1
|
Rajput S, Zaleśny R, Alam MM. Chromophore Planarity, -BH Bridge Effect, and Two-Photon Activity: Bi- and Ter-Phenyl Derivatives as a Case Study. J Phys Chem A 2023; 127:7928-7936. [PMID: 37721870 PMCID: PMC10544031 DOI: 10.1021/acs.jpca.3c04288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Indexed: 09/20/2023]
Abstract
In this work, we have employed electronic structure theories to explore the effect of the planarity of the chromophore on the two-photon absorption properties of bi- and ter-phenyl systems. To that end, we have considered 11 bi- and 7 ter-phenyl-based chromophores presenting a donor-π-acceptor architecture. In some cases, the planarity has been enforced by bridging the rings at ortho-positions by -CH2 and/or -BH, -O, -S, and -NH moieties. The results presented herein demonstrate that in bi- and ter-phenyl systems, the planarity achieved via a -CH2 bridge increases the 2PA activity. However, the introduction of a bridge with the -BH moiety perturbs the electronic structure to a large extent, thus diminishing the two-photon transition strength to the lowest electronic excited state. As far as two-photon absorption activity is concerned, this work hints toward avoiding -BH bridge(s) to enforce planarity in bi- and ter-phenyl systems; however, one may use -CH2 bridge(s) to achieve the enhancement of the property in question. All of these conclusions have been supported by in-depth analyses based on generalized few-state models.
Collapse
Affiliation(s)
- Swati
Singh Rajput
- Department
of Chemistry, Indian Institute of Technology
Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| | - Robert Zaleśny
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Md Mehboob Alam
- Department
of Chemistry, Indian Institute of Technology
Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| |
Collapse
|
2
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Park KR, Kwon YJ, Jeong YH, Hong JT, Yun HM. Thelephoric acid, p-terphenyl, induces bone-forming activities in pre-osteoblasts. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Zhou G, Zhu T, Che Q, Zhang G, Li D. Structural diversity and biological activity of natural p-terphenyls. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:62-73. [PMID: 37073357 PMCID: PMC10077223 DOI: 10.1007/s42995-021-00117-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/26/2021] [Indexed: 05/03/2023]
Abstract
p-Terphenyls are aromatic compounds consisting of a central benzene ring substituted with two phenyl groups, and they are mainly isolated from terrestrial and marine organisms. The central ring of p-Terphenyls is usually modified into more oxidized forms, e.g., para quinone and phenols. In some cases, additional ring systems were observed on the terphenyl-type core structure or between two benzene moieties. p-Terphenyls have been reported to have cytotoxic, antimicrobial, antioxidant and α-glucosidase inhibitory effects. In this review, we will mainly summarize the structural diversity and biological activity of naturally occurring p-Terphenyls referring to the research works published before. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00117-8.
Collapse
Affiliation(s)
- Guoliang Zhou
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Qian Che
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Dehai Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
5
|
Kinoshita K, Nakabayashi S, Ishikura A, Fujihara K, Hirabayashi S, Koike S, Sasaki H, Ogasawara Y, Koyama K. Inhibition of Amyloid-β Aggregation by p-Terphenyls from the Mushroom Polyozellus multiplex and Their Neuroprotective Effects. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Abdelhameed RFA, Eltamany EE, Hal DM, Ibrahim AK, AboulMagd AM, Al-Warhi T, Youssif KA, Abd El-Kader AM, Hassanean HA, Fayez S, Bringmann G, Ahmed SA, Abdelmohsen UR. New Cytotoxic Cerebrosides from the Red Sea Cucumber Holothuria spinifera Supported by In-Silico Studies. Mar Drugs 2020; 18:E405. [PMID: 32752177 PMCID: PMC7460232 DOI: 10.3390/md18080405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC50 values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC50 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents.
Collapse
Affiliation(s)
- Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Dina M Hal
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amany K Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Asmaa M AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni Suef 62513, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 13414, Saudi Arabia
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11566, Egypt
| | - Adel M Abd El-Kader
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hashim A Hassanean
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
7
|
Wang XQ, Ye PT, Bai MJ, Miu WH, Yang ZX, Duan SY, Li TT, Li Y, Yang XD. Synthesis and biological activity of new bisbenzofuran-imidazolium salts. Bioorg Med Chem Lett 2020; 30:127210. [PMID: 32359853 DOI: 10.1016/j.bmcl.2020.127210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
A series of novel bisbenzofuran-imidazolium salts were designed and prepared. The in vitro antitumor activity of these derivatives was evaluated against a panel of human tumor cell lines (A549, HL-60, MCF-7, SMMC-7721 and SW480). Results demonstrated that 2-methyl-benzimidazole ring and substitution of the imidazolyl-3-position with a 4-methoxyphenacyl or 2-naphthylacyl substituent were important for promoting cytotoxic activity. Notably, compound 23 was found to be the most potent compound with IC50 values of 0.64-1.47 μM against five human tumor cell lines, and exhibited higher selectivity to MCF-7 and SW-480 cell lines with IC50 values 15.3-fold and 9.1-fold lower than DDP.
Collapse
Affiliation(s)
- Xue-Quan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Ping-Ting Ye
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Meng-Jiao Bai
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Wei-Hang Miu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Zhi-Xin Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Su-Yue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Tian-Tian Li
- Department of Soil and Water Science, University of Florida, 2181 McCarty Hall A, Gainesville, FL 32611-0290, USA
| | - Yan Li
- State Key Laboratory for Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, PR China.
| | - Xiao-Dong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
8
|
Thu ZM, Myo KK, Aung HT, Clericuzio M, Armijos C, Vidari G. Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast Asia. Molecules 2020; 25:E1972. [PMID: 32340227 PMCID: PMC7221775 DOI: 10.3390/molecules25081972] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have a long history of uses for their medicinal and nutritional properties. They have been consumed by people for thousands of years. Edible mushrooms are collected in the wild or cultivated worldwide. Recently, mushroom extracts and their secondary metabolites have acquired considerable attention due to their biological effects, which include antioxidant, antimicrobial, anti-cancer, anti-inflammatory, anti-obesity, and immunomodulatory activities. Thus, in addition to phytochemists, nutritionists and consumers are now deeply interested in the phytochemical constituents of mushrooms, which provide beneficial effects to humans in terms of health promotion and reduction of disease-related risks. In recent years, scientific reports on the nutritional, phytochemical and pharmacological properties of mushroom have been overwhelming. However, the bioactive compounds and biological properties of wild edible mushrooms growing in Southeast Asian countries have been rarely described. In this review, the bioactive compounds isolated from 25 selected wild edible mushrooms growing in Southeast Asia have been reviewed, together with their biological activities. Phytoconstituents with antioxidant and antimicrobial activities have been highlighted. Several evidences indicate that mushrooms are good sources for natural antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
- Zaw Min Thu
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Ko Ko Myo
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Hnin Thanda Aung
- Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar;
| | - Marco Clericuzio
- DISIT, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Chabaco Armijos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Giovanni Vidari
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
9
|
Zhou G, Chen X, Zhang X, Che Q, Zhang G, Zhu T, Gu Q, Li D. Prenylated p-Terphenyls from a Mangrove Endophytic Fungus, Aspergillus candidus LDJ-5. JOURNAL OF NATURAL PRODUCTS 2020; 83:8-13. [PMID: 31904949 DOI: 10.1021/acs.jnatprod.9b00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nine previously undescribed prenylated p-terphenyls, prenylterphenyllins F-J (1, 2, 4-6) and prenylcandidusins D-G (3, 7-9), were isolated from an endophytic fungus, Aspergillus candidus LDJ-5. Their structures were determined from NMR and MS data. Differing from previously reported p-terphenyls, compound 3 represents a rare 6,5,6,6-fused ring system. Compounds 4-6 are antimicrobial, and compounds 1, 4, 6, and 9 are cytotoxic.
Collapse
Affiliation(s)
- Guoliang Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Xiaohui Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
- Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| |
Collapse
|
10
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
11
|
|
12
|
Song YJ, Zheng HB, Peng AH, Ma JH, Lu DD, Li X, Zhang HY, Xie WD. Strepantibins A-C: Hexokinase II Inhibitors from a Mud Dauber Wasp Associated Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1114-1119. [PMID: 31013087 DOI: 10.1021/acs.jnatprod.8b00821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two new p-terphenyls, strepantibins A and B (1 and 2), along with the first representative of a naturally occurring bisphenyltropone, strepantibin C (3), were characterized from a Streptomyces sp. associated with the larvae of the mud dauber wasp Sceliphron madraspatanum. Their structures were determined by high-resolution electrospray ionization mass spectrometry, NMR, and X-ray crystallography data interpretation. Strepantibins A-C inhibited hexokinase II (HK2) activity and displayed antiproliferative activity against hepatoma carcinoma cells HepG-2, SMMC-7721 and plc-prf-5. In SMMC-7721 cells treated with strepantibin A, the morphological characteristics of apoptosis were observed.
Collapse
Affiliation(s)
- Ya-Jie Song
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Hong-Bo Zheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science , Shandong University , Jinan 250012 , People's Republic of China
| | - Ai-Hong Peng
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Jia-Hui Ma
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Dan-Dan Lu
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
| | - Xia Li
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002 , People's Republic of China
| | - Hang-Yu Zhang
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Wei-Dong Xie
- Department of Pharmacy, College of Marine Science , Shandong University at Weihai , Weihai 264209 , People's Republic of China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002 , People's Republic of China
| |
Collapse
|
13
|
Synthesis of polyozellin, a prolyl oligopeptidase inhibitor, and its structural revision. Bioorg Med Chem Lett 2018; 28:930-933. [PMID: 29429833 DOI: 10.1016/j.bmcl.2018.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/23/2022]
Abstract
Polyozellin is a p-terphenyl compound which was isolated from Polyozellus multiplex, and exhibits an inhibitory activity against prolyl oligopeptidase (POP). Its structure was assigned as 1 having a p-terphenyl skeleton including a p-substituted dibenzofuran moiety by spectroscopic analyses and chemical means. This paper describes the total syntheses of the proposed structure 1 for polyozellin and its o-isomer 2, revising the structure of polyozellin to the latter. These syntheses involved a double Suzuki-Miyaura coupling using chlorophenylboronic acid as a common key building block, and Cu mediated Ullmann cyclization as key steps. The inhibitory activities of synthetic compounds against POP and cancer cells were also evaluated.
Collapse
|
14
|
Li W, Li XB, Lou HX. Structural and biological diversity of natural p-terphenyls. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:1-13. [PMID: 29027823 DOI: 10.1080/10286020.2017.1381089] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
p-Terphenyls consisting of a C-18 tricyclic or polycyclic C-18 aromatic skeleton, have diverse structures because of the variation of the middle ring and the connections between the rings, and to the main skeleton. p-Terphenyls have recently been found to exhibit various biological activities such as cytotoxic, α-glucosidase inhibitory, antioxidant, and antimicrobial activity. In this review, we briefly summarized the structural varieties, biosyntheses, and bioactivities of natural p-terphenyl derivatives referring to the recent 10 years' publications.
Collapse
Affiliation(s)
- Wei Li
- a Pharmacy Department of Suqian People's Hospital , Drum Tower Hospital Group of Nanjing , Suqian 223800 , China
| | - Xiao-Bin Li
- b Key Laboratory for Biosensor of Shandong Province, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology , Biology Institute of Shandong Academy of Sciences , Jinan 250014 , China
| | - Hong-Xiang Lou
- c Key Lab of Chemical Biology of Ministry of Education, Department of Natural Products Chemistry, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| |
Collapse
|
15
|
Abstract
This review defines symmetric molecules from a synthetic perspective and shows various strategies that take advantage of molecular symmetry to construct them.
Collapse
Affiliation(s)
- Wen-Ju Bai
- Department of Chemistry
- Stanford University
- Stanford
- USA
| | - Xiqing Wang
- College of Bioscience and Biotechnology
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
16
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Li W, Gao W, Zhang M, Li YL, Li L, Li XB, Chang WQ, Zhao ZT, Lou HX. p-Terphenyl Derivatives from the Endolichenic Fungus Floricola striata. JOURNAL OF NATURAL PRODUCTS 2016; 79:2188-94. [PMID: 27557136 DOI: 10.1021/acs.jnatprod.6b00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ten new p-terphenyl derivatives, floricolins A-J (1-10), together with six known compounds (11-16), were isolated from the extract of the endolichenic fungus Floricola striata. Chemical structures of these compounds were elucidated using spectroscopic data (HRESIMS and NMR). Among them, 9 and 10 were enantiomeric mixtures, and their configurations were established by single-crystal X-ray diffraction analysis using Cu Kα radiation. Evaluation of the isolated compounds against Candida albicans revealed that the most active compound, 3 (MIC 8 μg/mL), exerted fungicidal action by destruction of the cell membrane.
Collapse
Affiliation(s)
- Wei Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University , No. 44 West Wenhua Road, Jinan 250012, China
| | - Wei Gao
- College of Life Sciences, Shandong Normal University , No. 88 East Wenhua Road, Jinan 250014, China
| | - Ming Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University , No. 44 West Wenhua Road, Jinan 250012, China
| | - Yue-Lan Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University , No. 44 West Wenhua Road, Jinan 250012, China
| | - Lin Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University , No. 44 West Wenhua Road, Jinan 250012, China
| | - Xiao-Bin Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University , No. 44 West Wenhua Road, Jinan 250012, China
| | - Wen-Qiang Chang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University , No. 44 West Wenhua Road, Jinan 250012, China
| | - Zun-Tian Zhao
- College of Life Sciences, Shandong Normal University , No. 88 East Wenhua Road, Jinan 250014, China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University , No. 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
18
|
Dai F, Gao L, Zhao Y, Wang C, Xie S. Farrerol inhibited angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:686-693. [PMID: 27235707 DOI: 10.1016/j.phymed.2016.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/01/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Farrerol is one of traditional Chinese medicines, isolated from Rhododendron dauricum L. It has been reported that Farrerol exerts multiple biological activities. Angiogenesis is an important drug target for cancer and inflammation therapy, the effect of Farrerol on angiogenesis is unknown. HYPOTHESIS/PURPOSE We aimed to investigate whether Farrerol may have inhibitory effects against angiogenesis. STUDY DESIGN/METHODS Two kinds of endothelial cells, named human umbilical vein endothelia cell and human micro vessel endothelial cells, were used to examine the effect and mechanism of Farrerol on angiogenesis. MTT assay was used to detect cell proliferation, wound healing assay and boyden's chamber assay were used to examine cell migration, Matrigel was used as basement membrane substratum in tube formation assay, Annexin V-FITC/PI dual staining assay and trypan blue staining were used to detect cell apoptosis, mouse aortic rings assay was performed as ex vivo assay, the expression of proteins involved in angiogenesis was tested using western blot, the binding of Farrerol to Stat3 was monitored by docking assay, molecular dynamics simulations and MM-GBSA method. RESULTS Farrerol showed an inhibitory effect on proliferation, migration and tube formation of human umbilical vein endothelia cell and human micro vessel endothelial cells in a concentration-dependent manner. Farrerol induced cell cycle arrest and increased the apoptotic percentage of endothelial cells. Farrerol also suppressed the formation of new micro vessels from mouse aortic rings. Moreover, Farrerol reduced the phosphorylation levels of Erk, Akt, mTOR, Jak2 and Stat3 as well as protein expression of Bcl-2 and Bcl-xl. Docking assay, molecular dynamics simulations and MM-GBSA method showed that Farrerol bound to domain of Stat3, Ser613,Gln635, Glu638 and Thr714 are the main residues in Farrerol binding sites with the binding free energy -7.3 ∼ -9.0kcal/mol. CONCLUSIONS In this study, we demonstrated that Farrerol inhibited angiogenesis through down regulation of Akt/mTOR, Erk and Jak2/Stat3 signal pathway. The inhibitory effect of Farrerol on angiogenesis suggested that this compound may be helpful to the angiogenesis-related diseases treatment, such as cancer and inflammations.
Collapse
Affiliation(s)
- Fujun Dai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Lei Gao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China
| | - Songqiang Xie
- Institute of Chemical Biology, Pharmaceutical College of Henan University, Kaifeng 475004, China.
| |
Collapse
|
19
|
Chon SH, Yang EJ, Lee T, Song KS. β-Secretase (BACE1) inhibitory and neuroprotective effects of p-terphenyls from Polyozellus multiplex. Food Funct 2016; 7:3834-42. [DOI: 10.1039/c6fo00538a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polyozellin, thelephoric acid, and polyozellic acid might be useful in the development of lead compounds for the prevention of neurodegenerative disorders, especially Alzheimer's disease (AD).
Collapse
Affiliation(s)
- So-Hyun Chon
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Taeho Lee
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| |
Collapse
|
20
|
Jung B, Yang EJ, Bae JS. Suppressive effects of polyozellin on TGFBIp-mediated septic responses in human endothelial cells and mice. Nutr Res 2015; 36:380-389. [PMID: 27001283 DOI: 10.1016/j.nutres.2015.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Polyozellus multiplex (Thelephoraceae) is a wild mushroom in Korea and Japan and is usually harvested in early autumn for food. Polyozellin, a major constituent of the edible mushroom P multiplex, has been known to exhibit biological activities such as antioxidative and anti-inflammatory effects. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by human umbilical vein endothelial cells and functions as a mediator of experimental sepsis. We hypothesized that polyozellin could reduce TGFBIp-mediated severe inflammatory responses in human endothelial cells and mice. Here, we investigated the antiseptic effects and underlying mechanisms of polyozellin against TGFBIp-mediated septic responses. Polyozellin effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. In addition, polyozellin suppressed cecal ligation and puncture-induced sepsis lethality and pulmonary injury. In conclusion, polyozellin suppressed TGFBIp-mediated and cecal ligation and puncture-induced septic responses. Therefore, polyozellin could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.
Collapse
Affiliation(s)
- Byeongjin Jung
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
21
|
Ku SK, Yang EJ, Kang H, Jung B, Bae JS. Inhibitory effect of polyozellin on secretory group IIA phospholipase A2. Arch Pharm Res 2015; 39:271-278. [PMID: 26659873 DOI: 10.1007/s12272-015-0694-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The expression of secretory group IIA phospholipase A2 (sPLA2-IIA) is enhanced by development of inflammatory disorders. In this study, sPLA2-IIA expression was induced in the lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells and mice to evaluate the effect of polyozellin. Polyozellin, a major constituent of a Korea edible mushroom Polyozellus multiplex, has been known to exhibit the biological activities such as anti-oxidative and anti-inflammatory effects. Polyozellin remarkably suppressed the LPS-mediated protein expression and activity of sPLA2-IIA via inhibition of phosphorylation of cytosolic phospholipase A2 and extracellular signal-regulated kinase 1/2. These results demonstrated that polyozellin might play an important role in the modulation of sPLA2-IIA expression and activity in response to the inflammatory diseases.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Hanny University, Gyeongsan, 712-715, South Korea
| | - Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Hyejin Kang
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Hanny University, Gyeongsan, 712-715, South Korea
| | - Byeongjin Jung
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Hanny University, Gyeongsan, 712-715, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
22
|
Yang EJ, Song KS. Polyozellin, a key constituent of the edible mushroom Polyozellus multiplex, attenuates glutamate-induced mouse hippocampal neuronal HT22 cell death. Food Funct 2015; 6:3678-86. [PMID: 26399743 DOI: 10.1039/c5fo00636h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Polyozellus multiplex (PM), a Korean edible mushroom, has biological activities such as chemoprevention of stomach cancer, inhibition of lipid peroxidation, and reduction of prolyl endopeptidase activity. However, there are little reports on the protective effects of PM or its constituents against glutamate-induced mouse hippocampal neuronal cell (HT22) death. In this study, polyozellin (PZ), a key constituent of PM, was applied to glutamate-treated HT22 cells to evaluate its neuroprotective mechanisms. PZ (25 μM) dramatically increased the HT22 cell viability when the cell death was induced by 5 mM glutamate for 12 h, which was mediated by inhibition of Ca(2+) influx, intracellular reactive oxygen species (ROS) production, and lipid peroxidation. PZ also regulated expression of Bid, Bcl-2, and apoptosis-inducing factor (AIF), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). These data suggest that PM and its constituent PZ might be useful for prevention and treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Sankyuk-dong, Daegu 702-701, Republic of Korea.
| | | |
Collapse
|
23
|
Lee W, Yang EJ, Park DH, Bae JS. Suppressive effects of polyozellin on endothelial protein C receptor shedding via inhibiting TACE activity and MAP kinases. Fitoterapia 2015; 108:26-32. [PMID: 26586620 DOI: 10.1016/j.fitote.2015.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Beyond its role in the activation of protein C, the endothelial cell protein C receptor (EPCR) plays an important role in the cytoprotective pathway. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). Polyozellin, a major constituent of a Korea edible mushroom Polyozellus multiplex, has been known to exhibit the biological activities such as anti-oxidative and anti-inflammatory effects. However, little is known about the effects of polyozellin on EPCR shedding. We investigated this issue by monitoring the effects of polyozellin on phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1β-induced EPCR shedding in human umbilical vein endothelial cells (HUVECs), and cecal ligation and puncture (CLP)-mediated EPCR shedding in mice and underlying mechanism. Data demonstrate that polyozellin induced potent inhibition of PMA-, TNF-α-, IL-1β- (in HUVECs), and CLP-induced EPCR shedding (in mice) via inhibition of phosphorylation of mitogen-activated protein kinases (MAPKs) such as p38, janus kinase (JNK), and extracellular signal-regulated kinase (ERK) 1/2. Polyozellin also inhibited the expression and activity of PMA-induced TACE in HUVECs suggesting that p38, ERK1/2, and JNK could be the molecular targets of POZ. These results demonstrate the potential of polyozellin as an anti-EPCR shedding reagent against PMA-mediated and CLP-mediated EPCR shedding.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 700-721, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
24
|
A novel nucleoside from the edible mushroom, Tricholoma japonicum. J Nat Med 2015; 69:584-8. [DOI: 10.1007/s11418-015-0917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
|