1
|
Zhao H. Recent advances in enzymatic carbon-carbon bond formation. RSC Adv 2024; 14:25932-25974. [PMID: 39161440 PMCID: PMC11331486 DOI: 10.1039/d4ra03885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Enzymatic carbon-carbon (C-C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C-C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include the aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita-Baylis-Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C-C bond formation, C-C bond formation through C1 resource utilization, radical enzymes for C-C bond formation, and other C-C bond formation reactions.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul MN 55108 USA
| |
Collapse
|
2
|
Miller ET, Tsodikov OV, Garneau-Tsodikova S. Structural insights into the diverse prenylating capabilities of DMATS prenyltransferases. Nat Prod Rep 2024; 41:113-147. [PMID: 37929638 DOI: 10.1039/d3np00036b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Covering: 2009 up to August 2023Prenyltransferases (PTs) are involved in the primary and the secondary metabolism of plants, bacteria, and fungi, and they are key enzymes in the biosynthesis of many clinically relevant natural products (NPs). The continued biochemical and structural characterization of the soluble dimethylallyl tryptophan synthase (DMATS) PTs over the past two decades have revealed the significant promise that these enzymes hold as biocatalysts for the chemoenzymatic synthesis of novel drug leads. This is a comprehensive review of DMATSs describing the structure-function relationships that have shaped the mechanistic underpinnings of these enzymes, as well as the application of this knowledge to the engineering of DMATSs. We summarize the key findings and lessons learned from these studies over the past 14 years (2009-2023). In addition, we identify current gaps in our understanding of these fascinating enzymes.
Collapse
Affiliation(s)
- Evan T Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
3
|
Regiospecific 3’-C-prenylation of Naringenin by Nocardiopsis gilva Prenyltransferase. Enzyme Microb Technol 2022; 163:110154. [DOI: 10.1016/j.enzmictec.2022.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
4
|
Leveson‐Gower RB, Roelfes G. Biocatalytic Friedel-Crafts Reactions. ChemCatChem 2022; 14:e202200636. [PMID: 36606067 PMCID: PMC9804301 DOI: 10.1002/cctc.202200636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Indexed: 01/07/2023]
Abstract
Friedel-Crafts alkylation and acylation reactions are important methodologies in synthetic and industrial chemistry for the construction of aryl-alkyl and aryl-acyl linkages that are ubiquitous in bioactive molecules. Nature also exploits these reactions in many biosynthetic processes. Much work has been done to expand the synthetic application of these enzymes to unnatural substrates through directed evolution. The promise of such biocatalysts is their potential to supersede inefficient and toxic chemical approaches to these reactions, with mild operating conditions - the hallmark of enzymes. Complementary work has created many bio-hybrid Friedel-Crafts catalysts consisting of chemical catalysts anchored into biomolecular scaffolds, which display many of the same desirable characteristics. In this Review, we summarise these efforts, focussing on both mechanistic aspects and synthetic considerations, concluding with an overview of the frontiers of this field and routes towards more efficient and benign Friedel-Crafts reactions for the future of humankind.
Collapse
Affiliation(s)
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
5
|
Heterologous biosynthesis of prenylated resveratrol and evaluation of antioxidant activity. Food Chem 2022; 378:132118. [PMID: 35038627 DOI: 10.1016/j.foodchem.2022.132118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
Abstract
Prenylated stilbenoids are good candidates of nutraceuticals presented in food resources. The levels of natural prenylated stilbenoids are usually low. Biotransformation is a promising synthesis strategy to produce novel bioactive compounds. However, information regarding biosynthesis of prenylated stilbenoids is rare. In this work, prenyltransferase and geranyl diphosphate biosynthesispathway were overexpressed in E. coli. Multiple prenyltransferase genes were tested and Ambp1 was found to be effective on resveratrol geranylation. The products were identified by mass spectrometry and nuclear magnetic resonance spectroscopy as 4-C-geranyl resveratrol (1) and 3-O-geranyl resveratrol (2, novel chemical). By optimization of culture conditions, a yield of 36.9% was achieved for the conversion to geranylated resveratrol from resveratrol. These two compounds demonstrated good antioxidant activities with IC50 values of 28.09 μM for 4-C-geranyl resveratrol and 403.88 μM for 3-O-geranyl resveratrol. The results were helpful for developing novel technique to produce prenylated phenolics.
Collapse
|
6
|
Klamrak A, Nabnueangsap J, Puthongking P, Nualkaew N. Synthesis of Ferulenol by Engineered Escherichia coli: Structural Elucidation by Using the In Silico Tools. Molecules 2021; 26:6264. [PMID: 34684845 PMCID: PMC8537342 DOI: 10.3390/molecules26206264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
4-Hydroxycoumarin (4HC) has been used as a lead compound for the chemical synthesis of various bioactive substances and drugs. Its prenylated derivatives exhibit potent antibacterial, antitubercular, anticoagulant, and anti-cancer activities. In doing this, E. coli BL21(DE3)pLysS strain was engineered as the in vivo prenylation system to produce the farnesyl derivatives of 4HC by coexpressing the genes encoding Aspergillus terreus aromatic prenyltransferase (AtaPT) and truncated 1-deoxy-D-xylose 5-phosphate synthase of Croton stellatopilosus (CstDXS), where 4HC was the fed precursor. Based on the high-resolution LC-ESI(±)-QTOF-MS/MS with the use of in silico tools (e.g., MetFrag, SIRIUS (version 4.8.2), CSI:FingerID, and CANOPUS), the first major prenylated product (named compound-1) was detected and ultimately elucidated as ferulenol, in which information concerning the correct molecular formula, chemical structure, substructures, and classifications were obtained. The prenylated product (named compound-2) was also detected as the minor product, where this structure proposed to be the isomeric structure of ferulenol formed via the tautomerization. Note that both products were secreted into the culture medium of the recombinant E. coli and could be produced without the external supply of prenyl precursors. The results suggested the potential use of this engineered pathway for synthesizing the farnesylated-4HC derivatives, especially ferulenol.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (P.P.)
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Ploenthip Puthongking
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (P.P.)
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (P.P.)
| |
Collapse
|
7
|
Henche S, Nestl BM, Hauer B. Enzymatic Friedel‐Crafts Alkylation Using Squalene‐Hopene Cyclases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sabrina Henche
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | | | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
8
|
Sakaine G, Ture A, Pedroni J, Smits G. Isolation, chemistry, and biology of pyrrolo[1,4]benzodiazepine natural products. Med Res Rev 2021; 42:5-55. [PMID: 33846985 DOI: 10.1002/med.21803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022]
Abstract
The isolation of the antitumor antibiotic anthramycin in the 1960s prompted extensive research into pyrrolo[1,4]benzodiazepines (PBD) as potential therapeutics for the treatment of cancers. Since then, nearly 60 PBD natural products have been isolated and evaluated with regard to their biological activity. Synthetic studies and total syntheses have enabled access to PBD analogues, culminating in the development of highly potent anticancer agents. This review provides a summary of the occurrence and biological activity of PBD natural products and covers the strategies employed for their total syntheses.
Collapse
Affiliation(s)
- Guna Sakaine
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Julia Pedroni
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Gints Smits
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
9
|
Song W, Zhuang Y, Liu T. Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during Shikonin biosynthesis. PHYTOCHEMISTRY 2020; 175:112375. [PMID: 32305685 DOI: 10.1016/j.phytochem.2020.112375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Shikonin is a natural naphthoquinone derivative that specifically occurs in boraginaceous plants, and the major active ingredient of the medicinal plant Lithospermum erythrorhizon. Previously, a cytochrome P450 oxygenase (CYP) CYP76B74 catalyzing 3″-hydroxylation of geranylhydroquinone (GHQ) - a key intermediate of shikonin biosynthesis, was identified from cultured cells of Arnebia euchroma. However, the enzymes catalyzing oxidation of the geranyl side-chain of GHQ from L. erythrorhizon remain unknown. In this study, we performed transcriptome analysis of different tissues (red roots and green leaves/stems) from L. erythrorhizon using RNA sequencing technology. Highly expressed CYP genes found in the roots were then heterologously expressed in Saccharomyces cerevisiae and functionally screened with GHQ as the substrate. As the result, two CYPs of CYP76B subfamily catalyzing the oxidation of GHQ were characterized. CYP76B100 catalyzed the hydroxylation of the geranyl side-chain of GHQ at the C-3″ position to form 3″-hydroxyl geranylhydroquinone (GHQ-3″-OH). The enzyme CYP76B101 carried out oxidation reaction of GHQ at the C-3″ position to produce a 3″-carboxylic acid derivative of GHQ (GHQ-3″-COOH) as well as GHQ-3″-OH. This enzyme-catalyzed oxidation reaction with GHQ as the substrate is reported for the first time. This study implicates CYP76B100 and CYP76B101 as having a potential role in shikonin biosynthesis in L. erythrorhizon.
Collapse
Affiliation(s)
- Wan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
10
|
Vib-PT, an Aromatic Prenyltransferase Involved in the Biosynthesis of Vibralactone from Stereum vibrans. Appl Environ Microbiol 2020; 86:AEM.02687-19. [PMID: 32144102 DOI: 10.1128/aem.02687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/03/2020] [Indexed: 02/01/2023] Open
Abstract
Vibralactone, a hybrid compound derived from phenols and a prenyl group, is a strong pancreatic lipase inhibitor with a rare fused bicyclic β-lactone skeleton. Recently, a researcher reported a vibralactone derivative (compound C1) that caused inhibition of pancreatic lipase with a half-maximal inhibitory concentration of 14 nM determined by structure-based optimization, suggesting a potential candidate as a new antiobesity treatment. In the present study, we sought to identify the main gene encoding prenyltransferase in Stereum vibrans, which is responsible for the prenylation of phenol leading to vibralactone synthesis. Two RNA silencing transformants of the identified gene (vib-PT) were obtained through Agrobacterium tumefaciens-mediated transformation. Compared to wild-type strains, the transformants showed a decrease in vib-PT expression ranging from 11.0 to 56.0% at 5, 10, and 15 days in reverse transcription-quantitative PCR analysis, along with a reduction in primary vibralactone production of 37 to 64% at 15 and 21 days, respectively, as determined using ultra-high-performance liquid chromatography-mass spectrometry analysis. A soluble and enzymatically active fusion Vib-PT protein was obtained by expressing vib-PT in Escherichia coli, and the enzyme's optimal reaction conditions and catalytic efficiency (Km /k cat) were determined. In vitro experiments established that Vib-PT catalyzed the C-prenylation at C-3 of 4-hydroxy-benzaldehyde and the O-prenylation at the 4-hydroxy of 4-hydroxy-benzenemethanol in the presence of dimethylallyl diphosphate. Moreover, Vib-PT shows promiscuity toward aromatic compounds and prenyl donors.IMPORTANCE Vibralactone is a lead compound with a novel skeleton structure that shows strong inhibitory activity against pancreatic lipase. Vibralactone is not encoded by the genome directly but rather is synthesized from phenol, followed by prenylation and other enzyme reactions. Here, we used an RNA silencing approach to identify and characterize a prenyltransferase in a basidiomycete species that is responsible for the synthesis of vibralactone. The identified gene, vib-PT, was expressed in Escherichia coli to obtain a soluble and enzymatically active fusion Vib-PT protein. In vitro characterization of the enzyme demonstrated the catalytic mechanism of prenylation and broad substrate range for different aromatic acceptors and prenyl donors. These characteristics highlight the possibility of Vib-PT to generate prenylated derivatives of aromatics and other compounds as improved bioactive agents or potential prodrugs.
Collapse
|
11
|
Abstract
Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.
Collapse
|
12
|
Żądło-Dobrowolska A, Hammerer L, Pavkov-Keller T, Gruber K, Kroutil W. Rational Engineered C-Acyltransferase Transforms Sterically Demanding Acyl Donors. ACS Catal 2020; 10:1094-1101. [PMID: 32030315 PMCID: PMC6996649 DOI: 10.1021/acscatal.9b04617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/12/2019] [Indexed: 02/08/2023]
Abstract
The biocatalytic Friedel-Crafts acylation has been identified recently for the acetylation of resorcinol using activated acetic acid esters for the synthesis of acetophenone derivatives catalyzed by an acyltransferase. Because the wild-type enzyme is limited to acetic and propionic derivatives as the substrate, variants were designed to extend the substrate scope of this enzyme. By rational protein engineering, the key residue in the active site was identified which can be replaced to allow binding of bulkier acyl moieties. The single-point variant F148V enabled the transformation of previously inaccessible medium chain length alkyl and alkoxyalkyl carboxylic esters as donor substrates with up to 99% conversion and up to >99% isolated yield.
Collapse
Affiliation(s)
- Anna Żądło-Dobrowolska
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Lucas Hammerer
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
- ACIB
GmbH, Petersgasse 14, 8010 Graz, Austria
| | - Tea Pavkov-Keller
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstrasse
50, 8010 Graz, Austria
| | - Karl Gruber
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstrasse
50, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
- ACIB
GmbH, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
13
|
Kamauchi H, Oda T, Horiuchi K, Takao K, Sugita Y. Synthesis of natural product-like polyprenylated phenols and quinones: Evaluation of their neuroprotective activities. Bioorg Med Chem 2019; 28:115156. [PMID: 31740200 DOI: 10.1016/j.bmc.2019.115156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 11/26/2022]
Abstract
Twenty-seven natural product-like polyprenylated phenols and quinones were synthesized and their neuroprotective activity was tested using human monoamine oxidase B (MAO-B) and SH-SY5Y cells. Eight compounds inhibited MAO-B (IC50 values < 25 μM) and the inhibition mode and molecular docking of two (8c and 16c) were investigated. Compounds inhibiting MAO-B activity were additionally tested for their ability to protect SH-SY5Y cells from peroxide injury. Three derivatives (3c, 8c and 16c) exhibited both MAO-B inhibitory and neuroprotective activity. A structure activity-relationship study showed that a phenolic hydroxyl group and a longer side chain are important for both activities.
Collapse
Affiliation(s)
- Hitoshi Kamauchi
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan.
| | - Takumi Oda
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Kanayo Horiuchi
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Koichi Takao
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Yoshiaki Sugita
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
14
|
Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erica E. Schultz
- Department of Chemistry Lake Forest College 555 Sheridan Rd Lake Forest IL 60045 USA
| | - Nathaniel R. Braffman
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Michael U. Luescher
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Harry H. Hager
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
15
|
Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem Int Ed Engl 2019; 58:3151-3155. [DOI: 10.1002/anie.201814016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Erica E. Schultz
- Department of Chemistry Lake Forest College 555 Sheridan Rd Lake Forest IL 60045 USA
| | - Nathaniel R. Braffman
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Michael U. Luescher
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Harry H. Hager
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
16
|
Synthesis and Anti-Inflammatory Activities of Phloroglucinol-Based Derivatives. Molecules 2018; 23:molecules23123232. [PMID: 30544542 PMCID: PMC6321231 DOI: 10.3390/molecules23123232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/17/2022] Open
Abstract
The natural product phloroglucinol-based derivatives representing monoacyl-, diacyl-, dimeric acyl-, alkylated monoacyl-, and the nitrogen-containing alkylated monoacylphloro- glucinols were synthesized and evaluated for inhibitory activities against the inflammatory mediators such as inducible nitric oxide synthase (iNOS) and nuclear factor kappaB (NF-κB). The diacylphloroglucinol compound 2 and the alkylated acylphloroglucinol compound 4 inhibited iNOS with IC50 values of 19.0 and 19.5 µM, respectively, and NF-κB with IC50 values of 34.0 and 37.5 µM, respectively. These compounds may serve as leads for the synthesis of more potent anti-inflammatory compounds for future drug discovery.
Collapse
|
17
|
Bandari C, Scull EM, Masterson JM, Tran RHQ, Foster SB, Nicholas KM, Singh S. Determination of Alkyl-Donor Promiscuity of Tyrosine-O
-Prenyltransferase SirD from Leptosphaeria maculans. Chembiochem 2017; 18:2323-2327. [DOI: 10.1002/cbic.201700469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Chandrasekhar Bandari
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Erin M. Scull
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Johanna M. Masterson
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Rachel H. Q. Tran
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Steven B. Foster
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Kenneth M. Nicholas
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Shanteri Singh
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| |
Collapse
|
18
|
Schmidt NG, Kroutil W. Acyl Donors and Additives for the Biocatalytic Friedel-Crafts Acylation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nina G. Schmidt
- ACIB GmbH; Petersgasse 14 8010 Graz Austria
- Department Institute of Chemistry; Organic and Bioorganic Chemistry Institution; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Department Institute of Chemistry; Organic and Bioorganic Chemistry Institution; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| |
Collapse
|
19
|
A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nat Chem Biol 2017; 13:916-921. [DOI: 10.1038/nchembio.2421] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
|
20
|
Biotechnological production of hyperforin for pharmaceutical formulation. Eur J Pharm Biopharm 2017; 126:10-26. [PMID: 28377273 DOI: 10.1016/j.ejpb.2017.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
Abstract
Hyperforin is a major active constituent of Hypericum perforatum (St. John's wort). It has amazing pharmacological activities, such as antidepressant properties, but it is labile and difficult to synthesize. Its sensitivity and lipophilicity are challenges for processing and formulation. Its chemical complexity provokes approaches of biotechnological production and modification. Dedifferentiated H. perforatum cell cultures lack appropriate storage sites and hence appreciable hyperforin levels. Shoot cultures are capable of forming hyperforin but less suitable for biomass up-scaling in bioreactors. Roots commonly lack hyperforin but a recently established adventitious root line has been demonstrated to produce hyperforin and derivatives at promising levels. The roots also contained lupulones, the typical constituents of hop (Humulus lupulus). Although shear-sensitive, these root cultures provide a potential production platform for both individual compounds and extracts with novel combinations of constituents and pharmacological activities. Besides in vitro cultivation techniques, the reconstruction of hyperforin biosynthesis in microorganisms is a promising alternative for biotechnological production. The biosynthetic pathway is under study, with omics-technologies being increasingly implemented. These biotechnological approaches may not only yield hyperforin at reasonable productivity but also allow for modifications of its chemical structure and pharmacological profile.
Collapse
|
21
|
Yu PW, Cho TY, Liou RF, Tzean SS, Lee TH. Identification of the orsellinic acid synthase PKS63787 for the biosynthesis of antroquinonols in Antrodia cinnamomea. Appl Microbiol Biotechnol 2017; 101:4701-4711. [DOI: 10.1007/s00253-017-8196-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
|
22
|
Zhou K, Wunsch C, Dai J, Li SM. gem-Diprenylation of Acylphloroglucinols by a Fungal Prenyltransferase of the Dimethylallyltryptophan Synthase Superfamily. Org Lett 2016; 19:388-391. [PMID: 28029789 DOI: 10.1021/acs.orglett.6b03594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus terreus aromatic prenyltransferase (AtaPT) catalyzes predominantly C-monoprenylation of acylphloroglucinols in the presence of different prenyl diphosphates. With dimethylallyl diphosphate (DMAPP) as prenyl donor, gem-diprenylated products 1D3, 2D3, and 3D3 were also detected. High conversion of 1D1 to 1D3, 2D1 to 2D3, and 3D1 to 3D3 was demonstrated by incubation with AtaPT and DMAPP. The first example of gem-diprenylation by a member of the dimethylallyltryptophan synthase superfamily is provided.
Collapse
Affiliation(s)
- Kang Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Carsten Wunsch
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Xian Nong Tan Street, Beijing 100050, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Strasse 4, 35037 Marburg, Germany
| |
Collapse
|
23
|
Yu PW, Chang YC, Liou RF, Lee TH, Tzean SS. pks63787, a Polyketide Synthase Gene Responsible for the Biosynthesis of Benzenoids in the Medicinal Mushroom Antrodia cinnamomea. JOURNAL OF NATURAL PRODUCTS 2016; 79:1485-1491. [PMID: 27227778 DOI: 10.1021/acs.jnatprod.5b00798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antrodia cinnamomea, a unique resupinate basidiomycete endemic to Taiwan, has potent medicinal activities. The reddish basidiocarps and mycelia generally exhibit abundant metabolites and higher biological activity. To investigate the pigments of A. cinnamomea, polyketide synthase (PKS) genes were characterized based on its partially deciphered genome and the construction of a fosmid library. Furthermore, a gene disruption platform was established via protoplast transformation and homologous recombination. Of four putative polyketide synthase genes, pks63787 was selected and disrupted in the monokaryotic wild-type (wt) strain f101. Transformant Δpks63787 was deficient in the synthesis of several aromatic metabolites, including five benzenoids and two benzoquinone derivatives. Based on these results, a biosynthetic pathway for benzenoid derivatives was proposed. The pks63787 deletion mutant not only displayed a reduced red phenotype compared to the wt strain but also displayed less 1,1-biphenyl-2-picrylhydrazyl free radical scavenging activity. This finding suggests that PKS63787 is responsible for the biosynthesis of pigments and metabolites related to the antioxidant activity of A. cinnamomea. The present study focuses on the functional characterization of the PKS gene, the fluctuations of its profile of secondary metabolites, and interpretation of the biosynthesis of benzenoids.
Collapse
Affiliation(s)
| | - Ya-Chih Chang
- College of Pharmacy, Taipei Medical University , Taipei, Taiwan 110
| | | | | | | |
Collapse
|
24
|
Gervais A, Lazarski KE, Porco JA. Divergent Total Syntheses of Rhodomyrtosones A and B. J Org Chem 2016; 80:9584-91. [PMID: 26351970 DOI: 10.1021/acs.joc.5b01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report total syntheses of the tetramethyldihydroxanthene natural product rhodomyrtosone B and the related bis-furan β-triketone natural product rhodomyrtosone A. Nickel-(II)-catalyzed 1,4-conjugate addition of an α-alkylidene-β-dicarbonyl substrate was developed to access the congener rhodomyrtosone B, and oxygenation of the same monoalkylidene derivative followed by cyclization was employed to obtain the bis-furan natural product rhodomyrtosone A.
Collapse
Affiliation(s)
- Anais Gervais
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Kiel E Lazarski
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
25
|
Zhou K, Yu X, Xie X, Li SM. Complementary Flavonoid Prenylations by Fungal Indole Prenyltransferases. JOURNAL OF NATURAL PRODUCTS 2015; 78:2229-2235. [PMID: 26294262 DOI: 10.1021/acs.jnatprod.5b00422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Flavonoids are found mainly in plants and exhibit diverse biological and pharmacological activities, which can often be enhanced by prenylations. In plants, such reactions are catalyzed by membrane-bound prenyltransferases. In this study, the prenylation of nine flavonoids from different classes by a soluble fungal prenyltransferase (AnaPT) involved in the biosynthesis of the prenylated indole alkaloid acetylaszonalenin is demonstrated. The behavior of AnaPT toward flavonoids regarding substrate acceptance and prenylation positions clearly differs from that of the indole prenyltransferase 7-DMATS. The two enzymes are therefore complementary in flavonoid prenylations.
Collapse
Affiliation(s)
- Kang Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Marburg 35037, Germany
| | - Xia Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Marburg 35037, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg , Marburg 35032, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Marburg 35037, Germany
| |
Collapse
|
26
|
Fan A, Winkelblech J, Li SM. Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology. Appl Microbiol Biotechnol 2015; 99:7399-415. [PMID: 26227408 DOI: 10.1007/s00253-015-6813-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022]
Abstract
Prenylated compounds are ubiquitously found in nature and demonstrate interesting biological and pharmacological activities. Prenyltransferases catalyze the attachment of prenyl moieties from different prenyl donors to various acceptors and contribute significantly to the structural and biological diversity of natural products. In the last decade, significant progress has been achieved for the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. More than 40 members of these soluble enzymes are identified in microorganisms and characterized biochemically. These enzymes were also successfully used for production of a large number of prenylated derivatives. N1-, C4-, C5-, C6-, and C7-prenylated tryptophan and N1-, C2-, C3-, C4-, and C7-prenylated tryptophan-containing peptides were obtained by using DMATS enzymes as biocatalysts. Tyrosine and xanthone prenyltransferases were used for production of prenylated derivatives of their analogs. More interestingly, the members of the DMATS superfamily demonstrated intriguing substrate and catalytic promiscuity and also used structurally quite different compounds as prenyl acceptors. Prenylated hydroxynaphthalenes, flavonoids, indolocarbazoles, and acylphloroglucinols, which are typical bacterial or plant metabolites, were produced by using several fungal DMATS enzymes. Furthermore, the potential usage of these enzymes was further expanded by using natural or unnatural DMAPP analogs as well as by coexpression with other genes like NRPS and by development of whole cell biocatalyst.
Collapse
Affiliation(s)
- Aili Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, D-35037, Marburg, Germany
| | | | | |
Collapse
|