysiological roles of autophagy and aldo-keto reductases in development of doxorubicin resistance in gastrointestinal cancer cells. Chem Biol Interact 2019; 314:108839. [PMID: 31563593 DOI: 10.1016/j.cbi.2019.108839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Here, we show that incubation of three human gastrointestinal cancer cell lines (HCT15, LoVo and MKN45) with doxorubicin (DOX) provokes autophagy through facilitating production of reactive oxygen species (ROS). HCT15 cell treatment with DOX resulted in up-regulation of Beclin1, down-regulation of Bcl2, activation of AMPK and JNK, and Akt inactivation, all of which were restored by pretreating with an antioxidant N-acetyl-l-cysteine. These data suggest that all the autophagy-related alterations evoked by DOX result from the ROS production. In the DOX-resistant cancer cells, degree of autophagy elicited by DOX was milder than the parental cells, and DOX treatment hardly activated the ROS-dependent apoptotic signals [formation of 4-hydroxy-2-nonenal (HNE), cytochrome-c release into cytosol, and activation of JNK and caspase-3], inferring an inverse correlation between cellular antioxidant capacity and autophagy induction by DOX. Monitoring of expression levels of aldo-keto reductases (AKRs) in the parental and DOX-resistant cells revealed an up-regulation of AKR1B10 and/or AKR1C3 with acquiring the DOX resistance. Knockdown and inhibition of AKR1B10 or AKR1C3 in these cells enhanced DOX-elicited autophagy. Measurement of DOX-reductase activity and HNE-sensitivity assay also suggested that both AKR1B10 (via high HNE-reductase activity) and AKR1C3 (via low HNE-reductase and DOX-reductase activities) are involved in the development of DOX resistance. Combination of inhibitors of autophagy and the two AKRs overcame DOX resistance and cross-resistance of gastrointestinal cancer cells with resistance development to DOX or cis-diamminedichloroplatinum. Therefore, concomitant treatment with the inhibitors may be effective as an adjuvant therapy for elevating DOX sensitivity of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| | - Saori Kawabata
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuji Yanagihara
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Misaki Kato
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Huayue Chen
- Department of Anatomy School of Medicine, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
13
|
Zheng SW, Xiao SY, Wang J, Hou W, Wang YP. Inhibitory Effects of Ginsenoside Ro on the Growth of B16F10 Melanoma via Its Metabolites. Molecules 2019; 24:E2985. [PMID: 31426477 PMCID: PMC6721120 DOI: 10.3390/molecules24162985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
Ginsenoside Ro (Ro), a major saponin derived and isolated from Panax ginseng C.A. Meyer, exerts multiple biological activities. However, the anti-tumour efficacy of Ro remains unclear because of its poor in vitro effects. In this study, we confirmed that Ro has no anti-tumour activity in vitro. We explored the anti-tumour activity of Ro in vivo in B16F10 tumour-bearing mice. The results revealed that Ro considerably suppressed tumour growth with no significant side effects on immune organs and body weight. Zingibroside R1, chikusetsusaponin IVa, and calenduloside E, three metabolites of Ro, were detected in the plasma of Ro-treated tumour-bearing mice and showed excellent anti-tumour effects as well as anti-angiogenic activity. The results suggest that the metabolites play important roles in the anti-tumour efficacy of Ro in vivo. Additionally, the haemolysis test demonstrated that Ro has good biocompatibility. Taken together, the findings of this study demonstrate that Ro markedly suppresses the tumour growth of B16F10-transplanted tumours in vivo, and its anti-tumour effects are based on the biological activity of its metabolites. The anti-tumour efficacy of these metabolites is due, at least in part, to its anti-angiogenic activity.
Collapse
Affiliation(s)
- Si-Wen Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Sheng-Yuan Xiao
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jia Wang
- School of Pharmaceutical Sciences Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wei Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Ying-Ping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
14
|
Giménez-Dejoz J, Weber S, Fernández-Pardo Á, Möller G, Adamski J, Porté S, Parés X, Farrés J. Engineering aldo-keto reductase 1B10 to mimic the distinct 1B15 topology and specificity towards inhibitors and substrates, including retinoids and steroids. Chem Biol Interact 2019; 307:186-194. [PMID: 31028727 DOI: 10.1016/j.cbi.2019.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises NAD(P)H-dependent enzymes that catalyze the reduction of a variety of carbonyl compounds. AKRs are classified in families and subfamilies. Humans exhibit three members of the AKR1B subfamily: AKR1B1 (aldose reductase, participates in diabetes complications), AKR1B10 (overexpressed in several cancer types), and the recently described AKR1B15. AKR1B10 and AKR1B15 share 92% sequence identity, as well as the capability of being active towards retinaldehyde. However, AKR1B10 and AKR1B15 exhibit strong differences in substrate specificity and inhibitor selectivity. Remarkably, their substrate-binding sites are the most divergent parts between them. Out of 27 residue substitutions, six are changes to Phe residues in AKR1B15. To investigate the participation of these structural changes, especially the Phe substitutions, in the functional features of each enzyme, we prepared two AKR1B10 mutants. The AKR1B10 m mutant carries a segment of six AKR1B15 residues (299-304, including three Phe residues) in the respective AKR1B10 region. An additional substitution (Val48Phe) was incorporated in the second mutant, AKR1B10mF48. This resulted in structures with smaller and more hydrophobic binding pockets, more similar to that of AKR1B15. In general, the AKR1B10 mutants mirrored well the specific functional features of AKR1B15, i.e., the different preferences towards the retinaldehyde isomers, the much higher activity with steroids and ketones, and the unique behavior with inhibitors. It can be concluded that the Phe residues of loop C (299-304) contouring the substrate-binding site, in addition to Phe at position 48, strongly contribute to a narrower and more hydrophobic site in AKR1B15, which would account for its functional uniqueness. In addition, we have investigated the AKR1B10 and AKR1B15 activity toward steroids. While AKR1B10 only exhibits residual activity, AKR1B15 is an efficient 17-ketosteroid reductase. Finally, the functional role of AKR1B15 in steroid and retinaldehyde metabolism is discussed.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Susanne Weber
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Álvaro Fernández-Pardo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85356, Freising-Weihenstephan, Germany; German Center for Diabetes Research, 85764, Neuherberg, Germany
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
15
|
Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11040486. [PMID: 30959792 PMCID: PMC6521254 DOI: 10.3390/cancers11040486] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Although diagnostic measures and surgical interventions have improved in recent years, the five-year survival rate for patients with advanced HCC remains bleak-a reality that is largely attributable to an absence of early stage symptoms, lack of adequate diagnostic and prognostic biomarkers, and the common occurrence of acquired resistance to chemotherapeutic agents during HCC treatment. A limited understanding of the molecular mechanisms underlying HCC pathogenesis also presents a challenge for the development of specific and efficacious pharmacological strategies to treat, halt, or prevent progression to advanced stages. Over the past decade, aldo-keto reductase family 1 member 10 (AKR1B10) has emerged as a potential biomarker for the diagnosis and prognosis of HCC, and experimental studies have demonstrated roles for this enzyme in biological pathways underlying the development and progression of HCC and acquired resistance to chemotherapeutic agents used in the treatment of HCC. Here we provide an overview of studies supporting the diagnostic and prognostic utility of AKR1B10, summarize the experimental evidence linking AKR1B10 with HCC and the induction of chemoresistance, and discuss the clinical value of AKR1B10 as a potential target for HCC-directed drug development. We conclude that AKR1B10-based therapies in the clinical management of specific HCC subtypes warrant further investigation.
Collapse
|
16
|
Wang H, Zhong W, Zhao J, Zhang H, Zhang Q, Liang Y, Chen S, Liu H, Zong S, Tian Y, Zhou H, Sun T, Liu Y, Yang C. Oleanolic Acid Inhibits Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma by Promoting iNOS Dimerization. Mol Cancer Ther 2019; 18:62-74. [PMID: 30297361 DOI: 10.1158/1535-7163.mct-18-0448] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Oleanolic acid exhibits extensive pharmacologic activities and takes significant antitumor effects. Its pharmacologic mechanism, however, still remained to be further clarified. In this study, we demonstrated that oleanolic acid attenuated the migration and invasion abilities, resulting in the suppression of the epithelial-mesenchymal transition (EMT) process in liver cancer cells, and inhibited the tumor growth of the peritoneal lymphocytes-bearing mice. We further proved that inducible nitric oxide synthase (iNOS) may be the potential target of oleanolic acid. We confirmed that oleanolic acid could promote the dimerization of iNOS, activating it, and subsequently increasing the production of nitric oxide. Further experiments indicated that oleanolic acid promoted the nitration of specific proteins and consequently suppressed their EMT-related biological functions. Furthermore, it has been confirmed that oleanolic acid enhanced the antitumor effects of regorafenib in liver cancer treatment. These results deepened our understanding of the pharmacologic mechanism of the antitumor effect oleanolic acid, and the importance of nitric oxide synthetase as a therapeutic target for liver cancer treatment.
Collapse
Affiliation(s)
- Hongzhi Wang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jianmin Zhao
- Department of Pathology, Hospital of Shun Yi District, Beijing, China
| | - Heng Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yuan Liang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shumin Zong
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yixuan Tian
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Honggang Zhou
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Seliger JM, Misuri L, Maser E, Hintzpeter J. The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J Enzyme Inhib Med Chem 2018; 33:607-614. [PMID: 29532688 PMCID: PMC6010053 DOI: 10.1080/14756366.2018.1437728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023] Open
Abstract
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki = 15.08 μM, 0.34 μM, 0.71 μM) and of human AKR1B10 (Ki = 20.11 μM, 2.25 μM, 1.95 μM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure?activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.
Collapse
Affiliation(s)
- Jan Moritz Seliger
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Livia Misuri
- Department of Biology, Tuscany Region PhD School in Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
18
|
Soares CT, Fachin LRV, Trombone APF, Rosa PS, Ghidella CC, Belone AFF. Potential of AKR1B10 as a Biomarker and Therapeutic Target in Type 2 Leprosy Reaction. Front Med (Lausanne) 2018; 5:263. [PMID: 30320113 PMCID: PMC6166685 DOI: 10.3389/fmed.2018.00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
The AKR1B10 (aldo-keto reductase family 1 member B10) gene has important functions in carcinogen-induced neoplasia. AKR1B10 is also expressed in type 2 reaction leprosy patients (R2). We measured the expression of AKR1B10 in the skin lesions of patients with leprosy by immunohistochemistry from biopsies that encompassed the spectrum of types of leprosy, based on the Ridley and Jopling classification [10 samples each of tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), and borderline lepromatous (BL) lesions; four samples of lepromatous lesions (LL)], reactional leprosy [14 samples of type 1 Reaction (R1) and 10 samples of type 2 Reaction (R2)], and biopsies from 9 healthy control (HC) subjects. In addition, 46 lepromatous lesions (BL and LL), 45 lepromatous lesions in regression, and 115 R2 lesions were included. Eight of 10 R2 samples (80%), 3 of 46 active BL and LL samples (6%), 23 of 45 BL and LL samples in regression (51%), and 107 of 115 R2 samples (93%) were positive for AKR1B10, differing significantly between all groups (p < 0.05). AKR1B10 expression was highest in the cytoplasm of macrophages. Thus, AKR1B10 is overexpressed on the lepromatous side (BL and LL) in samples that are in regression, especially type 2 reaction-associated lesions, rendering it a potential marker of type 2 reactional episodes of leprosy and a target of drugs against reactional episodes.
Collapse
Affiliation(s)
- Cleverson T Soares
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Luciana R V Fachin
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Ana P F Trombone
- Department of Health Science, Universidade do Sagrado Coração, Bauru, Brazil
| | - Patricia S Rosa
- Division of Research and Education, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Cássio C Ghidella
- Ambulatory of Leprosy, Jardim Guanabara Health Center, Rondonópolis, Brazil
| | - Andrea F F Belone
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima, Bauru, Brazil
| |
Collapse
|
19
|
Endo S, Xia S, Suyama M, Morikawa Y, Oguri H, Hu D, Ao Y, Takahara S, Horino Y, Hayakawa Y, Watanabe Y, Gouda H, Hara A, Kuwata K, Toyooka N, Matsunaga T, Ikari A. Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. J Med Chem 2017; 60:8441-8455. [PMID: 28976752 DOI: 10.1021/acs.jmedchem.7b00830] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is overexpressed in several extraintestinal cancers, particularly in non-small-cell lung cancer, where AKR1B10 is a potential diagnostic marker and therapeutic target. Selective AKR1B10 inhibitors are required because compounds should not inhibit the highly related aldose reductase that is involved in monosaccharide and prostaglandin metabolism. Currently, 7-hydroxy-2-(4-methoxyphenylimino)-2H-chromene-3-carboxylic acid benzylamide (HMPC) is known to be the most potent competitive inhibitor of AKR1B10, but it is nonselective. In this study, derivatives of HMPC were synthesized by removing the 4-methoxyphenylimino moiety and replacing the benzylamide with phenylpropylamide. Among them, 4c and 4e showed higher AKR1B10 inhibitory potency (IC50 4.2 and 3.5 nM, respectively) and selectivity than HMPC. The treatments with the two compounds significantly suppressed not only migration, proliferation, and metastasis of lung cancer A549 cells but also metastatic and invasive potentials of cisplatin-resistant A549 cells.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Miho Suyama
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshinori Ao
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Satoyuki Takahara
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshikazu Horino
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama , Toyama 930-0194, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University , Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Gifu 501-1193, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan.,Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| |
Collapse
|
20
|
Kabir A, Endo S, Toyooka N, Fukuoka M, Kuwata K, Kamatari YO. Evaluation of compound selectivity of aldo-keto reductases using differential scanning fluorimetry. J Biochem 2017; 161:215-222. [PMID: 28003428 DOI: 10.1093/jb/mvw063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/11/2016] [Indexed: 02/03/2023] Open
Abstract
Inhibitors of AKR1B10 belonging to the aldo-keto reductase (AKR) superfamily are considered promising candidates for anti-cancer drugs. AKR1B1, a structurally similar isoform of AKR1B10, is involved in glucose metabolism. Thus, selective inhibition of AKR1B10 is required for the development of anti-cancer drugs. In this study, we first compared correlations between melting temperature and the 50% inhibition concentration obtained from differential scanning fluorimetry (DSF) and an enzyme inhibitory experiment, respectively, and a good correlation was found, except for compounds with low solubility. This result indicates that the DSF method is useful for drug screening for the AKR superfamily. We then evaluated their selectivity as inhibitors against all seven major human AKR1 family proteins and found that C18 is most specific for AKR1B10.
Collapse
Affiliation(s)
- Aurangazeb Kabir
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Endo
- Labolatory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu 501-1196, Japan
| | - Naoki Toyooka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Mayuko Fukuoka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
21
|
Giménez-Dejoz J, Weber S, Barski OA, Möller G, Adamski J, Parés X, Porté S, Farrés J. Characterization of AKR1B16, a novel mouse aldo-keto reductase. Chem Biol Interact 2017; 276:182-193. [PMID: 28322781 DOI: 10.1016/j.cbi.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 11/29/2022]
Abstract
Aldo-keto reductases (AKRs) are distributed in three families and multiple subfamilies in mammals. The mouse Akr1b3 gene is clearly orthologous to human AKR1B1, both coding for aldose reductase, and their gene products show similar tissue distribution, regulation by osmotic stress and kinetic properties. In contrast, no unambiguous orthologs of human AKR1B10 and AKR1B15.1 have been identified in rodents. Although two more AKRs, AKR1B7 and AKR1B8, have been identified and characterized in mouse, none of them seems to exhibit properties similar to the human AKRs. Recently, a novel mouse AKR gene, Akr1b16, was annotated and the respective gene product, AKR1B16 (sharing 83% and 80% amino acid sequence identity with AKR1B10 and AKR1B15.1, respectively), was expressed as insoluble and inactive protein in a bacterial expression system. Here we describe the expression and purification of a soluble and enzymatically active AKR1B16 from E. coli using three chaperone systems. A structural model of AKR1B16 allowed the estimation of its active-site pocket volume, which was much wider (402 Å3) than those of AKR1B10 (279 Å3) and AKR1B15.1 (60 Å3). AKR1B16 reduced aliphatic and aromatic carbonyl compounds, using NADPH as a cofactor, with moderate or low activity (highest kcat values around 5 min-1). The best substrate for the enzyme was pyridine-3-aldehyde. AKR1B16 showed poor inhibition with classical AKR inhibitors, tolrestat being the most potent. Kinetics and inhibition properties resemble those of rat AKR1B17 but differ from those of the human enzymes. In addition, AKR1B16 catalyzed the oxidation of 17β-hydroxysteroids in a NADP+-dependent manner. These results, together with a phylogenetic analysis, suggest that mouse AKR1B16 is an ortholog of rat AKR1B17, but not of human AKR1B10 or AKR1B15.1. These human enzymes have no counterpart in the murine species, which is evidenced by forming a separate cluster in the phylogenetic tree and by their unique activity with retinaldehyde.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Susanne Weber
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, USA
| | - Gabriele Möller
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
22
|
Huang L, He R, Luo W, Zhu YS, Li J, Tan T, Zhang X, Hu Z, Luo D. Aldo-Keto Reductase Family 1 Member B10 Inhibitors: Potential Drugs for Cancer Treatment. Recent Pat Anticancer Drug Discov 2017; 11:184-96. [PMID: 26844556 PMCID: PMC5403964 DOI: 10.2174/1574892811888160304113346] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/11/2023]
Abstract
Cytosolic NADPH-dependent reductase AKR1B10 is a member of the aldo-keto reductase (AKR) superfamily. This enzyme is normally expressed in the gastrointestinal tract. However, it is overexpressed in many solid tumors, such as hepatocarcinoma, lung cancer and breast cancer. AKR1B10 may play a role in the formation and development of carcinomas through multiple mechanisms including detoxification of cytotoxic carbonyls, modulation of retinoic acid level, and regulation of cellular fatty acid synthesis and lipid metabolism. Studies have suggested that AKR1B10 may be a useful biomarker for cancer diagnosis and a potential target for cancer treatment. Over the last decade, a number of AKR1B10 inhibitors including aldose reductase inhibitors (ARIs), endogenous substances, natural-based derivatives and synthetic compounds have been developed, which could be novel anticancer drugs. This review provides an overview on related articles and patents about AKR1B10 inhibitors, with a focus on their inhibition selectivity and mechanism of function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zheng Hu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Postdoctoral Mobile Stations of Central South University, Affiliated the First Peoples Hospital of Chenzhou of University of South China, Chenzhou 432000, P.R.China.
| | | |
Collapse
|
23
|
Liu TA, Jan YJ, Ko BS, Wu YJ, Lu YJ, Liang SM, Liu CC, Chen SC, Wang J, Shyue SK, Liou JY. Regulation of aldo-keto-reductase family 1 B10 by 14-3-3ε and their prognostic impact of hepatocellular carcinoma. Oncotarget 2016; 6:38967-82. [PMID: 26516929 PMCID: PMC4770750 DOI: 10.18632/oncotarget.5734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023] Open
Abstract
14-3-3ε is overexpressed in hepatocellular carcinoma (HCC) and its expression significantly associates with a poor prognostic outcome. To uncover how 14-3-3ε contributes to the tumor progression of HCC, we investigated the potential downstream targets regulated by 14-3-3ε. We found that 14-3-3ε increases expression and nuclear translocation of β-catenin and that 14-3-3ε-induced cell proliferation is attenuated by β-catenin silencing in HCC cells. Moreover, 14-3-3ε induces aldo-keto reductase family 1 member B10 (AKR1B10) expression through the activation of β-catenin signaling. Knockdown of AKR1B10 by siRNAs abolished 14-3-3ε-induced in vitro cell proliferation, anchorage-independent growth as well as in vivo tumor growth. Furthermore, AKR1B10 silencing increased retinoic acid (RA) levels in the serum of tumor-bearing mice and RA treatment attenuated 14-3-3ε-induced HCC cell proliferation. We further examined 14-3-3ε and AKR1B10 expression and clinicopathological characteristics of HCC tumors. Although the expression of AKR1B10 was significantly correlated with 14-3-3ε, an increase of AKR1B10 expression in 14-3-3ε positive patients paradoxically had better overall survival and disease-free survival rates as well as lower metastatic incidence than those without an AKR1B10 increase. Finally, we found a loss of AKR1B10 expression in cells exhibiting a high capacity of invasiveness. Silencing of AKR1B10 resulted in inducing snail and vimentin expression in HCC cells. These results indicate that AKR1B10 may play a dual role during HCC tumor progression. Our results also indicate that 14-3-3ε regulates AKR1B10 expression by activating β-catenin signaling. A combination of 14-3-3ε with AKR1B10 is a potential therapeutic target and novel prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Tzu-An Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.,Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Chia-Chia Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Shyh-Chang Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - John Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
24
|
Matsunaga T, Saito H, Endo S, Iguchi K, Soda M, El-Kabbani O, Hara A, Ikari A. Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance. Free Radic Res 2016; 50:1296-1308. [PMID: 27629782 DOI: 10.1080/10715762.2016.1236373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Docetaxel (DTX) is widely used for treatment of inveterate lung and prostate cancers, but its continuous administration elicits the hyposensitivity. Here, we established the DTX-resistant variants of human lung cancer A549 and androgen-independent prostate cancer Du145 cells and found that the resistance development provoked aberrant up-regulations of aldo-keto reductase (AKR) 1B10 and AKR1C3 in A549 and Du145 cells, respectively. In addition, the sensitivity to the DTX toxicity was significantly decreased and increased by overexpression and knockdown of the two AKR isoforms, respectively. Furthermore, the resistant cells exhibited a decreased level of reactive 4-hydroxy-2-nonenal formed during DTX treatment, and the decrease was alleviated by adding the AKR inhibitors, inferring that the two AKRs confer the chemoresistance through elevating the antioxidant properties. The development of DTX resistance was also associated with enhanced expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with inhibitors of the two AKRs and ABCB1 additively sensitized the resistant cells to DTX. Intriguingly, the AKR1B10 inhibitor also suppressed the lung cancer cross-resistance against cisplatin. The results suggest that combined treatment with AKRs (1B10 and 1C3) and ABCB1 inhibitors exerts overcoming effect against the cancer resistance to DTX and cisplatin, and can be used as the adjuvant therapy.
Collapse
Affiliation(s)
| | - Haruhi Saito
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | - Satoshi Endo
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | - Kazuhiro Iguchi
- b Laboratory of Community Pharmacy, Gifu Pharmaceutical University , Gifu , Japan
| | - Midori Soda
- c Laboratory of Pharmaceutics , Gifu Pharmaceutical University , Gifu , Japan
| | | | - Akira Hara
- e Faculty of Engineering , Gifu University , Gifu , Japan
| | - Akira Ikari
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| |
Collapse
|
25
|
Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism. Chem Biol Interact 2016; 256:142-53. [PMID: 27417252 DOI: 10.1016/j.cbi.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of gastrointestinal cancer cells.
Collapse
|
26
|
Nie H, Wang Y, Qin Y, Gong XG. Oleanolic acid induces autophagic death in human gastric cancer cells in vitro and in vivo. Cell Biol Int 2016; 40:770-8. [PMID: 27079177 DOI: 10.1002/cbin.10612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/15/2016] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA), a plant-derived pentacyclic terpenoid, is known to have hepatoprotective effects. In this study, we found that OA induced autophagic cell death in multiple human gastric cancer cell lines. Moreover, OA-induced autophagy was shown for the first time in human gastric cancer cells, evidenced by the formation of GFP-RFP-LC3 puncta and autophagosomes. OA suppressed phospho-mTOR through inhibition of the PI3 K/AKT and ERK/p38 MAPK signalling pathways and through activation of the AMPK signalling pathway. Furthermore, we found that OA-induced cytotoxicity and autophagy could be blocked by the autophagy inhibitor 3-methyladenine or via siRNA targeting Beclin-1. Our in vivo research showed that OA delayed the formation of MGC-803 tumours in an autophagy-dependent manner. These results reveal a novel mechanism for OA in gastric cancer cells and suggest that OA could be a novel agent in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hao Nie
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| | - Yu Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| | - Yong Qin
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| | - Xing-Guo Gong
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Room 345, Hangzhou 310058, China
| |
Collapse
|
27
|
Jumper N, Hodgkinson T, Arscott G, Har-Shai Y, Paus R, Bayat A. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease. J Invest Dermatol 2016; 136:1500-1512. [PMID: 27025872 DOI: 10.1016/j.jid.2016.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease.
Collapse
Affiliation(s)
- Natalie Jumper
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tom Hodgkinson
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Guyan Arscott
- Department of Plastic and Reconstructive Surgery, University of West Indies, Kingston, Jamaica
| | - Yaron Har-Shai
- Plastic Surgery Unit, Carmel Medical Center, Haifa, Israel
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, D-48149, Münster, Germany
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.
| |
Collapse
|
28
|
Zemanova L, Hofman J, Novotna E, Musilek K, Lundova T, Havrankova J, Hostalkova A, Chlebek J, Cahlikova L, Wsol V. Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment. JOURNAL OF NATURAL PRODUCTS 2015; 78:2666-2674. [PMID: 26529431 DOI: 10.1021/acs.jnatprod.5b00616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AKR1B10 is an NADPH-dependent reductase that plays an important function in several physiological reactions such as the conversion of retinal to retinol, reduction of isoprenyl aldehydes, and biotransformation of procarcinogens and drugs. A growing body of evidence points to the important role of the enzyme in the development of several types of cancer (e.g., breast, hepatocellular), in which it is highly overexpressed. AKR1B10 is regarded as a therapeutic target for the treatment of these diseases, and potent and specific inhibitors may be promising therapeutic agents. Several inhibitors of AKR1B10 have been described, but the area of natural plant products has been investigated sparingly. In the present study almost 40 diverse phenolic compounds and alkaloids were examined for their ability to inhibit the recombinant AKR1B10 enzyme. The most potent inhibitors-apigenin, luteolin, and 7-hydroxyflavone-were further characterized in terms of IC50, selectivity, and mode of action. Molecular docking studies were also conducted, which identified putative binding residues important for the interaction. In addition, cellular studies demonstrated a significant inhibition of the AKR1B10-mediated reduction of daunorubicin in intact cells by these inhibitors without a considerable cytotoxic effect. Although these compounds are moderately potent and selective inhibitors of AKR1B10, they constitute a new structural type of AKR1B10 inhibitor and may serve as a template for the development of better inhibitors.
Collapse
Affiliation(s)
| | | | | | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Ruiz FX, Cousido-Siah A, Porté S, Domínguez M, Crespo I, Rechlin C, Mitschler A, de Lera ÁR, Martín MJ, de la Fuente JÁ, Klebe G, Parés X, Farrés J, Podjarny A. Structural Determinants of the Selectivity of 3-Benzyluracil-1-acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10. ChemMedChem 2015; 10:1989-2003. [PMID: 26549844 DOI: 10.1002/cmdc.201500393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/15/2022]
Abstract
The human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2-(3-(4-chloro-3-nitrobenzyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0048, 3) and 2-(2,4-dioxo-3-(2,3,4,5-tetrabromo-6-methoxybenzyl)-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0049, 4), which selectively target these enzymes. Although 3 and 4 share the 3-benzyluracil-1-acetic acid scaffold, they have different substituents in their aryl moieties. Inhibition studies along with thermodynamic and structural characterizations of both enzymes revealed that the chloronitrobenzyl moiety of compound 3 can open the AR specificity pocket but not that of the AKR1B10 cognate. In contrast, the larger atoms at the ortho and/or meta positions of compound 4 prevent the AR specificity pocket from opening due to steric hindrance and provide a tighter fit to the AKR1B10 inhibitor binding pocket, probably enhanced by the displacement of a disordered water molecule trapped in a hydrophobic subpocket, creating an enthalpic signature. Furthermore, this selectivity also occurs in the cell, which enables the development of a more efficient drug design strategy: compound 3 prevents sorbitol accumulation in human retinal ARPE-19 cells, whereas 4 stops proliferation in human lung cancer NCI-H460 cells.
Collapse
Affiliation(s)
- Francesc X Ruiz
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France. .,Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 08854-5627, Piscataway, NJ, (USA).
| | - Alexandra Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marta Domínguez
- Departmento de Química Orgánica and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 363100, Vigo, Spain
| | - Isidro Crespo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Chris Rechlin
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - André Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Ángel R de Lera
- Departmento de Química Orgánica and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 363100, Vigo, Spain
| | - María Jesús Martín
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009, León, Spain
| | | | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Alberto Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France.
| |
Collapse
|
30
|
Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor. Acta Pharmacol Sin 2015; 36:1145-50. [PMID: 26279158 DOI: 10.1038/aps.2015.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
AIM Glyoxalase I (GLOI), a glutathione (GSH)-dependent enzyme, is overexpressed in tumor cells and related to multi-drug resistance in chemotherapy, making GLOI inhibitors as potential anti-tumor agents. But the most studied GSH analogs exhibit poor pharmacokinetic properties. The aim of this study was to discover novel non-GSH analog GLOI inhibitors and analyze their binding mechanisms. METHODS Mouse GLOI (mGLOI) was expressed in BL21 (DE3) pLysS after induction with isopropyl-β-D-1-thiogalactopyranoside and purified using AKTA FPLC system. An in vitro mGLOI enzyme assay was used to screen a small pool of compounds containing carboxyl groups. Crystal structure of the mGLOI-inhibitor complex was determined at 2.3 Å resolution. Molecular docking study was performed using Discovery Studio 2.5 software package. RESULTS A natural compound 18-β-glycyrrhetinic acid (GA) and its derivative carbenoxolone were identified as potent competitive non-GSH analog mGLOI inhibitors with Ki values of 0.29 μmol/L and 0.93 μmol/L, respectively. Four pentacyclic triterpenes (ursolic acid, oleanolic acid, betulic acid and tripterine) showed weak activities (mGLOI inhibition ratio <25% at 10 μmol/L) and other three (maslinic acid, corosolic acid and madecassic acid) were inactive. The crystal structure of the mGLOI-GA complex showed that the carboxyl group of GA mimicked the γ-glutamyl residue of GSH by hydrogen bonding to the glutamyl sites (residues Arg38B, Asn104B and Arg123A) in the GSH binding site of mGLOI. The extensive van der Waals interactions between GA and the surrounding residues also contributed greatly to the binding of GA and mGLOI. CONCLUSION This work demonstrates a carboxyl group to be an important functional feature of non-GSH analog GLOI inhibitors.
Collapse
|
31
|
Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling. Acta Pharmacol Sin 2015; 36:998-1012. [PMID: 26051108 DOI: 10.1038/aps.2015.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/27/2015] [Indexed: 01/04/2023] Open
Abstract
AIM Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. METHODS The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. RESULTS The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. CONCLUSION Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors.
Collapse
|
32
|
Penning TM. The aldo-keto reductases (AKRs): Overview. Chem Biol Interact 2015; 234:236-46. [PMID: 25304492 PMCID: PMC4388799 DOI: 10.1016/j.cbi.2014.09.024] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/12/2014] [Accepted: 09/24/2014] [Indexed: 12/23/2022]
Abstract
The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using modern genomic and informatics approaches to determine their association with human health and disease.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Morikawa Y, Kezuka C, Endo S, Ikari A, Soda M, Yamamura K, Toyooka N, El-Kabbani O, Hara A, Matsunaga T. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10. Chem Biol Interact 2015; 230:30-9. [PMID: 25686905 DOI: 10.1016/j.cbi.2015.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Continuous exposure to doxorubicin (DOX) accelerates hyposensitivity to the drug-elicited lethality of gastric cells, with increased risks of the recurrence and serious cardiovascular side effects. However, the detailed mechanisms underlying the reduction of DOX sensitivity remain unclear. In this study, we generated a DOX-resistant variant upon continuously treating human gastric cancer MKN45 cells with incremental concentrations of the drug, and investigated whether the gain of DOX resistance influences gene expression of four aldo-keto reductases (AKRs: 1B10, 1C1, 1C2 and 1C3). RT-PCR analysis revealed that among the enzymes AKR1B10 is most highly up-regulated during the chemoresistance induction. The up-regulation of AKR1B10 was confirmed by analyses of Western blotting and enzyme activity. The DOX sensitivity of MKN45 cells was reduced and elevated by overexpression and inhibition of AKR1B10, respectively. Compared to the parental MKN45 cells, the DOX-resistant cells had higher migrating and invasive abilities, which were significantly suppressed by addition of AKR1B10 inhibitors. Zymographic and real-time PCR analyses also revealed significant increases in secretion and expression of matrix metalloproteinase (MMP) 2 associated with DOX resistance. Moreover, the overexpression of AKR1B10 in the parental cells remarkably facilitated malignant progression (elevation of migrating and invasive potentials) and MMP2 secretion, which were lowered by the AKR1B10 inhibitors. These results suggest that AKR1B10 is a DOX-resistance gene in the gastric cancer cells, and is responsible for elevating the migrating and invasive potentials of the cells through induction of MMP2.
Collapse
Affiliation(s)
- Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Naoki Toyooka
- Graduate School of Science and Technology for Research, University of Toyama, Toyama 930-8555, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
34
|
Zhang W, Li H, Yang Y, Liao J, Yang GY. Knockdown or inhibition of aldo-keto reductase 1B10 inhibits pancreatic carcinoma growth via modulating Kras-E-cadherin pathway. Cancer Lett 2014; 355:273-80. [PMID: 25304374 PMCID: PMC4462172 DOI: 10.1016/j.canlet.2014.09.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/12/2014] [Accepted: 09/24/2014] [Indexed: 01/13/2023]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) has relatively specific lipid substrates including carbonyls, retinal and farnesal/geranylgeranial. Metabolizing these lipid substrates appears crucial to carcinogenesis, particularly for farnesal/geranylgeranial that involves protein prenylation. Mutant Kras is a most common active oncogene in pancreatic cancer, and its activation requires protein prenylation. To directly determine the role of AKR1B10 in pancreatic carcinogenesis, we knocked down AKR1B10 in CD18 human pancreatic carcinoma cells using shRNA approach. Silencing AKR1B10 resulted in a significant inhibition of anchor-dependent growth (knockdown cells vs. vector-control cells: 67 ± 9.5 colonies/HPF vs. 170 ± 3.7 colonies/HPF, p < 0.01), invasion index (0.27 vs. 1.00, p < 0.05), and cell migration (at 16 hours 9.2 ± 1.2% vs. 14.0 ± 1.8%, at 24 hours 21.0 ± 1.1% vs. 30.5 ± 3.5%, and at 48 hours 51.9 ± 5.7% vs. 88.9 ± 3.0%, p < 0.01). Inhibition of AKR1B10 by oleanolic acid (OA) showed a dose-dependent inhibition of cell growth with IC50 at 30 µM. Kras pull-down and Western blot analysis revealed a significant down-regulation of active form Kras and phosphorylated C-Raf, and Erk, as well as an up-regulation of E-cadherin. A significant reduction of in vivo tumor growth was observed in nude mice implanted with the CD18 pancreatic carcinoma cells with AKR1B10 knockdown (tumor weight: 0.25 ± 0.06 g vs. 0.52 ± 0.07 g, p = 0.01), and with OA treatment (tumor weight: 0.35 ± 0.05 g vs. 0.52 ± 0.07 g, p = 0.05). Our findings indicate AKR1B10 is a unique enzyme involved in pancreatic carcinogenesis via modulation of the Kras-E-cadherin pathway.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haonan Li
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yihe Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jie Liao
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Maccari R, Ottanà R. Targeting Aldose Reductase for the Treatment of Diabetes Complications and Inflammatory Diseases: New Insights and Future Directions. J Med Chem 2014; 58:2047-67. [DOI: 10.1021/jm500907a] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento
di Scienze del
Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Rosaria Ottanà
- Dipartimento
di Scienze del
Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| |
Collapse
|
36
|
Matsunaga T, Yamaji Y, Tomokuni T, Morita H, Morikawa Y, Suzuki A, Yonezawa A, Endo S, Ikari A, Iguchi K, El-Kabbani O, Tajima K, Hara A. Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome. Free Radic Res 2014; 48:1371-85. [PMID: 25156503 DOI: 10.3109/10715762.2014.957694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we show that exposure of human lung cancer A549 cells to cisplatin (cis-diamminedichloroplatinum, CDDP) promotes production of nitric oxide (NO) through generation of reactive oxygen species (ROS) and resulting upregulation of inducible NO synthase (iNOS). The incubation of the cells with a NO donor, diethylenetriamine NONOate, not only reduced the CDDP-induced cell death and apoptotic alterations (induction of CCAAT-enhancer-binding protein homologous protein and caspase-3 activation), but also elevated proteolytic activity of 26S proteasome, suggesting that the activation of proteasome function contributes to the reduction of CDDP sensitivity by NO. Monitoring expression levels of six aldo-keto reductases (AKRs) (1A1, 1B1, 1B10, 1C1, 1C2, and 1C3) during the treatment with the NO donor and subsequent CDDP sensitivity test using the specific inhibitors also proposed that upregulation of AKR1B10 by NO is a key process for acquiring the CDDP resistance in A549 cells. Treatment with CDDP and NO increased amounts of nitrotyrosine protein adducts, indicative of peroxynitrite formation, and promoted the induction of AKR1B10, inferring a relationship between peroxynitrite formation and the enzyme upregulation in the cells. The treatment with CDDP or a ROS-related lipid aldehyde, 4-hydroxy-2-nonenal, facilitated the iNOS upregulation, which was restored by increasing the AKR1B10 expression. In contrast, the facilitation of NO production by CDDP treatment was hardly observed in AKR1B10-overexpressing A549 cells and established CDDP-resistant cancer cells (A549, LoVo, and PC3). Collectively, these results suggest the NO functions as a key regulator controlling AKR1B10 expression and 26S proteasome function leading to gain of the CDDP resistance.
Collapse
Affiliation(s)
- T Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Matsunaga T, Morikawa Y, Haga M, Endo S, Soda M, Yamamura K, El-Kabbani O, Tajima K, Ikari A, Hara A. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicol Appl Pharmacol 2014; 278:180-9. [PMID: 24813866 DOI: 10.1016/j.taap.2014.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/21/2014] [Accepted: 04/26/2014] [Indexed: 01/13/2023]
Abstract
Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-l-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mariko Haga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Kazuo Tajima
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
38
|
Shaw N, Yang B, Millward A, Demaine A, Hodgkinson A. AKR1B10 is induced by hyperglycaemia and lipopolysaccharide in patients with diabetic nephropathy. Cell Stress Chaperones 2014; 19:281-7. [PMID: 23975544 PMCID: PMC3933614 DOI: 10.1007/s12192-013-0455-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022] Open
Abstract
Aldose reductase family member B10 (AKR1B10) belongs to the aldo-keto reductase gene superfamily and is closely related to aldose reductase (AKR1B1). It has been shown that AKR1B10 is present in many of the same human tissues as AKR1B1. The objective of this study was to investigate whether AKR1B10 has a role in diabetic nephropathy (DN) by investigating its response to high glucose and inflammation, both of which have been associated with the development and progression of DN. Expression levels of AKR1B10 were determined in peripheral blood mononuclear cells (PBMCs) obtained from 25 patients with type 1 diabetes and nephropathy, 25 without DN and 25 normal healthy controls that were exposed to high glucose (25 mM D-glucose) and also the inflammatory stressor lipopolysaccharide (LPS, 10 μm). Under high glucose and LPS conditions, there was a significant increase in the expression of AKR1B10 in the PBMCs from patients with DN compared to those without DN and the normal controls. In conclusion, these results suggest that AKR1B10 may have an important role in the development and progression of DN.
Collapse
Affiliation(s)
- Nicholas Shaw
- Department of Molecular Medicine, Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Research Way, Plymouth, PL6 8BU UK
| | - Bingmei Yang
- Department of Molecular Medicine, Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Research Way, Plymouth, PL6 8BU UK
| | - Ann Millward
- Department of Molecular Medicine, Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Research Way, Plymouth, PL6 8BU UK
| | - Andrew Demaine
- Department of Molecular Medicine, Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Research Way, Plymouth, PL6 8BU UK
| | - Andrea Hodgkinson
- Department of Molecular Medicine, Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Research Way, Plymouth, PL6 8BU UK
| |
Collapse
|
39
|
Cousido-Siah A, Ruiz FX, Mitschler A, Porté S, de Lera ÁR, Martín MJ, Manzanaro S, de la Fuente JA, Terwesten F, Betz M, Klebe G, Farrés J, Parés X, Podjarny A. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. ACTA ACUST UNITED AC 2014; 70:889-903. [PMID: 24598757 DOI: 10.1107/s1399004713033452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/10/2013] [Indexed: 01/09/2023]
Abstract
Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.
Collapse
Affiliation(s)
- Alexandra Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Francesc X Ruiz
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - André Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ángel R de Lera
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| | - María J Martín
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Sonia Manzanaro
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Jesús A de la Fuente
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Felix Terwesten
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Michael Betz
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alberto Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| |
Collapse
|
40
|
Zhang L, Zhang H, Zheng X, Zhao Y, Chen S, Chen Y, Zhang R, Li Q, Hu X. Structural basis for the inhibition of AKR1B10 by caffeic acid phenethyl ester (CAPE). ChemMedChem 2014; 9:706-9. [PMID: 24436249 DOI: 10.1002/cmdc.201300455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 12/22/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), the major bioactive component of honeybee propolis, is a potent selective inhibitor of aldo-keto reductase family member 1B10 (AKR1B10), and a number of derivatives hold promise as potential anticancer agents. However, sequence homology between AKR1B10 and other members of the superfamily, including critical phase I metabolizing enzymes, has resulted in a concern over the selectivity of any potential therapeutic agent. To elucidate the binding mode of CAPE with AKR1B10 and to provide a tool for future in silico efforts towards identifying selective inhibitors, the crystal structure of AKR1B10 in complex with CAPE was determined. The observed interactions provide an explanation for the selectivity exhibited by CAPE for AKR1B10, and could be used to guide further derivative design.
Collapse
Affiliation(s)
- Liping Zhang
- Centre for Cellular & Structural Biology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle, University City, Guangzhou 510006 (China)
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Highlights of Pentacyclic Triterpenoids in the Cancer Settings. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63294-4.00002-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Zhang L, Zhang H, Zhao Y, Li Z, Chen S, Zhai J, Chen Y, Xie W, Wang Z, Li Q, Zheng X, Hu X. Inhibitor selectivity between aldo-keto reductase superfamily members AKR1B10 and AKR1B1: Role of Trp112 (Trp111). FEBS Lett 2013; 587:3681-6. [DOI: 10.1016/j.febslet.2013.09.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/10/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
|
43
|
Ruiz FX, Cousido-Siah A, Mitschler A, Farrés J, Parés X, Podjarny A. X-ray structure of the V301L aldo-keto reductase 1B10 complexed with NADP(+) and the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity. Chem Biol Interact 2013; 202:178-85. [PMID: 23295227 DOI: 10.1016/j.cbi.2012.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 01/03/2023]
Abstract
Only one crystal structure is currently available for tumor marker AKR1B10, complexed with NADP(+) and tolrestat, which is an aldose reductase inhibitor (ARI) of the carboxylic acid type. Here, the X-ray structure of the complex of the V301L substituted AKR1B10 holoenzyme with fidarestat, an ARI of the cyclic imide type, was obtained at 1.60Å resolution by replacement soaking of crystals containing tolrestat. Previously, fidarestat was found to be safe in phase III trials for diabetic neuropathy and, consistent with its low in vivo side effects, was highly selective for aldose reductase (AR or AKR1B1) versus aldehyde reductase (AKR1A1). Now, inhibition studies showed that fidarestat was indeed 1300-fold more selective for AR as compared to AKR1B10, while the change of Val to Leu (found in AR) caused a 20-fold decrease in the IC50 value with fidarestat. Structural analysis of the V301L AKR1B10-fidarestat complex displayed enzyme-inhibitor interactions similar to those of the AR-fidarestat complex. However, a close inspection of both the new crystal structure and a computer model of the wild-type AKR1B10 complex with fidarestat revealed subtle changes that could affect fidarestat binding. In the crystal structure, a significant motion of loop A was observed between AR and V301L AKR1B10, linked to a Phe-122/Phe-123 side chain displacement. This was due to the presence of the more voluminous Gln-303 side chain (Ser-302 in AR) and of a water molecule buried in a subpocket located at the base of flexible loop A. In the wild-type AKR1B10 model, a short contact was predicted between the Val-301 side chain and fidarestat, but would not be present in AR or in V301L AKR1B10. Overall, these changes could contribute to the difference in inhibitory potency of fidarestat between AR and AKR1B10.
Collapse
Affiliation(s)
- Francesc Xavier Ruiz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | |
Collapse
|
44
|
Matsunaga T, El-Kabbani O, Hara A. Aldo-Keto Reductases as New Therapeutic Targets for Colon Cancer Chemoresistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Endo S, Fujimoto A, Kumada S, Matsunaga T, Ohno S, Mano J, Tajima K, El-Kabbani O, Hara A. Modulation of activity and inhibitor sensitivity of rabbit aldose reductase-like protein (AKR1B19) by oxidized glutathione and SH-reagents. Chem Biol Interact 2012; 202:146-52. [PMID: 23261715 DOI: 10.1016/j.cbi.2012.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/17/2023]
Abstract
Rabbit aldo-keto reductase (AKR) 1B19 is an ortholog of human aldose reductase-like protein (ARLP), AKR1B10, showing 86% amino acid sequence identity. AKR1B19 exhibits the highest catalytic efficiency for 4-oxo-2-nonenal, a major product of lipid peroxidation, compared to known reductases of this aldehyde. In this study, we found that the reductase activity of AKR1B19 was activated to about 5-fold immediately after the addition of 10 μM SH-reagents (p-chloromercuriphenylsulfonic acid and p-chloromercuribenzoic acid) in the absence or presence of NADPH. In addition, a maximum of 3-fold activation of AKR1B19 was induced by incubation with glutathione disulfide (GSSG) for 1h. The activated enzyme was converted into the native enzyme by further incubation with dithiothreitol and glutathione. The activation was abolished by the C299S mutation of AKR1B19, and the glutathionylated Cys299 was identified by mass spectrometry analysis. The Cys299-modified enzyme displayed different kinetic alterations depending on substrates and inhibitors. In the reduction of 4-oxo-2-nonenal, the catalytic efficiency was increased. Thus, AKR1B10 may be modulated by cellular ratio of GSSG/glutathione and more efficiently act as a detoxifying enzyme for the cytotoxic aldehyde under oxidatively stressed conditions. Furthermore, such an activity alteration by GSSG was not detected in AKR1B10 and rat ARLPs, suggesting the presence of a GSSG-binding site near Cys299 in AKR1B19.
Collapse
Affiliation(s)
- Satoshi Endo
- Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Phlorofucofuroeckol-A, a potent inhibitor of aldo-keto reductase family 1 member B10, from the edible brown alga Eisenia bicyclis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2169-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Porté S, Xavier Ruiz F, Giménez J, Molist I, Alvarez S, Domínguez M, Alvarez R, de Lera AR, Parés X, Farrés J. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity. Chem Biol Interact 2012; 202:186-94. [PMID: 23220004 DOI: 10.1016/j.cbi.2012.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Biological activity of natural retinoids requires the oxidation of retinol to retinoic acid (RA) and its binding to specific nuclear receptors in target tissues. The first step of this pathway, the reversible oxidoreduction of retinol to retinaldehyde, is essential to control RA levels. The enzymes of retinol oxidation are NAD-dependent dehydrogenases of the cytosolic medium-chain (MDR) and the membrane-bound short-chain (SDR) dehydrogenases/reductases. Retinaldehyde reduction can be performed by SDR and aldo-keto reductases (AKR), while its oxidation to RA is carried out by aldehyde dehydrogenases (ALDH). In contrast to SDR, AKR and ALDH are cytosolic. A common property of these enzymes is that they only use free retinoid, but not retinoid bound to cellular retinol binding protein (CRBP). The relative contribution of each enzyme type in retinoid metabolism is discussed in terms of the different subcellular localization, topology of membrane-bound enzymes, kinetic constants, binding affinity of CRBP for retinol and retinaldehyde, and partition of retinoid pools between membranes and cytoplasm. The development of selective inhibitors for AKR enzymes 1B1 and 1B10, of clinical relevance in diabetes and cancer, granted the investigation of some structure-activity relationships. Kinetics with the 4-methyl derivatives of retinaldehyde isomers was performed to identify structural features for substrate specificity. Hydrophilic derivatives were better substrates than the more hydrophobic compounds. We also explored the inhibitory properties of some synthetic retinoids, known for binding to retinoic acid receptors (RAR) and retinoid X receptors (RXR). Consistent with its substrate specificity towards retinaldehyde, AKR1B10 was more effectively inhibited by synthetic retinoids than AKR1B1. A RARβ/γ agonist (UVI2008) inhibited AKR1B10 with the highest potency and selectivity, and docking simulations predicted that its carboxyl group binds to the anion-binding pocket.
Collapse
Affiliation(s)
- Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Characterization of rabbit aldose reductase-like protein with 3β-hydroxysteroid dehydrogenase activity. Arch Biochem Biophys 2012; 527:23-30. [DOI: 10.1016/j.abb.2012.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/09/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022]
|
49
|
Rižner TL. Enzymes of the AKR1B and AKR1C Subfamilies and Uterine Diseases. Front Pharmacol 2012; 3:34. [PMID: 22419909 PMCID: PMC3301985 DOI: 10.3389/fphar.2012.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/19/2012] [Indexed: 12/31/2022] Open
Abstract
Endometrial and cervical cancers, uterine myoma, and endometriosis are very common uterine diseases. Worldwide, more than 800,000 women are affected annually by gynecological cancers, as a result of which, more than 360,000 die. During their reproductive age, about 70% of women develop uterine myomas and 10-15% suffer from endometriosis. Uterine diseases are associated with aberrant inflammatory responses and concomitant increased production of prostaglandins (PG). They are also related to decreased differentiation, due to low levels of protective progesterone and retinoic acid, and to enhanced proliferation, due to high local concentrations of estrogens. The pathogenesis of these diseases can thus be attributed to disturbed PG, estrogen, and retinoid metabolism and actions. Five human members of the aldo-keto reductase 1B (AKR1B) and 1C (AKR1C) superfamilies, i.e., AKR1B1, AKR1B10, AKR1C1, AKR1C2, and AKR1C3, have roles in these processes and can thus be implicated in uterine diseases. AKR1B1 and AKR1C3 catalyze the formation of PGF2α, which stimulates cell proliferation. AKR1C3 converts PGD2 to 9α,11β-PGF2, and thus counteracts the formation of 15-deoxy-PGJ2, which can activate pro-apoptotic peroxisome-proliferator-activated receptor γ. AKR1B10 catalyzes the reduction of retinal to retinol, and thus lessens the formation of retinoic acid, with potential pro-differentiating actions. The AKR1C1-AKR1C3 enzymes also act as 17-keto- and 20-ketosteroid reductases to varying extents, and are implicated in increased estradiol and decreased progesterone levels. This review comprises an introduction to uterine diseases and AKR1B and AKR1C enzymes, followed by an overview of the current literature on the AKR1B and AKR1C expression in the uterus and in uterine diseases. The potential implications of the AKR1B and AKR1C enzymes in the pathophysiologies are then discussed, followed by conclusions and future perspectives.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
50
|
Matsunaga T, Wada Y, Endo S, Soda M, El-Kabbani O, Hara A. Aldo-Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers. Front Pharmacol 2012; 3:5. [PMID: 22319498 PMCID: PMC3269042 DOI: 10.3389/fphar.2012.00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/11/2012] [Indexed: 12/11/2022] Open
Abstract
The human aldo–keto reductase AKR1B10, originally identified as an aldose reductase-like protein and human small intestine aldose reductase, is a cytosolic NADPH-dependent reductase that metabolizes a variety of endogenous compounds, such as aromatic and aliphatic aldehydes and dicarbonyl compounds, and some drug ketones. The enzyme is highly expressed in solid tumors of several tissues including lung and liver, and as such has received considerable interest as a relevant biomarker for the development of those tumors. In addition, AKR1B10 has been recently reported to be significantly up-regulated in some cancer cell lines (medulloblastoma D341 and colon cancer HT29) acquiring resistance toward chemotherapeutic agents (cyclophosphamide and mitomycin c), suggesting the validity of the enzyme as a chemoresistance marker. Although the detailed information on the AKR1B10-mediated mechanisms leading to the drug resistance process is not well understood so far, the enzyme has been proposed to be involved in functional regulations of cell proliferation and metabolism of drugs and endogenous lipids during the development of chemoresistance. This article reviews the current literature focusing mainly on expression profile and roles of AKR1B10 in the drug resistance of cancer cells. Recent developments of AKR1B10 inhibitors and their usefulness in restoring sensitivity to anticancer drugs are also reviewed.
Collapse
|