1
|
Ottaviani JI, Fong RY, Borges G, Kimball J, Ensunsa JL, Medici V, Pourshahidi LK, Kane E, Ward K, Durkan R, Dobani S, Lawther R, O'Connor G, Gill CIR, Schroeter H, Crozier A. Flavan-3-ol-methylxanthine interactions: Modulation of flavan-3-ol bioavailability in volunteers with a functional colon and an ileostomy. Free Radic Biol Med 2023; 196:1-8. [PMID: 36621554 DOI: 10.1016/j.freeradbiomed.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Flavan-3-ols, including the flavan-3-ol monomer (-)-epicatechin, are dietary bioactives known to mediate beneficial cardiovascular effects in humans. Recent studies showed that flavan-3-ols could interact with methylxanthines, evidenced by an increase in flavan-3-ol bioavailability with a concomitant increase in flavan-3-ol intake-mediated vascular effects. This study aimed at elucidating flavan-3-ol-methylxanthine interactions in humans in vivo by evaluating the specific contributions of theobromine and caffeine on flavan-3-ol bioavailability. In ileostomists, the effect of methylxanthines on the efflux of flavan-3-ol metabolites in the small intestine was assessed, a parameter important to an understanding of the pharmacokinetics of flavan-3-ols in humans. In a randomized, controlled, triple cross-over study in volunteers with a functional colon (n = 10), co-ingestion of flavan-3-ols and cocoa methylxanthines, mainly represented by theobromine, increased peak circulatory levels (Cmax) of flavan-3-ols metabolites (+21 ± 8%; p < 0.05). Conversely, caffeine did not mediate a statistically significant effect on flavan-3-ol bioavailability (Cmax = +10 ± 8%, p = n.s.). In a subsequent randomized, controlled, double cross-over study in ileostomists (n = 10), cocoa methylxanthines did not affect circulatory levels of flavan-3-ol metabolites, suggesting potential differences in flavan-3-ol bioavailability compared to volunteers with a functional colon. The main metabolite in ileal fluid was (-)-epicatechin-3'-sulfate, however, no differences in flavan-3-ol metabolites in ileal fluid were observed after flavan-3-ol intake with and without cocoa methylxanthines. Taken together, these results demonstrate a differential effect of caffeine and theobromine in modulating flavan-3-ol bioavailability when these bioactives are co-ingested. These findings should be considered when comparing the effects mediated by the intake of flavan-3-ol-containing foods and beverages and the amount and type of methylxanthines present in the ingested matrixes. Ultimately, these insights will be of value to further optimize current dietary recommendations for flavan-3-ol intake. CLINICAL TRIAL REGISTRATION NUMBER: This work was registered at clinicaltrials.gov as NCT03526107 (study part 1, volunteers with functional colon) and NCT03765606 (study part 2, volunteers with an ileostomy).
Collapse
Affiliation(s)
- Javier I Ottaviani
- Mars, Inc., McLean, VA, 22101, USA; Department of Nutrition, University of California, Davis, CA, 95616, USA.
| | - Reedmond Y Fong
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Gina Borges
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Jennifer Kimball
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Jodi L Ensunsa
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, 95817, USA
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, Northern Ireland, UK
| | - Emma Kane
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, Northern Ireland, UK
| | - Karen Ward
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, Northern Ireland, UK
| | - Rebecca Durkan
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, Northern Ireland, UK
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, Northern Ireland, UK
| | - Roger Lawther
- Altnagelvin Area Hospital, Londonderry, Northern Ireland, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Londonderry, Northern Ireland, UK
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, Northern Ireland, UK
| | - Hagen Schroeter
- Mars, Inc., McLean, VA, 22101, USA; Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA, 95616, USA; Department of Chemistry, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Ottaviani JI, Schroeter H, Kuhnle GGC. Measuring the intake of dietary bioactives: Pitfalls and how to avoid them. Mol Aspects Med 2023; 89:101139. [PMID: 36031430 DOI: 10.1016/j.mam.2022.101139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
Bioactives are food constituents that, while not essential to human life, can affect health. Thus, there is increased interest in developing dietary recommendations for bioactives. Such recommendations require detailed information about the long-term association between habitual intake and health at population scale, and these can only be provided by large-scale observational studies. Nutritional epidemiology relies on the accurate estimation of intake, but currently used methods, commonly based on a 2-step process involving self-reports and food composition tables, are fraught with significant challenges and are unable to estimate the systemic presence of bioactives. Intake assessments based on nutritional biomarkers can provide an advanced alternative, but there are a number of pitfalls that need to be addressed in order to obtain reliable data on intake. Using flavan-3-ols as a case study, we highlight here key challenges and how they may be avoided. Taken together, we believe that the approaches outlined in this review can be applied to a wide range of food constituents, and doing so will improve assessments of the dietary intake of bioactives.
Collapse
Affiliation(s)
| | | | - Gunter G C Kuhnle
- Department of Food & Nutritional Sciences, University of Reading, Reading RG56 6DX, UK.
| |
Collapse
|
3
|
Revisiting the bioavailability of flavan-3-ols in humans: A systematic review and comprehensive data analysis. Mol Aspects Med 2023; 89:101146. [PMID: 36207170 DOI: 10.1016/j.mam.2022.101146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022]
Abstract
This systematic review summarizes findings from human studies investigating the different routes of absorption, metabolism, distribution and excretion (ADME) of dietary flavan-3-ols and their circulating metabolites in healthy subjects. Literature searches were performed in PubMed, Scopus and the Web of Science. Human intervention studies using single and/or multiple intake of flavan-3-ols from food, extracts, and pure compounds were included. Forty-nine human intervention studies met inclusion criteria. Up to 180 metabolites were quantified from blood and urine samples following intake of flavan-3-ols, mainly as phase 2 conjugates of microbial catabolites (n = 97), with phenyl-γ-valerolactones being the most representative ones (n = 34). Phase 2 conjugates of monomers and phenyl-γ-valerolactones, the main compounds in both plasma and urine, reached two peak plasma concentrations (Cmax) of 260 and 88 nmol/L at 1.8 and 5.3 h (Tmax) after flavan-3-ol intake. They contributed to the bioavailability of flavan-3-ols for over 20%. Mean bioavailability for flavan-3-ols was moderate (31 ± 23%, n bioavailability values = 20), and it seems to be scarcely affected by the amount of ingested compounds. While intra- and inter-source differences in flavan-3-ol bioavailability emerged, mean flavan-3-ol bioavailability was 82% (n = 1) and 63% (n = 2) after (-)-epicatechin and nut (hazelnuts, almonds) intake, respectively, followed by 25% after consumption of tea (n = 7), cocoa (n = 5), apples (n = 3) and grape (n = 2). This highlights the need to better clarify the metabolic yield with which monomer flavan-3-ols and proanthocyanidins are metabolized in humans. This work clarified in a comprehensive way for the first time the ADME of a (poly)phenol family, highlighting the pool of circulating compounds that might be determinants of the putative beneficial effects linked to flavan-3-ol intake. Lastly, methodological inputs for implementing well-designed human and experimental model studies were provided.
Collapse
|
4
|
Liu J, Wang FF, Jiang ZM, Liu EH. Identification of antidiabetic components in Uncariae Rammulus Cum Uncis based on phytochemical isolation and spectrum-effect relationship analysis. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:659-669. [PMID: 35261095 DOI: 10.1002/pca.3118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Uncariae Rammulus Cum Uncis (URCU) is a commonly used herbal medicine to treat diabetes. This work is aimed to discover and identify the antidiabetic components from URCU extract. METHODS Column chromatography and recrystallisation were used to separate individual compounds from URCU extract, and the obtained individual compounds were used for determination of α-glucosidase inhibitory activity. Molecular docking was applied to predict the molecular interactions. High-performance liquid chromatography (HPLC) was used for fingerprint analysis of 12 batches of URCU. HPLC fingerprints were assessed by the similarity analysis (SA) and hierarchical clustering analysis (HCA). The spectrum-effect relationship analysis of URCU was assessed by orthogonal partial least squares (OPLS) and bivariate correlation analysis (BCA). RESULTS A total of 10 potential bioactive compounds were isolated and six of them showed potent α-glucosidase inhibitory activity (IC50 = 4.21-166.10 μM). The molecular docking results revealed that the binding energy was consistent with the results of α-glucosidase inhibition activity analysis (-8.55 to -4.84 kcal/mol). The ethanol extracts of the 12 batches of URCU showed inhibitory effect on α-glucosidase in a dose-dependent manner, and the IC50 values ranged from 0.94 μg/mL to 12.57 μg/mL. The spectrum-effect relationship analysis results indicated that 13 peaks might be potential antidiabetic compounds in URCU, including 18 (hyperoside) and 19 (rutin). CONCLUSION A comprehensive connection between URCU chemical components and α-glucosidase inhibitory activity was established for the first time by using a spectrum-effect relationship model, which might be applicable to the quality control of URCU.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fang-Fang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Clifford MN, Kuhnert N. LC-MS Characterization and Quantification of Known and Unknown (Poly)phenol Metabolites-Possible Pitfalls and Their Avoidance. Mol Nutr Food Res 2022; 66:e2101013. [PMID: 35489085 DOI: 10.1002/mnfr.202101013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Indexed: 11/06/2022]
Abstract
This review focuses on the LC-MS characterization and quantification of dietary (poly)phenols and their metabolites. It draws attention to errors, omissions, and misunderstandings that appear frequently in published papers, and suggests strategies for their avoidance. Aspects covered include the use of authentic standards and surrogate reference materials, the importance of collecting and archiving Total Ion Current MS data, the limitations of using on-line compilations of accurate mass MS data to assign unknown components when multiple isomers are possible, and the often understated magnitude of person-to-person variation that may significantly impact at population level any potential health benefit.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.,Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Victoria, VIC 3168, Australia
| | - Nikolai Kuhnert
- Department of Life Sciences and Health, Jacobs University, Bremen, Germany
| |
Collapse
|
6
|
Hameed A, Liu Z, Wu H, Zhong B, Ciborowski M, Suleria HAR. A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022; 12:metabo12030271. [PMID: 35323714 PMCID: PMC8950050 DOI: 10.3390/metabo12030271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The present research presents a comprehensive characterization of polyphenols from peach, pear, and plum using liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS), followed by the determination of their antioxidant potential. Plums showed the highest total phenolic content (TPC; 0.62 mg GAE/g), while peaches showed the highest total flavonoid content (TFC; 0.29 mg QE/g), also corresponding to their high scavenging activities (i.e., DPPH, ABTS, FRAP, and TAC). In all three fruit samples, a total of 51 polyphenolic compounds were tentatively identified and were mainly characterized from hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylpentanoic acids, flavanols, flavonols, and isoflavonoids subclasses. Twenty targeted phenolic compounds were quantified using high-performance liquid chromatography with photodiode array detection (HPLC-PDA). The plum cultivar showed the highest content of phenolic acids (chlorogenic acid, 11.86 mg/100 g), whereas peach samples showed the highest concentration of flavonoids (catechin, 7.31 mg/100 g), as compared to pear. Based on these findings, the present research contributes and complements the current characterization data of these fruits presented in the literature, as well as ensures and encourages the utilization of these fruits in different food, feed, and nutraceutical industries.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Biming Zhong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
- Correspondence: ; Tel.: +61-3-834-44984
| |
Collapse
|
7
|
Fong RY, Kuhnle GGC, Crozier A, Schroeter H, Ottaviani JI. Validation of a high-throughput method for the quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma by UPLC-MS. Food Funct 2021; 12:7762-7772. [PMID: 34231610 DOI: 10.1039/d1fo01228b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nutritional biomarkers are critical tools to objectively assess intake of nutrients and other compounds from the diet. In this context, it is essential that suitable analytical methods are available for the accurate quantification of biomarkers in large scale studies. Recently, structurally-related (-)-epicatechin metabolites (SREMs) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone metabolites (gVLMs) were identified as biomarkers of intake of flavanols and procyanidins, a group of polyphenol bioactives. This study aimed at validating a high throughput method for the quantification of SREMs and gVLMs in plasma along with methylxanthines (MXs), dietary compounds known to interact with flavanol and procyanidin effects. To accomplish this, a full set of authentic analytical standards were used to optimize a micro solid phase extraction method for sample preparation coupled to HPLC-MS detection. Isotopically-labelled standards for all analytes were included to correct potential matrix effects on quantification. Average accuracies of 101%, 93% and 103% were obtained, respectively, for SREMs, gVLMs and MXs. Intra- and inter-day repeatability values were <15%. The method showed linear responses for all analytes (>0.993). Most SREMs and gVLMs had limits of quantifications <5 nM while limits of quantification of MXs were 0.2 μM. All analytes were stable under different tested processing conditions. Finally, the method proved to be suitable to assess SREMs, gVLMs and MXs in plasma collected after single acute and daily intake of cocoa-derived test materials. Overall, this method proved to be a valid analytical tool for high throughput quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma.
Collapse
Affiliation(s)
- Reedmond Y Fong
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Mitochondrial dysfunction is observed in a broad range of human diseases, including rare genetic disorders and complex acquired pathologies. For this reason, there is increasing interest in identifying safe and effective strategies to mitigate mitochondrial impairments. Natural compounds are widely used for multiple indications, and their broad healing properties suggest that several may improve mitochondrial function. This review focuses on (-)-epicatechin, a monomeric flavanol, and its effects on mitochondria. The review summarizes the available data on the effects of acute and chronic (-)-epicatechin supplementation on mitochondrial function, outlines the potential mechanisms involved in mitochondrial biogenesis induced by (-)-epicatechin supplementation and discusses some future therapeutic applications.
Collapse
Affiliation(s)
- Frédéric N Daussin
- Université de Lille, Université d'Artois, Université de Littoral Côte d'Opale, ULR 7369 - URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Elsa Heyman
- Université de Lille, Université d'Artois, Université de Littoral Côte d'Opale, ULR 7369 - URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ontario; and Department of Molecular and Cellular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Dall’Acqua S, Sinan KI, Ferrarese I, Sut S, Bene K, Mahomoodally MF, Bibi Sadeer N, Ak G, Zengin G. Chromatographic Separation of Breynia retusa (Dennst.) Alston Bark, Fruit and Leaf Constituents from Bioactive Extracts. Molecules 2020; 25:molecules25235537. [PMID: 33255853 PMCID: PMC7728322 DOI: 10.3390/molecules25235537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Breynia retusa (Dennst.) Alston (also known as Cup Saucer plant) is a food plant with wide applications in traditional medicine, particularly in Ayurveda. Extracts obtained with four solvents (dichloromethane, methanol, ethyl acetate and water), from three plant parts, (fruit, leaf and bark) were obtained. Extracts were tested for total phenolic, flavonoid content and antioxidant activities using a battery of assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating. Enzyme inhibitory effects were investigated using acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Results showed that the methanolic bark extract exhibited significant radical scavenging activity (DPPH: 202.09 ± 0.15; ABTS: 490.12 ± 0.18 mg Trolox equivalent (TE)/g), reducing potential (FRAP: 325.86 ± 4.36: CUPRAC: 661.82 ± 0.40 mg TE/g) and possessed the highest TAC (3.33 ± 0.13 mmol TE/g). The methanolic extracts were subjected to LC-DAD-MSn and NMR analysis. A two-column LC method was developed to separate constituents, allowing to identify and quantify forty-four and fifteen constituents in bark and fruits, respectively. Main compound in bark was epicatechin-3-O-sulphate and isolation of compound was performed to confirm its identity. Bark extract contained catechins, procyanidins, gallic acid derivatives and the sulfur containing spiroketal named breynins. Aerial parts mostly contained flavonoid glycosides. Considering the bioassays, the methanolic bark extract resulted a potent tyrosinase (152.79 ± 0.27 mg kojic acid equivalent/g), α-amylase (0.99 ± 0.01 mmol acarbose equivalent ACAE/g) and α-glucosidase (2.16 ± 0.01 mmol ACAE/g) inhibitor. In conclusion, methanol is able to extract the efficiently the phytoconstituents of B. retusa and the bark is the most valuable source of compounds.
Collapse
Affiliation(s)
- Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Stefania Sut
- DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis Campus, University of Padova, 35020 Legnaro, Italy;
| | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, 02 BP 801 Abidjan 02, Université Nangui Abrogoua, CI-YM. IV98 Abidjan, Ivory Cost;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80832 Réduit, Mauritius;
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80832 Réduit, Mauritius;
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| |
Collapse
|
10
|
Docampo-Palacios ML, Alvarez-Hernández A, de Fátima Â, Lião LM, Pasinetti GM, Dixon RA. Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS OMEGA 2020; 5:30095-30110. [PMID: 33251444 PMCID: PMC7689943 DOI: 10.1021/acsomega.0c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Grape seed extract (GSE) is rich in flavonoids and has been recognized to possess human health benefits. Our group and others have demonstrated that GSE is able to attenuate the development of Alzheimer's disease (AD). Moreover, our results have disclosed that the anti-Alzheimer's benefits are not directly/solely related to the dietary flavonoids themselves, but rather to their metabolites, particularly to the glucuronidated ones. To facilitate the understanding of regioisomer/stereoisomer-specific biological effects of (epi)catechin glucuronides, we here describe a concise chemical synthesis of authentic standards of catechin and epicatechin metabolites 3-12. The synthesis of glucuronides 9 and 12 is described here for the first time. The key reactions employed in the synthesis of the novel glucuronides 9 and 12 include the regioselective methylation of the 4'-hydroxyl group of (epi)catechin (≤1.0/99.0%; 3'-OMe/4'-OMe) and the regioselective deprotection of the tert-butyldimethylsilyl (TBS) group at position 5 (yielding up to 79%) over the others (3, 7 and 3' or 4').
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-214-601-5892. Fax: +1-580-224-6692
| | - Anislay Alvarez-Hernández
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
| | - Ângelo de Fátima
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano Morais Lião
- Institute
of Chemistry, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Giulio M. Pasinetti
- Department
of Psychiatry, The Mount Sinai School of
Medicine, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-940-565-2308
| |
Collapse
|
11
|
Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019; 36:714-752. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1958 to June 2018 Phenyl-γ-valerolactones (PVLs) and their related phenylvaleric acids (PVAs) are the main metabolites of flavan-3-ols, the major class of flavonoids in the human diet. Despite their presumed importance, these gut microbiota-derived compounds have, to date, in terms of biological activity, been considered subordinate to their parent dietary compounds, the flavan-3-ol monomers and proanthocyanidins. In this review, the role and prospects of PVLs and PVAs as key metabolites in the understanding of the health features of flavan-3-ols have been critically assessed. Among the topics covered, are proposals for a standardised nomenclature for PVLs and PVAs. The formation, bioavailability and pharmacokinetics of PVLs and PVAs from different types of flavan-3-ols are discussed, taking into account in vitro and animal studies, as well as inter-individual differences and the existence of putative flavan-3-ol metabotypes. Synthetic strategies used for the preparation of PVLs are considered and the methodologies for their identification and quantification assessed. Metabolomic approaches unravelling the role of PVLs and PVAs as biomarkers of intake are also described. Finally, the biological activity of these microbial catabolites in different experimental models is summarised. Knowledge gaps and future research are considered in this key area of dietary (poly)phenol research.
Collapse
Affiliation(s)
- Pedro Mena
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Gray N, Vogiatzoglou A, Britten A, Lucarelli D, Luben R, Grace PB, Mawson DH, Tym A, Wierzbicki A, Smith AD, Wareham NJ, Forouhi NG, Khaw KT, Schroeter H, Kuhnle GGC. Evaluation of (-)-epicatechin metabolites as recovery biomarker of dietary flavan-3-ol intake. Sci Rep 2019; 9:13108. [PMID: 31511603 PMCID: PMC6739331 DOI: 10.1038/s41598-019-49702-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Data from dietary intervention studies suggest that intake of (−)-epicatechin mediates beneficial vascular effects in humans. However, population-based investigations are required to evaluate associations between habitual intake and health and these studies rely on accurate estimates of intake, which nutritional biomarkers can provide. Here, we evaluate a series of structurally related (−)-epicatechin metabolites (SREM), particularly (−)-epicatechin-3′-glucuronide, (−)-epicatechin-3′-sulfate and 3′-O-methyl-(−)-epicatechin-5-sulfate (SREMB), as flavan-3-ol and (−)-epicatechin intake. SREMB in urine proved to be a specific indicator of (−)-epicatechin intake, showing also a strong correlation with the amount of (−)-epicatechin ingested (R2: 0.86 (95% CI 0.8l; 0.92). The median recovery of (−)-epicatechin as SREMB in 24 h urine was 10% (IQR 7–13%) and we found SREMB in the majority of participants of EPIC Norfolk (83% of 24,341) with a mean concentration of 2.4 ± 3.2 µmol/L. Our results show that SREMB are suitable as biomarker of (−)-epicatechin intake. According to evaluation criteria from IARC and the Institute of Medicine, the results obtained support use of SREMB as a recovery biomarker to estimate actual intake of (−)-epicatechin.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Gray
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Abigail Britten
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Amy Tym
- LGC, Newmarket Road, Fordham, UK
| | | | - A David Smith
- OPTIMA Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK. .,Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Cao M, Yuan H, Daniyal M, Yu H, Xie Q, Liu Y, Li B, Jian Y, Peng C, Tan D, Peng Y, Choudhary MI, Rahman AU, Wang W. Two new alkaloids isolated from traditional Chinese medicine Binglang the fruit of Areca catechu. Fitoterapia 2019; 138:104276. [PMID: 31351128 DOI: 10.1016/j.fitote.2019.104276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Abstract
Binglang, the fruit of Areca catechu L, has a long history as an important Chinese herbal medicine. Two new alkaloids (1 and 2), along with forty-one known compounds (3-43) were isolated from the dried fruit of Areca catechu L. The structures were elucidated on basis of the IR, UV, MS and 1D, 2D NMR spectroscopic data. Compounds 26 and 33 showed weak cytotoxicity against human gastric cancer cell line (BGC-823) with IC50 of 15.91 μM and 20.13 μM, respectively.
Collapse
Affiliation(s)
- Mengru Cao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Yingkai Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Dianbo Tan
- Institute of Chinese Medicine, Hunan Academy of Chinese medicine, Changsha, Hunan 410208, PR China.
| | - Yanmei Peng
- Institute of Chinese Medicine, Hunan Academy of Chinese medicine, Changsha, Hunan 410208, PR China
| | - M Iqbal Choudhary
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Atta-Ur Rahman
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahamn Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
14
|
Yue T, Chen R, Chen D, Liu J, Xie K, Dai J. Enzymatic Synthesis of Bioactive O-Glucuronides Using Plant Glucuronosyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6275-6284. [PMID: 31083910 DOI: 10.1021/acs.jafc.9b01769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many O-glucuronides exhibiting various pharmacological activities have been found in nature and in drug metabolism. The glucuronidation of bioactive natural products or drugs to generate glucuronides with better activity and druggability is important in drug discovery and research. In this study, by using two uridine diphosphate (UDP)-dependent glucuronosyltransferases (GATs, UGT88D4 and UGT88D7) from plants, we developed two glucuronidation approaches, pure enzyme catalysis in vitro and recombinant whole-cell catalysis in vivo, to efficiently synthesize bioactive O-glucuronides by the glucuronidation of natural products. In total, 14 O-glucuronides with different structures, including flavonoids, anthraquinones, coumarins, and lignans, were obtained, 7 of which were new compounds. Furthermore, one of the biosynthesized O-glucuronides, kaempferol-7- O-β-d-glucuronide (3a), potently inhibited protein tyrosine phosphatase (PTP) 1B with an IC50 value of 8.02 × 10-6 M. Some of the biosynthesized O-glucuronides also exhibited significant antioxidant activities.
Collapse
|
15
|
de
Fátima Â, Docampo-Palacios M, Alvarez-Hernandez A, Pasinetti GM, Dixon RA. An Efficient Synthesis of Deoxyrhapontigenin-3- O- β-D-glucuronide, a Brain-targeted Derivative of Dietary Resveratrol, and its Precursor 4'- O-Me-Resveratrol. ACS OMEGA 2019; 4:8222-8330. [PMID: 31236526 PMCID: PMC6590917 DOI: 10.1021/acsomega.9b00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/18/2019] [Indexed: 05/21/2023]
Abstract
Bioactive dietary polyphenols have health benefits against a variety of disorders, but some benefits of polyphenols may be not directly related to them, but rather to their metabolites. Recently, we have identified the brain-available phenol glucuronide metabolite deoxyrhapontigenin-3-O-β-D-glucuronide (5) in perfused rat brains following sub-acute treatment with the stilbene resveratrol (1). However, the role of such a metabolite in the neuroprotective activity of resveratrol (1) is not understood, in part due to the non-commercial availability of 5 for performing biological evaluation in animal models of Alzheimer's disease or other neurological disorders. Here, we describe a concise chemical synthesis of deoxyrhapontigenin-3-O-β-D-glucuronide (5) and its precursor, 4-O-Me-resveratrol (2), accomplished in 4 and 6 steps with 74% and 21% overall yields, respectively, starting from commercially available 3,5-dihydroxybenzaldehyde. Pivotal reactions employed in the synthesis include the palladium-catalyzed C-C coupling between 3,5-di-tert-butyldiphenylsilyloxystyrene and p-iodoanisole in the presence of tributylamine and the acid-catalysed glucuronidation between the trichloroacetimidate-activated glucuronic acid and 4-O-Me-resveratrol.
Collapse
Affiliation(s)
- Ângelo de
Fátima
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, Texas 76203-5017, United States
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Avenida Presidente
Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
- E-mail: (A.d.F.)
| | - Maite Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, Texas 76203-5017, United States
| | - Anislay Alvarez-Hernandez
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, Texas 76203-5017, United States
| | - Giulio M. Pasinetti
- Department
of Neurology, Icahn School of Medicine at
Mount Sinai, One Gustave L. Levy Place, P.O. Box 1230, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, Texas 76203-5017, United States
- E-mail: (R.A.D)
| |
Collapse
|
16
|
Ottaviani JI, Fong RY, Borges G, Schroeter H, Crozier A. Use of LC-MS for the quantitative analysis of (poly)phenol metabolites does not necessarily yield accurate results: Implications for assessing existing data and conducting future research. Free Radic Biol Med 2018; 124:97-103. [PMID: 29870748 DOI: 10.1016/j.freeradbiomed.2018.05.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022]
Abstract
Plant-derived, dietary (poly)phenols have potential effects on disease-risk reduction and primary disease prevention. The characterization of (poly)phenol absorption, distribution, metabolism and excretion (ADME) is recognized as crucial step to further advance nutritional and biomedical research of these compounds; and given that (poly)phenols are extensively metabolized after ingestion, accurate assessments of their in vivo metabolites is required. It has become common practice to use unmetabolized parent compounds as reference standards when quantifying (poly)phenol metabolites by LC-MS, although little is known about the accuracy of this approach. To investigate this situation with routinely used LC-MS conditions, the signal yielded by the flavan-3-ol (-)-epicatechin was compared to those of authentic standards of its phase II and microbiota-derived metabolites. The results obtained revealed underestimations up to 94% and overestimations up to 113% of individual epicatechin metabolites. Inaccurate quantitative estimates were also obtained when phase II metabolites of other (poly)phenols were quantified by reference to their unmetabolized parent compounds. This demonstrates the importance of using structurally-identical authentic metabolites as reference compounds when quantifying (poly)phenol metabolites by LC-MS. This is of importance, not just to the accuracy of ADME studies, but for the identification and validation of (poly)phenol metabolites as biomarkers of intake in epidemiological studies.
Collapse
Affiliation(s)
- Javier I Ottaviani
- Mars Inc., McLean, VA 22101, USA; Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Reedmond Y Fong
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Gina Borges
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| |
Collapse
|
17
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
18
|
Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Britten A, Lucarelli D, Luben R, Grace PB, Mawson DH, Tym A, Wierzbicki A, Khaw KT, Schroeter H, Kuhnle GGC. Evaluation at scale of microbiome-derived metabolites as biomarker of flavan-3-ol intake in epidemiological studies. Sci Rep 2018; 8:9859. [PMID: 29959422 PMCID: PMC6026136 DOI: 10.1038/s41598-018-28333-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
The accurate assessment of dietary intake is crucial to investigate the effect of diet on health. Currently used methods, relying on self-reporting and food composition data, are known to have limitations and might not be suitable to estimate the intake of many bioactive food components. An alternative are nutritional biomarkers, which can allow an unbiased assessment of intake. They require a careful evaluation of their suitability, including: (a) the availability of a precise, accurate and robust analytical method, (b) their specificity (c) a consistent relationship with actual intake. We have evaluated human metabolites of a microbiome-derived flavan-3-ol catabolite, 5-(3',4'-dihydroxyphenyl)-[gamma]-valerolactone (gVL), as biomarker of flavan-3-ol intake in large epidemiological studies. Flavan-3-ols are widely consumed plant bioactives, which have received considerable interest due to their potential ability to reduce CVD risk. The availability of authentic standards allowed the development of a validated high-throughput method suitable for large-scale studies. In dietary intervention studies, we could show that gVL metabolites are specific for flavan-3-ols present in tea, fruits, wine and cocoa-derived products, with a strong correlation between intake and biomarker (Spearman's r = 0.90). This biomarker will allow for the first time to estimate flavan-3-ol intake and further investigation of associations between intake and disease risk.
Collapse
Affiliation(s)
| | | | | | | | - Abigail Britten
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Amy Tym
- LGC, Newmarket Road, Fordham, UK
| | | | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Gunter G C Kuhnle
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| |
Collapse
|
19
|
Ottaviani JI, Heiss C, Spencer JP, Kelm M, Schroeter H. Recommending flavanols and procyanidins for cardiovascular health: Revisited. Mol Aspects Med 2018; 61:63-75. [DOI: 10.1016/j.mam.2018.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/26/2022]
|
20
|
Borges G, Ottaviani JI, van der Hooft JJ, Schroeter H, Crozier A. Absorption, metabolism, distribution and excretion of (−)-epicatechin: A review of recent findings. Mol Aspects Med 2018; 61:18-30. [DOI: 10.1016/j.mam.2017.11.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/16/2023]
|
21
|
Nishikawa M, Masuyama Y, Nunome M, Yasuda K, Sakaki T, Ikushiro S. Whole-cell-dependent biosynthesis of sulfo-conjugate using human sulfotransferase expressing budding yeast. Appl Microbiol Biotechnol 2017; 102:723-732. [PMID: 29134333 DOI: 10.1007/s00253-017-8621-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
Cytosolic sulfotransferases (SULTs), one of the predominant phase II drug metabolizing enzymes (DME), play important roles in metabolism of xeno- and endobiotics to generate their sulfo-conjugates. These sulfo-conjugates often have biological activities but are difficult to study, because even though only small amounts are required to evaluate their efficacy and safety, chemical or biological synthesis of sulfo-conjugatesis is often challenging. Previously, we constructed a DME expression system for cytochrome P450 and UGT, using yeast cells, and successfully produced xenobiotic metabolites in a whole-cell-dependent manner. In this study, we developed a yeast expression system for human SULTs, including SULT1A1, 1A3, 1B1, 1C4, 1E1, and 2A1, in Saccharomyces cerevisiae and examined its sulfo-conjugate productivity. The recombinant yeast cells expressing each of the SULTs successfully produced several hundred milligram per liter of xeno- or endobioticsulfo-conjugates within 6 h. This whole-cell-dependent biosynthesis enabled us to produce sulfo-conjugates without the use of 3'-phosphoadenosine-5'-phosphosulfate, an expensive cofactor. Additionally, the production of regiospecific sulfo-conjugates of several polyphenols was possible with this method, making this novel yeast expression system a powerful tool for uncovering the metabolic pathways and biological actions of sulfo-conjugates.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Imizu Research Center, TOPUBIO Research Co., Ltd., 5180 Kurokawa, Imizu, Toyama, 939-0351, Japan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0351, Japan
| | - Yuuka Masuyama
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0351, Japan
| | - Motomichi Nunome
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0351, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0351, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0351, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0351, Japan.
| |
Collapse
|
22
|
Docampo M, Olubu A, Wang X, Pasinetti G, Dixon RA. Glucuronidated Flavonoids in Neurological Protection: Structural Analysis and Approaches for Chemical and Biological Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7607-7623. [PMID: 28789524 PMCID: PMC5954986 DOI: 10.1021/acs.jafc.7b02633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Both plant and mammalian cells express glucuronosyltransferases that catalyze glucuronidation of polyphenols such as flavonoids and other small molecules. Oral administration of select polyphenolic compounds leads to the accumulation of the corresponding glucuronidated metabolites at μM and sub-μM concentrations in the brain, associated with amelioration of a range of neurological symptoms. Determining the mechanisms whereby botanical extracts impact cognitive wellbeing and psychological resiliency will require investigation of the modes of action of the brain-targeted metabolites. Unfortunately, many of these compounds are not commercially available. This article describes the latest approaches for the analysis and synthesis of glucuronidated flavonoids. Synthetic schemes include both standard organic synthesis, semisynthesis, enzymatic synthesis and use of synthetic biology utilizing heterologous enzymes in microbial platform organisms.
Collapse
Affiliation(s)
- Maite Docampo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Adiji Olubu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Giulio Pasinetti
- Department of Psychiatry, The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
23
|
Bresciani L, Martini D, Mena P, Tassotti M, Calani L, Brigati G, Brighenti F, Holasek S, Malliga DE, Lamprecht M, Del Rio D. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries. Nutrients 2017; 9:nu9030194. [PMID: 28245627 PMCID: PMC5372857 DOI: 10.3390/nu9030194] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.
Collapse
Affiliation(s)
- Letizia Bresciani
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Daniela Martini
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Michele Tassotti
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Luca Calani
- Department of Food & Drug, University of Parma, 43124 Parma, Italy.
| | - Giacomo Brigati
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Sandra Holasek
- Institute of Pathophysiology and Immunology, Medical University of Graz, A-8010 Graz, Austria.
| | - Daniela-Eugenia Malliga
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, A-8010 Graz, Austria.
| | - Manfred Lamprecht
- Institute of Physiological Chemistry, Medical University of Graz, A-8010 Graz, Austria.
- Green Beat-Institute of Nutrient Research and Sport Nutrition, 8042 Graz, Austria.
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
- The Need for Nutrition Education/Innovation Programme (NNEdPro), Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge CB4 0WS, UK.
| |
Collapse
|
24
|
Mena P, González de Llano D, Brindani N, Esteban-Fernández A, Curti C, Moreno-Arribas MV, Del Rio D, Bartolomé B. 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone and its sulphate conjugates, representative circulating metabolites of flavan-3-ols, exhibit anti-adhesive activity against uropathogenic Escherichia coli in bladder epithelial cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
25
|
A Critical Evaluation of the Quality of Published 13C NMR Data in Natural Product Chemistry. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 105:137-215. [PMID: 28194563 DOI: 10.1007/978-3-319-49712-9_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nuclear Magnetic Resonance spectroscopy contributes very efficiently to the structure elucidation process in organic chemistry. Carbon-13 NMR spectroscopy allows direct insight into the skeleton of organic compounds and therefore plays a central role in the structural assignment of natural products. Despite this important contribution, there is no established and well-accepted workflow protocol utilized during the first steps of interpreting spectroscopic data and converting them into structural fragments and then combining them, by considering the given spectroscopic constraints, into a final proposal of structure. The so-called "combinatorial explosion" in the process of structure generation allows in many cases the generation of reasonable alternatives, which are usually ignored during manual interpretation of the measured data leading ultimately to a large number of structural revisions. Furthermore, even when the determined structure is correct, problems may exist such as assignment errors, ignoring chemical shift values, or assigning lines of impurities to the compound under consideration. An extremely large heterogeneity in the presentation of carbon NMR data can be observed, but, as a result of the efficiency and precision of spectrum prediction, the published data can be analyzed in substantial detail.This contribution presents a comprehensive analysis of frequently occurring errors with respect to 13C NMR spectroscopic data and proposes a straightforward protocol to eliminate a high percentage of the most obvious errors. The procedure discussed can be integrated readily into the processes of submission and peer-reviewing of manuscripts.
Collapse
|
26
|
Zaki AA, Ali Z, El-Amier YA, Khan IA. A new lignan from Zygophyllum aegyptium. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:771-773. [PMID: 27133572 DOI: 10.1002/mrc.4446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Ahmed A Zaki
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Yasser A El-Amier
- Botany Department, Ecology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
27
|
Ottaviani JI, Borges G, Momma TY, Spencer JPE, Keen CL, Crozier A, Schroeter H. The metabolome of [2-(14)C](-)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci Rep 2016; 6:29034. [PMID: 27363516 PMCID: PMC4929566 DOI: 10.1038/srep29034] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/14/2016] [Indexed: 02/01/2023] Open
Abstract
Diet is a major life style factor affecting human health, thus emphasizing the need for evidence-based dietary guidelines for primary disease prevention. While current recommendations promote intake of fruit and vegetables, we have limited understanding of plant-derived bioactive food constituents other than those representing the small number of essential nutrients and minerals. This limited understanding can be attributed to some extent to a lack of fundamental data describing the absorption, distribution, metabolism and excretion (ADME) of bioactive compounds. Consequently, we selected the flavanol (−)-epicatechin (EC) as an example of a widely studied bioactive food constituent and investigated the ADME of [2-14C](−)-epicatechin (300 μCi, 60 mg) in humans (n = 8). We demonstrated that 82 ± 5% of ingested EC was absorbed. We also established pharmacokinetic profiles and identified and quantified >20 different metabolites. The gut microbiome proved to be a key driver of EC metabolism. Furthermore, we noted striking species-dependent differences in the metabolism of EC, an insight with significant consequences for investigating the mechanisms of action underlying the beneficial effects of EC. These differences need to be considered when assessing the safety of EC intake in humans. We also identified a potential biomarker for the objective assessment of EC intake that could help to strengthen epidemiological investigations.
Collapse
Affiliation(s)
| | - Gina Borges
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Tony Y Momma
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Carl L Keen
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Alan Crozier
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Ottaviani JI, Balz M, Kimball J, Ensunsa JL, Fong R, Momma TY, Kwik-Uribe C, Schroeter H, Keen CL. Safety and efficacy of cocoa flavanol intake in healthy adults: a randomized, controlled, double-masked trial. Am J Clin Nutr 2015; 102:1425-35. [PMID: 26537937 DOI: 10.3945/ajcn.115.116178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Evidence from dietary intervention studies shows that the intake of flavanols and procyanidins can be beneficial for cardiovascular health. Nevertheless, there is a clear need for advancing our understanding with regard to safe amounts of intake for these bioactives. OBJECTIVE The aim was to investigate in healthy adults the effects of cocoa flavanol (CF) intake amount and intake duration on blood pressure, platelet function, metabolic variables, and potential adverse events (AEs). DESIGN This investigation consisted of 2 parts. Part 1 was an open-label, intake-amount escalation study, in which 34 healthy adults (aged 35-55 y) consumed escalating amounts of CFs, ranging from 1000 to 2000 mg/d over 6 wk. Primary outcomes were blood pressure and platelet function, select metabolic variables, and the occurrence and severity of AEs. Secondary outcomes included plasma concentrations of CF-derived metabolites and methylxanthines. On the basis of the outcomes of study part 1, and assessing the same outcome measures, part 2 of this investigation was a controlled, randomized, double-masked, 2-parallel-arm dietary intervention study in which healthy participants (aged 35-55 y) were asked to consume for 12 consecutive weeks up to 2000 mg CFs/d (n = 46) or a CF-free control (n = 28). RESULTS Daily intake of up to 2000 mg CFs/d for 12 wk was not associated with significant changes in blood pressure or platelet function compared with CF-free controls in normotensive, healthy individuals who exhibited a very low risk of cardiovascular disease. There were no clinically relevant changes in the metabolic variables assessed in either of the groups. AEs reported were classified as mild in severity and did not significantly differ between study arms. CONCLUSION The consumption of CFs in amounts up to 2000 mg/d for 12 wk was well tolerated in healthy men and women. This trial was registered at clinicaltrials.gov as NCT02447770 (part 1) and NCT02447783 (part 2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carl L Keen
- Nutrition and Internal Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
29
|
Gufford BT, Graf TN, Paguigan ND, Oberlies NH, Paine MF. Chemoenzymatic Synthesis, Characterization, and Scale-Up of Milk Thistle Flavonolignan Glucuronides. Drug Metab Dispos 2015; 43:1734-43. [PMID: 26316643 PMCID: PMC4613946 DOI: 10.1124/dmd.115.066076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/26/2015] [Indexed: 11/22/2022] Open
Abstract
Plant-based therapeutics, including herbal products, continue to represent a growing facet of the contemporary health care market. Mechanistic descriptions of the pharmacokinetics and pharmacodynamics of constituents composing these products remain nascent, particularly for metabolites produced following herbal product ingestion. Generation and characterization of authentic metabolite standards are essential to improve the quantitative mechanistic understanding of herbal product disposition in both in vitro and in vivo systems. Using the model herbal product, milk thistle, the objective of this work was to biosynthesize multimilligram quantities of glucuronides of select constituents (flavonolignans) to fill multiple knowledge gaps in the understanding of herbal product disposition and action. A partnership between clinical pharmacology and natural products chemistry expertise was leveraged to optimize reaction conditions for efficient glucuronide formation and evaluate alternate enzyme and reagent sources to improve cost effectiveness. Optimized reaction conditions used at least one-fourth the amount of microsomal protein (from bovine liver) and cofactor (UDP glucuronic acid) compared with typical conditions using human-derived subcellular fractions, providing substantial cost savings. Glucuronidation was flavonolignan-dependent. Silybin A, silybin B, isosilybin A, and isosilybin B generated five, four, four, and three monoglucuronides, respectively. Large-scale synthesis (40 mg of starting material) generated three glucuronides of silybin A: silybin A-7-O-β-D-glucuronide (15.7 mg), silybin A-5-O-β-D-glucuronide (1.6 mg), and silybin A-4´´-O-β-D-glucuronide (11.1 mg). This optimized, cost-efficient method lays the foundation for a systematic approach to synthesize and characterize herbal product constituent glucuronides, enabling an improved understanding of mechanisms underlying herbal product disposition and action.
Collapse
Affiliation(s)
- Brandon T Gufford
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Tyler N Graf
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Noemi D Paguigan
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Nicholas H Oberlies
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Mary F Paine
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| |
Collapse
|
30
|
Blount JW, Redan BW, Ferruzzi MG, Reuhs BL, Cooper BR, Harwood JS, Shulaev V, Pasinetti G, Dixon RA. Synthesis and quantitative analysis of plasma-targeted metabolites of catechin and epicatechin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2233-40. [PMID: 25671729 DOI: 10.1021/jf505922b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Grape seed polyphenolic extract (GSPE) rich in the flavan-3-ols (+)-catechin and (-)-epicatechin beneficially modulates Alzheimer's Disease phenotypes in animal models. The parent molecules in the extract are converted to a series of methylated and glucuronidated derivatives. To fully characterize these metabolites and establish a robust quantitative assay of their levels in biological fluids, we have implemented a partial synthetic approach utilizing chemical methylation followed by enzymatic glucuronidation. Liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to assign unequivocal structures to the compounds. An analytical method using solid-phase extraction and LC-MS/MS in selective reaction monitoring mode (SRM) was validated for their quantitation in plasma. These studies provide a basis for improvements in future work on the bioavailability, metabolism, and mechanism of action of metabolites derived from dietary flavan-3-ols in a range of interventions.
Collapse
Affiliation(s)
- Jack W Blount
- Department of Biological Sciences, University of North Texas , 1155 Union Circle #305220, Denton, Texas 76203-5017, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 2014; 88:1803-53. [PMID: 25182418 DOI: 10.1007/s00204-014-1330-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC-MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.
Collapse
|
32
|
Claude S, Boby C, Rodriguez-Mateos A, Spencer JPE, Gérard N, Morand C, Milenkovic D. Flavanol metabolites reduce monocyte adhesion to endothelial cells through modulation of expression of genes via p38-MAPK and p65-Nf-kB pathways. Mol Nutr Food Res 2014; 58:1016-27. [PMID: 24425450 DOI: 10.1002/mnfr.201300658] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/10/2022]
Abstract
SCOPE Consumption of flavanol-rich foods is associated with an improvement in endothelial function. However, the specific biologically active flavanol metabolites involved in this benefit, as well as their molecular mechanisms of action have not been identified. The aim of this work was to examine the effect of plasma flavanol metabolites on adhesion of monocytes to TNF-α-activated endothelial cells and identify potential underlying mechanisms. METHODS AND RESULTS 4'-O-methyl(-)-epicatechin, 4'-O-methyl(-)-epicatechin-7-β-d-glucuronide, and (-)-epicatechin-4'-sulfate decreased the adhesion of monocytes to endothelial cells at physiologically relevant concentrations, from 0.2 to 1 μM. Transcriptomic studies showed that each of the flavanol metabolites affected the expression of different genes in endothelial cells. However, these genes are involved in the cellular processes that control adhesion and migration of monocytes to vascular endothelium, most notably those regulating cell adhesion, cell-cell junctions, focal adhesion, and cytoskeleton remodeling. Gene expression profiles obtained suggest lower monocyte recruitment, in agreement with results from cell adhesion assays. The nutrigenomic effect of metabolites seems to be mediated through their capacity to modulate phosphorylation of p65 and p38 cell-signaling proteins. CONCLUSION Our study provides findings into the molecular mechanisms by which plasma flavanol metabolites could be efficient to preserve vascular endothelium integrity in nutritionally relevant conditions.
Collapse
Affiliation(s)
- Sylvain Claude
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang M, Erik Jagdmann G, Van Zandt M, Beckett P, Schroeter H. Enantioselective synthesis of orthogonally protected (2R,3R)-(−)-epicatechin derivatives, key intermediates in the de novo chemical synthesis of (−)-epicatechin glucuronides and sulfates. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|