1
|
Melder JJ, Witzel S, Terres S, de Bary P, Krohne L, Rudolph M, K Hashmi AS. Synthesis of 2,3-Dihydrobenzofurans via a Photochemical Gold-Mediated Atom Transfer Radical Addition Reaction. Org Lett 2024; 26:5664-5669. [PMID: 38941620 DOI: 10.1021/acs.orglett.4c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
A light-mediated cyclization reaction initiated by an atom transfer radical addition (ATRA) of haloalkanes onto alkenes was exploited for the synthesis of functionalized dihydrobenzofurans. Initial investigation indicated that the dimeric gold catalyst [Au2(μ-dppm)2Cl2] can effectively be used for intermolecular ATRA reactions. Further, the reactivity was applied in a cascade-like cyclization for the preparation of dihydrobenzofuran derivatives. With the presented photochemical approach, the functionalization can be achieved directly from ortho-allylphenols in yields of up to 96% under mild conditions.
Collapse
Affiliation(s)
- Julian J Melder
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sina Witzel
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sophia Terres
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Philippe de Bary
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Krohne
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Zhang D, Du W, Pan X, Lin X, Li FR, Wang Q, Yang Q, Xu HM, Dong LB. Discovery and biosynthesis of bacterial drimane-type sesquiterpenoids from Streptomyces clavuligerus. Beilstein J Org Chem 2024; 20:815-822. [PMID: 38655553 PMCID: PMC11035983 DOI: 10.3762/bjoc.20.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Drimane-type sesquiterpenoids (DMTs) are characterized by a distinctive 6/6 bicyclic skeleton comprising the A and B rings. While DMTs are commonly found in fungi and plants, their presence in bacteria has not been reported. Moreover, the biosynthetic pathways for DMTs have been primarily elucidated in fungi, with identified P450s only acting on the B ring. In this study, we isolated and characterized three bacterial DMTs, namely 3β-hydroxydrimenol (2), 2α-hydroxydrimenol (3), and 3-ketodrimenol (4), from Streptomyces clavuligerus. Through genome mining and heterologous expression, we identified a cav biosynthetic gene cluster responsible for the biosynthesis of DMTs 2-4, along with a P450, CavA, responsible for introducing the C-2 and C-3 hydroxy groups. Furthermore, the substrate scope of CavA revealed its ability to hydroxylate drimenol analogs. This discovery not only broadens the known chemical diversity of DMTs from bacteria, but also provides new insights into DMT biosynthesis in bacteria.
Collapse
Affiliation(s)
- Dongxu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyu Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingling Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Karamad V, Sogutlu F, Ozkaya FC, Shademan B, Ebrahim W, El-Neketi M, Avci CB. Investigation of iso-propylchaetominine anticancer activity on apoptosis, cell cycle and Wnt signaling pathway in different cancer models. Fitoterapia 2024; 173:105789. [PMID: 38158162 DOI: 10.1016/j.fitote.2023.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Dysregulation of the Wnt signaling pathway contributes to the development of many cancer types. Natural compounds produced with biotechnological systems have been the focus of research for being a new drug candidate both with unlimited resources and cost-effective production. In this study, it was aimed to reveal the effects of isopropylchaetominine on cytotoxic, cytostatic, apoptotic and Wnt signaling pathways in brain, pancreatic and prostate cancer. The IC50 values of isopropylchaetominine in U-87 MG, PANC1, PC3 and LNCaP cells were calculated as 91.94 μM, 41.68 μM, 54.54 μM and 7.86 μM in 72nd h, respectively. The metabolite arrests the cell cycle in G0/G1 phase in each cancer cells. Iso-propylchaetominine induced a 4.3-fold and 1.9-fold increase in apoptosis in PC3 and PANC1 cells, respectively. The toxicity of isopropylchaetominine in healthy fibroblast cells was assessed using the annexin V method, and no significant apoptotic activity was observed between the groups treated with the active substance and untreated. In U-87 MG, PANC1, PC3, and LNCaP cells under treatment with isopropylchaetominin, the expression levels of DKK3, TLE1, AES, DKK1, FRZB, DAB2, AXIN1/2, PPARD, SFRP4, APC and SOX17 tumor suppressor genes increased significantly. Decreases in expression of Wnt1, Wnt2, Wnt3, Wnt4, Wnt5, Wnt6, Wnt10, Wnt11, FRZ2, FRZ3, FRZ7, TCF7L1, BCL9, PYGO, CCND2, c-MYC, WISP1 and CTNNB1 oncogenic genes were detected. All these result shows that isopropylchaetominine can present promising new treatment strategy in different cancer types.
Collapse
Affiliation(s)
- Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ferhat Can Ozkaya
- Aliaga Industrial Zone Technology Transfer Office, Aliaga, İzmir 35800, Turkey
| | - Behrouz Shademan
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran
| | - Weaam Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey.
| |
Collapse
|
4
|
Wang S, Li S, Chen Y, Wang Y, Liu Z, Zhang W, Deng H. A new phenylspirodrimane derivative from the deep-sea-derived fungus Stachybotrys chartarum FS705. Nat Prod Res 2024:1-7. [PMID: 38251853 DOI: 10.1080/14786419.2024.2305197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
A new phenylspirodrimane derivative named stachybotrysin A (1), together with four known analogues (2-5) were isolated and purified from the solid culture of the deep-sea-derived Stachybotrys chartarum FS705. Their structures were determined by comprehensive spectroscopic analysis and the absolute configuration was evaluated by theoretical ECD calculations. Compounds 1-5 were evaluated for their cytotoxic, antibacterial and α-glucosidase inhibitory activities. The results showed that compound 2 displayed mild cytotoxicity with IC50 values in the range of 8.88 ∼ 22.73 µM against four human tumour cell lines, SF-268, MCF-7, HepG-2, and A549. Compound 1 showed strong α-glucosidase inhibitory activity with an IC50 value of 20.68 µM. Compounds 4 and 5 exhibited weak antibacterial activity against Bacillus subtilis.
Collapse
Affiliation(s)
- Shuo Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China
| | - Yanlin Wang
- Key Laboratory of Ocean and Marginal Sea Geology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
5
|
Tang X, Wang C, Wang L, Ren F, Kuang R, Li Z, Han X, Chen Y, Chen G, Wu X, Liu J, Yang H, Liu X, Wang C, Gao H, Yin Z. Aureane-type sesquiterpene tetraketides as a novel class of immunomodulators with interleukin-17A inhibitory activity. Acta Pharm Sin B 2023; 13:3930-3944. [PMID: 37719372 PMCID: PMC10501871 DOI: 10.1016/j.apsb.2023.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Interleukin (IL)-17A, a pro-inflammatory cytokine, is a fundamental function in the onset and advancement of multiple immune diseases. To uncover the primary compounds with IL-17A inhibitory activity, a large-scale screening of the library of traditional Chinese medicine constituents and microbial secondary metabolites was conducted using splenic cells from IL-17A-GFP reporter mice cultured under Th17-priming conditions. Our results indicated that some aureane-type sesquiterpene tetraketides isolated from a wetland mud-derived fungus, Myrothecium gramineum, showed remarkable IL-17A inhibitory activity. Nine new aureane-type sesquiterpene tetraketides, myrogramins A-I (1, 4-11), and two known ones (2 and 3) were isolated and identified from the strain. Compounds 1, 3, 4, 10, and 11 exhibited significant IL-17A inhibitory activity. Among them, compound 3, with a high fermentation yield dose-dependently inhibited the generation of IL-17A and suppressed glycolysis in splenic cells under Th17-priming conditions. Strikingly, compound 3 suppressed immunopathology in both IL-17A-mediated animal models of experimental autoimmune encephalomyelitis and pulmonary hypertension. Our results revealed that aureane-type sesquiterpene tetraketides are a novel class of immunomodulators with IL-17A inhibitory activity, and hold great promise applications in treating IL-17A-mediated immune diseases.
Collapse
Affiliation(s)
- Xin Tang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Chuanxi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Lei Wang
- Department of Respirology, Capital Medical University, Beijing 100069, China
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, China
| | - Feifei Ren
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Runqiao Kuang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhenhua Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Xue Han
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Yiming Chen
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Guodong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Xiuqing Wu
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Jie Liu
- Department of Respirology, Capital Medical University, Beijing 100069, China
| | - Hengwen Yang
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Wang
- Department of Respirology, Capital Medical University, Beijing 100069, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
7
|
Tang XY, Mao CR, Fang JB, Ma ZJ, Huang Y, Wang D. Alpiniamides E-G from the Saline Lake-Derived Streptomyces sp. QHA48 and Their Lipid Accumulation Inhibitory Activity. Chem Biodivers 2023; 20:e202300538. [PMID: 37291995 DOI: 10.1002/cbdv.202300538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023]
Abstract
Alpiniamides E-G, three previously unreported linear polyketide derivatives, along with two known compounds, were isolated from Streptomyces sp. QHA48, which was isolated from the saline lakes of Qinghai-Tibet Plateau. The structures of these compounds were determined through analysis of their spectroscopic data, as well as density functional theory prediction of NMR chemical shifts, application of the DP4+ algorithm and electronic circular dichroism (ECD) calculations. In a cell-based lipid-lowering assay, all five alpiniamides exhibited significant inhibition of lipid accumulation in HepG2 cells without inducing cytotoxic effects at a concentration of 27 μM.
Collapse
Affiliation(s)
- Xin-Yi Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, P. R. China
| | - Chu-Ru Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, P. R. China
| | - Jie-Bin Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, P. R. China
| | - Zhong-Jun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, P. R. China
| | - Yun Huang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, P. R. China
| | - Dan Wang
- Zhejiang Institute for Food and Drug Control, Key Laboratory of Functional Food Nutrition and Quality Safety for State Market Regulation, Key Laboratory of Health Food Quality Safety of Provincial Market Regulation, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Provincial, Hangzhou, 310052, P. R. China
| |
Collapse
|
8
|
Tian XH, Hong LL, Jiao WH, Lin HW. Natural sesquiterpene quinone/quinols: chemistry, biological activity, and synthesis. Nat Prod Rep 2023; 40:718-749. [PMID: 36636914 DOI: 10.1039/d2np00045h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Covering: 2010 to 2021Sesquiterpene quinone/quinols (SQs) are characterized by a C15-sesquiterpenoid unit incorporating a C6-benzoquinone/quinol moiety. Numerous unprecedented carbon skeletons have been constructed with various connection patterns between the two parts. The potent anti-cancer, anti-inflammatory, anti-microbial, anti-viral, and fibrinolytic activities of SQs are associated with their diverse structures. The representative avarol has even entered the stage of clinical phase II research as an anti-HIV agent, and was developed as paramedic medicine against psoriasis. This review provides an overall summary of 558 new natural SQs discovered between 2010 and 2021, including seven groups and sixteen structure-type subgroups, which comprehensively recapitulates their chemical structures, spectral characteristics, source organisms, biological activities, synthesis, and biosynthesis, aiming to expand the application scope of this unique natural product resource.
Collapse
Affiliation(s)
- Xin-Hui Tian
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.
| | - Li-Li Hong
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Wei-Hua Jiao
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Hou-Wen Lin
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| |
Collapse
|
9
|
Xiang L, He W, Yan Ling Q, Li W, Yuan Yan Z, Zhang B, Xiang Tan R. Three new phenylspirodrimanes from a conch-derived fungus Stachybotrys sp. NF02434. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Dayras M, Sfecci E, Bovio E, Rastoin O, Dufies M, Fontaine-Vive F, Taffin-de-Givenchy E, Lacour T, Pages G, Varese GC, Mehiri M. New Phenylspirodrimanes from the Sponge-Associated Fungus Stachybotrys chartarum MUT 3308. Mar Drugs 2023; 21:md21030135. [PMID: 36976184 PMCID: PMC10053839 DOI: 10.3390/md21030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Two phenylspirodrimanes, never isolated before, stachybotrin J (1) and new stachybocin G (epi-stachybocin A) (2), along with the already reported stachybotrin I (3), stachybotrin H (4), stachybotrylactam (5), stachybotrylactam acetate (6), 2α-acetoxystachybotrylactam acetate (7), stachybotramide (8), chartarlactam B (9), and F1839-J (10) were isolated from the sponge-associated fungus Stachybotrys chartarum MUT 3308. Their structures were established based on extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses. Absolute configurations of the stereogenic centers of stachybotrin J (1), stachybocin G (2), and stachybotrin I (3), were determined by comparison of their experimental circular dichroism (CD) spectra with their time-dependent density functional theory (TD-DFT) circular dichroism (ECD) spectra. The putative structures of seventeen additional phenylspirodrimanes were proposed by analysis of their respective MS/MS spectra through a Feature-Based Molecular Networking approach. All the isolated compounds were evaluated for their cytotoxicity against five aggressive cancer cell lines (MP41, 786, 786R, CAL33, and CAL33RR), notably including two resistant human cancer cell lines (786R, CAL33RR), and compounds 5, 6, and 7 exhibited cytotoxicity with IC50 values in the range of 0.3−2.2 µM.
Collapse
Affiliation(s)
- Marie Dayras
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, 06108 Nice, France
- Centre Scientifique de Monaco, LIA ROPSE, Laboratoire International Associé, Université Côte d’Azur, 06108 Nice, France
| | - Estelle Sfecci
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, 06108 Nice, France
- Centre Scientifique de Monaco, LIA ROPSE, Laboratoire International Associé, Université Côte d’Azur, 06108 Nice, France
| | - Elena Bovio
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
- UMR Institut Sophia Agrobiotech, INRAE, CNRS, UCA, 400 routes des Chappes, 06903 Sophia Antipolis, France
| | - Olivia Rastoin
- Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice, Université Côte d’Azur, CNRS UMR 7284, INSERM U1081, 06189 Nice, France
| | - Maeva Dufies
- Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice, Université Côte d’Azur, CNRS UMR 7284, INSERM U1081, 06189 Nice, France
| | - Fabien Fontaine-Vive
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, 06108 Nice, France
- Centre Scientifique de Monaco, LIA ROPSE, Laboratoire International Associé, Université Côte d’Azur, 06108 Nice, France
| | - Elisabeth Taffin-de-Givenchy
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, 06108 Nice, France
- Centre Scientifique de Monaco, LIA ROPSE, Laboratoire International Associé, Université Côte d’Azur, 06108 Nice, France
| | - Thierry Lacour
- Parc d’Activités Arôma Grasse/Immeuble Grasse Biotech, 45 boulevard Marcel Pagnol, 06130 Grasse, France
| | - Gilles Pages
- Centre Scientifique de Monaco, LIA ROPSE, Laboratoire International Associé, Université Côte d’Azur, 06108 Nice, France
- Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice, Université Côte d’Azur, CNRS UMR 7284, INSERM U1081, 06189 Nice, France
- Department of Biomedical, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Giovanna Cristina Varese
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Mohamed Mehiri
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, 06108 Nice, France
- Centre Scientifique de Monaco, LIA ROPSE, Laboratoire International Associé, Université Côte d’Azur, 06108 Nice, France
- Correspondence: ; Tel.: +33-(0)4-89-15-01-57
| |
Collapse
|
11
|
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar Drugs 2023; 21:md21020063. [PMID: 36827104 PMCID: PMC9965070 DOI: 10.3390/md21020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.
Collapse
|
12
|
Ding ZG, Quan CX, Liu SW, Li MG, Zhao JY, Ding JH. A New Phenylspirodrimane-Type Analogue from the Tin Mine Tailings-Associated Fungus Stachybotrys chartarum. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Huang Y, Valiante V. Chemical Diversity and Biosynthesis of Drimane-Type Sesquiterpenes in the Fungal Kingdom. Chembiochem 2022; 23:e202200173. [PMID: 35574818 PMCID: PMC9546479 DOI: 10.1002/cbic.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Indexed: 11/05/2022]
Abstract
Drimane-type sesquiterpenes are a class of compounds produced by a wide range of organisms, initially isolated and characterized in plants. Meanwhile, in the past 20-30 years, a large number of novel structures from many divergent fungi have been elucidated. Recently, the biosynthesis of drimane-type sesquiter-penes and their esters has been explained in two filamentous fungi, namely Aspergillus oryzae and Aspergillus calidoustus, disclosing the basic biosynthetic principles needed to identify similar pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Ying Huang
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute: Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Biobricks of Microbial Natural Product Syntheses, GERMANY
| | - Vito Valiante
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie eV Hans-Knöll-Institut, Biobricks of Microbial Natural Product Syntheses, Adolf-Reichwein-Str. 23, 07745, Jena, GERMANY
| |
Collapse
|
14
|
Ibrahim SRM, Choudhry H, Asseri AH, Elfaky MA, Mohamed SGA, Mohamed GA. Stachybotrys chartarum-A Hidden Treasure: Secondary Metabolites, Bioactivities, and Biotechnological Relevance. J Fungi (Basel) 2022; 8:504. [PMID: 35628759 PMCID: PMC9144806 DOI: 10.3390/jof8050504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. This fungus has the capacity to produce various classes of bio-metabolites with unrivaled structural features, including cyclosporins, cochlioquinones, atranones, trichothecenes, dolabellanes, phenylspirodrimanes, xanthones, and isoindoline and chromene derivatives. Moreover, it is a source of various enzymes that could have variable biotechnological and industrial relevance. The current review highlights the formerly published data on S. chartarum, including its metabolites and their bioactivities, as well as industrial and biotechnological relevance dated from 1973 to the beginning of 2022. In this work, 215 metabolites have been listed and 138 references have been cited.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (A.H.A.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (A.H.A.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud A. Elfaky
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
15
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
16
|
Huang Y, Hoefgen S, Valiante V. Biosynthesis of Fungal Drimane‐Type Sesquiterpene Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ying Huang
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Sandra Hoefgen
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Vito Valiante
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| |
Collapse
|
17
|
Huang Y, Hoefgen S, Valiante V. Biosynthesis of Fungal Drimane-Type Sesquiterpene Esters. Angew Chem Int Ed Engl 2021; 60:23763-23770. [PMID: 34468074 PMCID: PMC8596746 DOI: 10.1002/anie.202108970] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Drimane-type sesquiterpenes exhibit various biological activities and are widely present in eukaryotes. Here, we completely elucidated the biosynthetic pathway of the drimane-type sesquiterpene esters isolated from Aspergillus calidoustus and we discovered that it involves a drimenol cyclase having the same catalytic function previously only reported in plants. Moreover, since many fungal drimenol derivatives possess a γ-butyrolactone ring, we clarified the functions of the cluster-associated cytochrome P450 and FAD-binding oxidoreductase discovering that these two enzymes are solely responsible for the formation of those structures. Furthermore, swapping of the enoyl reductase domain in the identified polyketide synthase led to the production of metabolites containing various polyketide chains with different levels of saturation. These findings have deepened our understanding of how fungi synthesize drimane-type sesquiterpenes and the corresponding esters.
Collapse
Affiliation(s)
- Ying Huang
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Sandra Hoefgen
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Vito Valiante
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
18
|
Topolovčan N, Duplić F, Gredičak M. Influence of
N
‐Substitution in 3‐Alkyl‐3‐hydroxyisoindolin‐1‐ones on the Stereoselectivity of Brønsted Acid‐Catalyzed Synthesis of 3‐Methyleneisoindolin‐1‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikola Topolovčan
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Filip Duplić
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Matija Gredičak
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| |
Collapse
|
19
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
20
|
Zhang B, Zhang T, Xu J, Lu J, Qiu P, Wang T, Ding L. Marine Sponge-Associated Fungi as Potential Novel Bioactive Natural Product Sources for Drug Discovery: A Review. Mini Rev Med Chem 2021; 20:1966-2010. [PMID: 32851959 DOI: 10.2174/1389557520666200826123248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Marine sponge-associated fungi are promising sources of structurally interesting and bioactive secondary metabolites. Great plenty of natural products have been discovered from spongeassociated fungi in recent years. Here reviewed are 571 new compounds isolated from marine fungi associated with sponges in 2010-2018. These molecules comprised eight different structural classes, including alkaloids, polyketides, terpenoids, meroterpenoids, etc. Moreover, most of these compounds demonstrated profoundly biological activities, such as antimicrobial, antiviral, cytotoxic, etc. This review systematically summarized the structural diversity, biological function, and future potential of these novel bioactive natural products for drug discovery.
Collapse
Affiliation(s)
- Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Ting Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jianzhou Xu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jian Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| |
Collapse
|
21
|
Mou P, Zhang Q, Peng J, Jiang X, Zhang L, Zhou Z, Zhang C, Zhu Y. Antibacterial phenylspirodrimanes from the marine-derived fungus Stachybotrys sp. SCSIO 40434. Fitoterapia 2021; 152:104937. [PMID: 34000328 DOI: 10.1016/j.fitote.2021.104937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Five new phenylspirodrimanes, stachybomycins A - E (1-5), together with four known compounds (6-9), were isolated from the marine-derived fungus Stachybotrys sp. SCSIO 40434. Their structures were elucidated by comprehensive spectroscopic analyses of NMR and HRESIMS. The absolute configuration of 1 was confirmed by single crystal X-ray diffraction analysis. Compounds 5 and 7 showed moderate antibacterial activities against Micrococcus luteus, Staphylococcus aureus and methicillin resistant Staphylococcus aureus with minimal inhibition concentration (MIC) values of 8, 16 and 16 μg mL-1, respectively.
Collapse
Affiliation(s)
- Pengyun Mou
- College of Life Science, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd, Nansha District, Guangzhou 511458, China
| | - Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd, Nansha District, Guangzhou 511458, China
| | - Zhongbo Zhou
- College of Life Science, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, China.
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
22
|
Han J, Jiang L, Zhang L, Quinn RJ, Liu X, Feng Y. Peculiarities of meroterpenoids and their bioproduction. Appl Microbiol Biotechnol 2021; 105:3987-4003. [PMID: 33937926 DOI: 10.1007/s00253-021-11312-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Meroterpenoids are a class of terpenoid-containing hybrid natural products with impressive structural architectures and remarkable pharmacological activities. Remarkable advances in enzymology and synthetic biology have greatly contributed to the elucidation of the molecular basis for their biosynthesis. Here, we review structurally unique meroterpenoids catalyzed by novel enzymes and unusual enzymatic reactions over the period of last 5 years. We also discuss recent progress on the biomimetic synthesis of chrome meroterpenoids and synthetic biology-driven biomanufacturing of tropolone sesquiterpenoids, merochlorins, and plant-derived meroterpenoid cannabinoids. In particular, we focus on the novel enzymes involved in the biosynthesis of polyketide-terpenoids, nonribosomal peptide-terpenoids, terpenoid alkaloids, and meroterpenoid with unique structures. The biological activities of these meroterpenoids are also discussed. The information reviewed here might provide useful clues and lay the foundation for developing new meroterpenoid-derived drugs. KEY POINTS: • Meroterpenoids possess intriguing structural features and relevant biological activities. • Novel enzymes are involved in the biosynthesis of meroterpenoids with unique structures. • Biomimetic synthesis and synthetic biology enable the construction and manufacturing of complex meroterpenoids.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia.
| |
Collapse
|
23
|
Bao YR, Feng HL, Yao XS. Stachybotranes A-D, phenylspirodrimanes from the wetland fungus Stachybotrys chartarum with cytotoxic activities. Nat Prod Res 2021; 36:3894-3900. [PMID: 33899597 DOI: 10.1080/14786419.2021.1896510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Four new phenylspirodrimanes, stachybotranes A-D (1-4), along with seven known analogues (5-11), were isolated from the extract of a wetland fungal strain Stachybotrys chartarum DTH12-9. The structures of new compounds were determined by spectroscopic analyses, X-ray crystallographic analysis, and the CD analysis of the in situ formed [Rh2(OCOCF3)4] complex. Compounds 1-3, 5-8, and 10 were evaluated for in vitro cytotoxicity against five human cancer cell lines, HL-60, SMMC-7721, A-549, MCF-7, and SW-480. Compounds 1, 2, and 7 exhibited moderate cytotoxic potency against various human cancer cell lines.
Collapse
Affiliation(s)
- Yan-Ru Bao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Natural Products, Shenzhen Neptunus Medical Science and Technology Research Institute Co. LTD, Shenzhen, China
| | - Han-Lin Feng
- Institute of Natural Products, Shenzhen Neptunus Medical Science and Technology Research Institute Co. LTD, Shenzhen, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
|
25
|
Hasumi K, Suzuki E. Impact of SMTP Targeting Plasminogen and Soluble Epoxide Hydrolase on Thrombolysis, Inflammation, and Ischemic Stroke. Int J Mol Sci 2021; 22:954. [PMID: 33477998 PMCID: PMC7835936 DOI: 10.3390/ijms22020954] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Stachybotrys microspora triprenyl phenol (SMTP) is a large family of small molecules derived from the fungus S. microspora. SMTP acts as a zymogen modulator (specifically, plasminogen modulator) that alters plasminogen conformation to enhance its binding to fibrin and subsequent fibrinolysis. Certain SMTP congeners exert anti-inflammatory effects by targeting soluble epoxide hydrolase. SMTP congeners with both plasminogen modulation activity and anti-inflammatory activity ameliorate various aspects of ischemic stroke in rodents and primates. A remarkable feature of SMTP efficacy is the suppression of hemorrhagic transformation, which is exacerbated by conventional thrombolytic treatments. No drug with such properties has been developed yet, and SMTP would be the first to promote thrombolysis but suppress disease-associated bleeding. On the basis of these findings, one SMTP congener is under clinical study and development. This review summarizes the discovery, mechanism of action, pharmacological activities, and development of SMTP.
Collapse
Affiliation(s)
- Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Division of Research and Development, TMS Co., Ltd., Tokyo 183-0023, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| |
Collapse
|
26
|
Enzymology and biosynthesis of the orsellinic acid derived medicinal meroterpenoids. Curr Opin Biotechnol 2020; 69:52-59. [PMID: 33383296 DOI: 10.1016/j.copbio.2020.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023]
Abstract
The advent of synthetic biology has yielded fruitful studies on orsellinic acid-derived meroterpenoids, which reportedly possess important biological activities. Genomics and transcriptomics have significantly accelerated the discovery of the biosynthetic genes for orsellinic acid-derived fungal and plant meroterpenoids. Subsequently, a well-developed heterologous host provides a convenient platform to generate a supply of useful natural products. Furthermore, in vitro reconstitution and genome editing tools have been increasingly employed as efficient means to fully understand the enzyme reaction mechanisms. With the knowledge of the biosynthetic machinery, combinatorial and engineered biosyntheses have yielded novel molecules with improved bioactivities. These studies will lay the foundation for the production of meroterpenoids with novel medicinal properties.
Collapse
|
27
|
Structurally diverse polyketides and phenylspirodrimanes from the soft coral-associated fungus Stachybotrys chartarum SCSIO41201. J Antibiot (Tokyo) 2020; 74:190-198. [PMID: 33318621 DOI: 10.1038/s41429-020-00386-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022]
Abstract
Four undescribed polyketide derivatives, named arthproliferins A-D (1-4), and one undescribed phenylspirodrimane derivative, named arthproliferin E (7), along with 11 known metabolites (5, 6, 8-16) were isolated from the soft coral-associated fungus Stachybotrys chartarum SCSIO41201. Their structures were determined through spectroscopic methods, X-ray crystallography, and ECD analysis. Compounds 1 and 3-15 were evaluated for their cytotoxic, and antibacterial activities. Among them, compounds 1 and 15 displayed moderate inhibitory activity against methicillin-resistant Staphylococcus aureus ATCC 29213 with an MIC value of 78 and 39 µg/mL, respectively. Furthermore, compound 15 displayed strong cytotoxic activities against the tested cell line with IC50 values less than 39 nM.
Collapse
|
28
|
Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem 2020; 209:112860. [PMID: 33032085 DOI: 10.1016/j.ejmech.2020.112860] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Meroterpenoids are partially derived from the terpenoids, distributing widely in the plants, animals and fungi. The complex structures and diverse bioactivities of meroterpenoids have attracted more attention for chemists and pharmacologists. Since the first review summarized by Geris in 2009, there are absent of systematic reviews reported about meroterpenoids from the higher and lower fungi up to now. In the past decades, myriads of meroterpenoids were discovered, and it is necessary to summarize these meroterpenoids about their unique structures and promising bioactivities. In this review, we use a new classification method based on the non-terpene precursors, and also highlight the structural features, bioactivity of natural meroterpenoids from the higher and lower fungi covering the period of September 2008 to February 2020. A total of 709 compounds were discussed and cited the 182 references. Meanwhile, we also primarily summarize their occurrence, structural diversity, biological activities, and molecular targets.
Collapse
|
29
|
Atranones from Stachybotrys chartarum and their antitumor activities in MG-63 human osteosarcoma cells. Fitoterapia 2020; 146:104727. [PMID: 32950600 DOI: 10.1016/j.fitote.2020.104727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022]
Abstract
Two new atranones T and U (1 and 2), and three known analogues atranone B (3), atranone Q (4), and stachatranone C (5) were isolated from the toxigenic fungus Stachybotrys chartarum. Their structures and absolute configurations were elucidated by spectroscopic data and calculated ECD analyses. The cytotoxicities of all the atranones (1-5) were evaluated against MG-63 human osteosarcoma cell lines. Compound 4 exhibited significant cytotoxic effect against MG-63 with IC50 value of 8.6 μM, being more active than the positive control, 5-FU (IC50 10.4 μM). Morphological features of apoptosis activities were evaluated in 4-treated MG-63 cells. Compound 4 effectively induced apoptosis of MG-63, which was associated with G0/G1-phase cell cycle arrest. Flow cytometric analysis showed that the treatment by 4 significantly induced MG-63 cell apoptosis in a dose-dependent manner.
Collapse
|
30
|
Albano G, Giuntini S, Aronica LA. Synthesis of 3-Alkylideneisoindolin-1-ones via Sonogashira Cyclocarbonylative Reactions of 2-Ethynylbenzamides. J Org Chem 2020; 85:10022-10034. [PMID: 32615762 PMCID: PMC8154568 DOI: 10.1021/acs.joc.0c01282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclocarbonylative Sonogashira reactions of ortho-ethynylbenzamides have been investigated. The process is carried out under CO pressure, in the presence of a very small amount of PdCl2(PPh3)2 (0.4 mol %) as a catalytic precursor and without the need for a Cu salt as the co-catalyst. 2-Ethynylbenzamide reacted successfully with iodoarenes bearing electron-withdrawing and electron-donating groups, giving rise to different classes of compounds depending on the solvent used. On the contrary, N-(4-chlorophenyl)-2-ethynylbenzamide afforded exclusively polyfunctionalized isoindolinones with high stereoselectivity toward (E) isomers.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Giuntini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Centro di Risonanze Magnetiche (CERM), Università degli Studi di Firenze and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
31
|
Liu D, Li Y, Guo X, Ji W, Lin W. Chartarlactams Q-T, Dimeric Phenylspirodrimanes with Antibacterial and Antiviral Activities. Chem Biodivers 2020; 17:e2000170. [PMID: 32289204 DOI: 10.1002/cbdv.202000170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022]
Abstract
Four new phenylspirodrimane-type dimers, namely chartarlactams Q-T, along with stachyin B were isolated from the fermentation broth of a sponge-derived fungus Stachybotrys chartarum WGC-25 C-6. Chartarlactams Q-T were structurally featured by the dimerization of two units of phenylspirodrimane linked by a C-N bond. Their structures were determined on the basis of extensive spectroscopic analysis, while quantum ECD calculation and modified Mosher's method were used for the assignment of absolute configurations. Chartarlactams Q-S and stachyin B showed moderate inhibition against bacterial pathogen Staphylococcus aureus with MIC values ranging from 4 μg/mL to 16 μg/mL, and chartarlactam T exhibited significant inhibition toward ZIKV virus.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, P. R. China
| | - Yong Li
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, P. R. China
| | - Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, P. R. China
| | - Wei Ji
- Basic Medical School, Peking University, Beijing, 100191, P. R. China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
32
|
Jia XN, Zhao JL, Feng JM, Chen RD, Xie KB, Chen DW, Li Y, Liu JM, Dai JG. Bistachybotrysin K, one new phenylspirodrimane dimer from Stachybotrys chartarum with potent cytotoxic activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:496-502. [PMID: 31738087 DOI: 10.1080/10286020.2019.1680645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Bistachybotrysin K (1), one new phenylspirodrimane dimer with a central 6/7 oxygen heterocycle core, was isolated from the fungus Stachybotrys chartarum CGMCC 3.5365. Its structure was elucidated by extensive spectroscopic data and single-crystal X-ray diffraction. Compound 1 showed significant cytotoxicity against human tumor cell lines HCT116, NCI-H460, BGC823, Daoy, and HepG2 with IC50 values in the range of 1.1-4.7 µM.
Collapse
Affiliation(s)
- Xiao-Na Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Lian Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Min Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ri-Dao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke-Bo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Da-Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ji-Mei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun-Gui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
33
|
Kawahara T, Itoh M, Izumikawa M, Kagaya N, Sakata N, Tsuchida T, Shin-Ya K. New phenylspirodrimane metabolites MBJ-0030, MBJ-0031, and MBJ-0032 isolated from the soil fungal strain Stachybotrys sp. f23793. Biosci Biotechnol Biochem 2020; 84:1570-1575. [PMID: 32338185 DOI: 10.1080/09168451.2020.1757402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chemical screening of culture medium from the soil fungus Stachybotrys sp. resulted in the isolation of the three new phenylspirodrimanes MBJ-0030 (1), MBJ-0031 (2) and MBJ-0032 (3). Their structures were determined by detailed analysis of spectroscopic data. The absolute configurations of 1-3 were determined by modified Mosher's and Marfey's methods. In addition, cytotoxic and antimicrobial evaluations of the compounds were conducted.
Collapse
Affiliation(s)
- Teppei Kawahara
- Japan Biological Informatics Consortium (JBIC) , Tokyo, Japan
| | - Masashi Itoh
- Research & Development Division, MicroBiopharm Japan Co., Ltd (MBJ) , Iwata, Japan
| | - Miho Izumikawa
- Japan Biological Informatics Consortium (JBIC) , Tokyo, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo, Japan
| | - Noriaki Sakata
- Research & Development Division, MicroBiopharm Japan Co., Ltd (MBJ) , Iwata, Japan
| | - Toshio Tsuchida
- Research & Development Division, MicroBiopharm Japan Co., Ltd (MBJ) , Iwata, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo, Japan.,The Biotechnology Research Center, The University of Tokyo , Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
34
|
Cheng MM, Tang XL, Sun YT, Song DY, Cheng YJ, Liu H, Li PL, Li GQ. Biological and Chemical Diversity of Marine Sponge-Derived Microorganisms over the Last Two Decades from 1998 to 2017. Molecules 2020; 25:E853. [PMID: 32075151 PMCID: PMC7070270 DOI: 10.3390/molecules25040853] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are well known as rich sources of biologically natural products. Growing evidence indicates that sponges harbor a wealth of microorganisms in their bodies, which are likely to be the true producers of bioactive secondary metabolites. In order to promote the study of natural product chemistry and explore the relationship between microorganisms and their sponge hosts, in this review, we give a comprehensive overview of the structures, sources, and activities of the 774 new marine natural products from sponge-derived microorganisms described over the last two decades from 1998 to 2017.
Collapse
Affiliation(s)
- Mei-Mei Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xu-Li Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, China;
| | - Yan-Ting Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Dong-Yang Song
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yu-Jing Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Hui Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
35
|
Liu J, Jia X, Zhao J, Feng J, Chen M, Chen R, Xie K, Chen D, Li Y, Zhang D, Peng Y, Si S, Dai J. Bistachybotrysins L–V, bioactive phenylspirodrimane dimers from the fungus Stachybotrys chartarum. Org Chem Front 2020. [DOI: 10.1039/c9qo01284b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bistachybotrysins L–V (1–11), eleven novel dimeric phenylspirodrimanes, were isolated from the fungus Stachybotrys chartarum CGMCC 3.5365.
Collapse
|
36
|
Liu Z, Frank M, Yu X, Yu H, Tran-Cong NM, Gao Y, Proksch P. Secondary Metabolites from Marine-Derived Fungi from China. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2020; 111:81-153. [PMID: 32114663 DOI: 10.1007/978-3-030-37865-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marine-derived fungi play an important role in the search for structurally unique secondary metabolites, some of which show promising pharmacological activities that make them useful leads for drug discovery. Marine natural product research in China in general has made enormous progress in the last two decades as described in this chapter on fungal metabolites. This contribution covers 613 new natural products reported from 2001 to 2017 from marine-derived fungi obtained from algae, sponges, corals, and other marine organisms from Chinese waters. The genera Aspergillus (170 new natural products, 28%) and Penicillium (70 new natural products, 11%) were the main fungal producers of new natural products during the time period covered, whereas sponges (184 new natural products, 30%) were the most abundant source of new natural products, followed by corals (154 new natural products, 25%) and algae (130 new natural products, 21%). Close to 40% of all natural products covered in this contribution displayed various bioactivities. The major bioactivities reported were cytotoxicity against different cancer cell lines, antimicrobial (mainly antibacterial) activity, and antiviral activity, which accounted for 13%, 9%, and 3% of all natural products reported. In terms of structural classes, polyketides (188 new natural products, 31%) play a dominant role, and if prenylated polyketides and nitrogen-containing polyketides (included in meroterpenes and alkaloids in this contribution) are taken into account, their total number even exceeds 50%. Nitrogen-containing compounds including peptides (65 new natural products, 10%) and alkaloids (103 new natural products, 17%) are the second largest group.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Xiaoqin Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nam M Tran-Cong
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
37
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
38
|
Bovio E, Sfecci E, Poli A, Gnavi G, Prigione V, Lacour T, Mehiri M, Varese GC. The culturable mycobiota associated with the Mediterranean sponges Aplysina cavernicola, Crambe crambe and Phorbas tenacior. FEMS Microbiol Lett 2019; 366:5710934. [PMID: 31960895 DOI: 10.1093/femsle/fnaa014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/20/2020] [Indexed: 01/15/2023] Open
Abstract
Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.
Collapse
Affiliation(s)
- Elena Bovio
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy.,University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Estelle Sfecci
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Anna Poli
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Giorgio Gnavi
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Valeria Prigione
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | | | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
39
|
Ding ZG, Ding JH, Zhao JY, Chunyu WX, Li MG, Wang HB, Gu SJ, Wang F, Wen ML. A New Phenylspirodrimane Dimer Derivative from the Tin Mine Tailings-Associated Fungus Stachybotrys chartarum. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Ding ZG, Ding JH, Zhao JY, Li MG, Hu DB, Jiang XJ, Gu SJ, Wang F, Wen ML. Phenylspirodrimane Derivatives From Cultures of the Fungus Stachybotrys chartarum YIM DT 10079. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19878906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new phenylspirodrimane derivative, stachartin F (1), and 2 known secondary metabolites stachybonoid E (2) and stachybonoid F (3) were isolated from cultures of the tin mine tailings-associated fungus Stachybotrys chartarum YIM DT 10079. Their structures were determined with the help of extensive spectroscopic analyses and absolute configuration of compound 1 was rationalized by quantum chemical calculations of the electronic circular dichroism spectra.
Collapse
Affiliation(s)
- Zhang-Gui Ding
- Key Laboratory for Microbial Resources, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, P.R. China
| | - Jian-Hai Ding
- Engineering and Technology Research Center of Liupanshan Resources, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, P. R. China
| | - Jiang-Yuan Zhao
- Key Laboratory for Microbial Resources, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, P.R. China
| | - Ming-Gang Li
- Key Laboratory for Microbial Resources, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, P.R. China
| | - Dong-Bao Hu
- School of Chemical Biology and Environment, Yuxi Normal University, P.R. China
| | | | | | - Fei Wang
- BioBioPha Co., Ltd., Kunming, P.R. China
| | - Meng-Liang Wen
- Key Laboratory for Microbial Resources, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, P.R. China
| |
Collapse
|
41
|
Feng J, Zhang M, Jia X, Zhao J, Chen R, Xie K, Chen D, Li Y, Liu J, Dai J. Bistachybotrysins F-J, five new phenylspirodrimane dimers with a central cyclopentanone linkage from Stachybotrys chartarum. Fitoterapia 2019; 136:104158. [DOI: 10.1016/j.fitote.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
|
42
|
Jagels A, Lindemann V, Ulrich S, Gottschalk C, Cramer B, Hübner F, Gareis M, Humpf HU. Exploring Secondary Metabolite Profiles of Stachybotrys spp. by LC-MS/MS. Toxins (Basel) 2019; 11:toxins11030133. [PMID: 30818881 PMCID: PMC6468463 DOI: 10.3390/toxins11030133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/07/2023] Open
Abstract
The genus Stachybotrys produces a broad diversity of secondary metabolites, including macrocyclic trichothecenes, atranones, and phenylspirodrimanes. Although the class of the phenylspirodrimanes is the major one and consists of a multitude of metabolites bearing various structural modifications, few investigations have been carried out. Thus, the presented study deals with the quantitative determination of several secondary metabolites produced by distinct Stachybotrys species for comparison of their metabolite profiles. For that purpose, 15 of the primarily produced secondary metabolites were isolated from fungal cultures and structurally characterized in order to be used as analytical standards for the development of an LC-MS/MS multimethod. The developed method was applied to the analysis of micro-scale extracts from 5 different Stachybotrys strains, which were cultured on different media. In that process, spontaneous dialdehyde/lactone isomerization was observed for some of the isolated secondary metabolites, and novel stachybotrychromenes were quantitatively investigated for the first time. The metabolite profiles of Stachybotrys species are considerably influenced by time of growth and substrate availability, as well as the individual biosynthetic potential of the respective species. Regarding the reported adverse effects associated with Stachybotrys growth in building environments, combinatory effects of the investigated secondary metabolites should be addressed and the role of the phenylspirodrimanes re-evaluated in future research.
Collapse
Affiliation(s)
- Annika Jagels
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| | - Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| | - Sebastian Ulrich
- Chair of Food Safety, Veterinary Faculty, Ludwig-Maximilians-Universität München, 85764 Oberschleißheim, Germany.
| | - Christoph Gottschalk
- Chair of Food Safety, Veterinary Faculty, Ludwig-Maximilians-Universität München, 85764 Oberschleißheim, Germany.
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| | - Florian Hübner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| | - Manfred Gareis
- Chair of Food Safety, Veterinary Faculty, Ludwig-Maximilians-Universität München, 85764 Oberschleißheim, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
43
|
Cheng MJ, Yang XY, Cao JQ, Liu C, Zhong LP, Wang Y, You XF, Li CC, Wang L, Ye WC. Isolation, Structure Elucidation, and Total Synthesis of Myrtuspirone A from Myrtus communis. Org Lett 2019; 21:1583-1587. [PMID: 30799624 DOI: 10.1021/acs.orglett.9b00108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A pair of enantiomeric triketone-phloroglucinol hybrids, (+)- and (-)-myrtuspirone A (1), featuring an unprecedented 3-isopropyl-3 H-spiro[benzofuran-2,1'-cyclohexane] backbone, were isolated from the leaves of Myrtus communis. The absolute configuration of each enantiomer of 1 was determined by X-ray diffraction and chemical calculations. Furthermore, the gram-scale total syntheses of (±)-1 and (-)-1 were conducted in four steps using a Michael- N-iodosuccinimide (NIS)-mediated (3 + 2)-annulation reaction. Both (+)- and (-)-1 exhibited antibacterial activities against Gram-positive bacteria including multidrug-resistant strains.
Collapse
Affiliation(s)
- Min-Jing Cheng
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , P.R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Xin-Yi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing 100050 , P.R. China
| | - Jia-Qing Cao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Chao Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Li-Ping Zhong
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , P.R. China
| | - Ying Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Xue-Fu You
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing 100050 , P.R. China
| | - Chuang-Chuang Li
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , P.R. China
| | - Lei Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| |
Collapse
|
44
|
Zhang M, Feng J, Jia X, Zhao J, Liu J, Chen R, Xie K, Chen D, Li Y, Zhang D, Dai J. Bistachybotrysins D and E, one stereoisomeric pair of cytotoxic phenylspirodrimane dimers from Stachybotrys chartarum. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Hsieh CE, Jiang YM, Chou CM. Functionalized Allyl Aryl Ether Synthesis from Benzoic Acids Using a Dearomatization and Decarboxylative Allylation Approach. J Org Chem 2019; 84:653-665. [PMID: 30596422 DOI: 10.1021/acs.joc.8b02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy toward the preparation of substituted allyl aryl ethers from benzoic acids via a dearomatization and decarboxylative allylation (DcA) reaction is presented. The benzoic acids undergo a dearomatization to give alkylated 2,5-cyclohexadienyl ketoesters which are subjected to a palladium-catalyzed DcA reaction, providing a variety of functionalized allyl aryl ethers. In addition, the combination of a resonance stabilized DcA reaction with a Claisen rearrangement for the synthesis of multisubstituted phenols and applying to dihydroplicatin B derivative synthesis is also presented.
Collapse
Affiliation(s)
- Cheng-En Hsieh
- Department of Applied Chemistry , National University of Kaohsiung , 700, Kaohsiung University Road , Nanzih District, 81148 Kaohsiung , Taiwan
| | - Yu-Min Jiang
- Department of Applied Chemistry , National University of Kaohsiung , 700, Kaohsiung University Road , Nanzih District, 81148 Kaohsiung , Taiwan
| | - Chih-Ming Chou
- Department of Applied Chemistry , National University of Kaohsiung , 700, Kaohsiung University Road , Nanzih District, 81148 Kaohsiung , Taiwan
| |
Collapse
|
46
|
Zhang H, Yang MH, Zhuo FF, Gao N, Cheng XB, Wang XB, Pei YH, Kong LY. Seven new cytotoxic phenylspirodrimane derivatives from the endophytic fungus Stachybotrys chartarum. RSC Adv 2019; 9:3520-3531. [PMID: 35518072 PMCID: PMC9060241 DOI: 10.1039/c8ra10195g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
Seven undescribed phenylspirodrimane derivatives, stachybochartins A–G (1–7), and four known analogues (8–11) were isolated from the endophytic fungus Stachybotrys chartarum obtained from Pinellia ternata. Stachybochartins A–D are four rare C–C-coupled dimeric derivatives and stachybochartin G features a seco-bisabosqual skeleton. Their structures and configurations were elucidated via spectroscopic analysis, electronic circular dichroism (ECD) calculations, the ECD exciton chirality method and the modified Mosher's method. Stachybochartins A–D and G displayed cytotoxic activities against MDA-MB-231 breast cancer cells and U-2OS osteosarcoma cells, with IC50 values ranging from 4.5 to 21.7 μM. Stachybochartins C and G exerted strong anti-proliferative activities against U-2OS cells in concentration- and time-dependent manners and induced apoptosis. The diverse structures and anticancer activities of phenylspirodrimane derivatives are investigated.![]()
Collapse
Affiliation(s)
- Hong Zhang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Fang-fang Zhuo
- Jiangsu Key Laboratory of Bioactive Natural Product Research
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Na Gao
- Jiangsu Key Laboratory of Bioactive Natural Product Research
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xiao-Bei Cheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Yue-Hu Pei
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
| | - Ling-Yi Kong
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
| |
Collapse
|
47
|
Bodhak C, Hazra S, Pramanik A. Graphene Oxide: An Efficient Carbocatalyst for the Facile Synthesis of Isoindolo[2, 1‐
a
]quinazoline‐5,11‐diones via Domino Condensation under Solvent‐Free Conditions. ChemistrySelect 2018. [DOI: 10.1002/slct.201801322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chandan Bodhak
- Department of ChemistryUniversity of Calcutta, 92, A. P. C. Road Kolkata-700 009 India
| | - Subhenjit Hazra
- Department of ChemistryUniversity of Calcutta, 92, A. P. C. Road Kolkata-700 009 India
| | - Animesh Pramanik
- Department of ChemistryUniversity of Calcutta, 92, A. P. C. Road Kolkata-700 009 India
| |
Collapse
|
48
|
Khan RA. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 2018; 26:739-753. [PMID: 29991919 PMCID: PMC6036106 DOI: 10.1016/j.jsps.2018.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
The role and contributions of natural products chemistry in advancements of the physical and biological sciences, its interdisciplinary domains, and emerging of new avenues by providing novel applications, constructive inputs, thrust, comprehensive understanding, broad perspective, and a new vision for future is outlined. The developmental prospects in bio-medical, health, nutrition, and other interrelated sciences along with some of the emerging trends in the subject area are also discussed as part of the current review of the basic and core developments, innovation in techniques, advances in methodology, and possible applications with their effects on the sciences in general and natural products chemistry in particular. The overview of the progress and ongoing developments in broader areas of the natural products chemistry discipline, its role and concurrent economic and scientific implications, contemporary objectives, future prospects as well as impending goals are also outlined. A look at the natural products chemistry in providing scientific progress in various disciplines is deliberated upon.
Collapse
Affiliation(s)
- Riaz A. Khan
- Department of Medicinal Chemistry, Qassim University, Qassim 51452, Saudi Arabia
- Manav Rachna International University, National Capital Region, Faridabad, HR 121 004, India
| |
Collapse
|
49
|
Chen H, Li YJ, Sun YJ, Li XK, Jian-Hong G, Wu Y, Su FY, Du K, Zhang YL, Feng WS. Antihyperlipidemic glycosides from the root bark of Lycium chinense. Nat Prod Res 2018; 33:2655-2661. [DOI: 10.1080/14786419.2018.1466125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hui Chen
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu-Jie Li
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Jun Sun
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Kun Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Gong Jian-Hong
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya Wu
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fang-Yi Su
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kun Du
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Li Zhang
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei-Sheng Feng
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
50
|
Ma XH, Zheng WM, Sun KH, Gu XF, Zeng XM, Zhang HT, Zhong TH, Shao ZZ, Zhang YH. Two new phenylspirodrimanes from the deep-sea derived fungus Stachybotrys sp. MCCC 3A00409. Nat Prod Res 2018; 33:386-392. [DOI: 10.1080/14786419.2018.1455041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xin-hua Ma
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, P.R. China
| | - Wei-min Zheng
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, P.R. China
| | - Kai-hui Sun
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, P.R. China
| | - Xiao-fan Gu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, P.R. China
| | - Xian-ming Zeng
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, P.R. China
| | - Hai-tao Zhang
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, P.R. China
| | - Tian-hua Zhong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P.R. China
| | - Zong-ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P.R. China
| | - Yong-hong Zhang
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|