1
|
Li R, Tang J, Li J, Wu B, Tang J, Kan H, Zhao P, Zhang Y, Wang W, Liu Y. Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis. Foods 2024; 13:2266. [PMID: 39063349 PMCID: PMC11276353 DOI: 10.3390/foods13142266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Camellia fascicularis has important ornamental, medicinal, and food values, which also have tremendous potential for exploiting bioactivities. We performed the bioactivity-guided (antioxidant and antimicrobial) screening of eight fractions obtained from the ethyl acetate phase of C. fascicularis. The antioxidant activity was measured by DPPH, ABTS, and FRAP, and the antibacterial activity was measured by the minimum inhibitory concentration (MIC) of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The results of bioactivity-guided isolation indicated that the major antioxidant compounds in the ethanolic extracts of C. fascicularis may be present in fractions (Fr.) (A-G, obtained after silica gel column chromatography). Fr. (D-I, obtained after silica gel column chromatography) is a fraction of C. fascicularis with antimicrobial activity. The structures of compounds were determined by spectral analysis and nuclear magnetic resonance (NMR) combined with the available literature on secondary metabolites of C. fascicularis leaves. In this study, 17 compounds were identified, including four phenolics (1, 3-4, and 14), a phenylpropane (2), five terpenoids (5-7, 12, and 15), four flavonoids and flavonoid glycosides (8-10 and 16), and two lignins (13 and 17). Compounds 4-7, 13-15, and 17 were isolated from the genus Camellia for first time. The remaining compounds were also isolated from C. fascicularis for first time. The evaluation of antioxidant and antimicrobial activities revealed that compounds 1, 3, 9, 11, and 17 exhibited higher antioxidant activity than the positive control drug (ascorbic acid), and compounds 4, 8, 10, and 13 showed similar activity to ascorbic acid. The other compounds had weaker or no significant antioxidant activities. The MIC of antibacterial activity for compounds 4, 7, and 11-13 against P. aeruginosa was comparable to that of the positive control drug tetracycline at 125 µg/mL, and other secondary metabolites inhibited E. coli and S. aureus at 250-500 µg/mL. This is also the first report of antioxidant and antimicrobial activities of compounds 5-7, 13-15, and 17. The results of the study enriched the variety of secondary metabolites of C. fascicularis and laid the foundation for further research on the pharmacological efficacy and biological activity of this plant.
Collapse
Affiliation(s)
- Ruonan Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Jiandong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Jingjing Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Boxiao Wu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650224, China;
| | - Weihua Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| |
Collapse
|
2
|
Yu XQ, Jiang YZ, Folk RA, Zhao JL, Fu CN, Fang L, Peng H, Yang JB, Yang SX. Species discrimination in Schima (Theaceae): Next-generation super-barcodes meet evolutionary complexity. Mol Ecol Resour 2022; 22:3161-3175. [PMID: 35789203 DOI: 10.1111/1755-0998.13683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Plastid genome and nrDNA arrays, proposed recently as "super barcodes", might provide additional discriminatory power and overcome the limitations of traditional barcoding loci, yet super barcodes need to be tested for their effectiveness in more plant groups. Morphological homoplasy among Schima species makes the genus a model for testing the efficacy of super barcodes. In this study, we generated multiple datasets comprising standard DNA barcodes (matK, rbcL, trnH-psbA, nrITS) and super-barcodes (plastid genome, nrDNA arrays) across 58 individuals from 12 out of 13 species of Schima from China. No samples were correctly assigned to species using standard DNA barcodes and nrDNA arrays, while only 27.27% of species with multiple accessions were distinguished using the plastid genome and its partitioned datasets-the lowest estimated rate of super barcode success in the literature so far. For Schima and other taxa with similarly recently divergence and low levels of genetic variation, incomplete lineage sorting, hybridization, or taxonomic oversplitting are all possible causes of the failure. Taken together, our study suggests that by no means are super barcodes immune to the challenges imposed by evolutionary complexity. We therefore call for developing multi-locus nuclear markers for species discrimination in plant groups.
Collapse
Affiliation(s)
- Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Yin-Zi Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, 39762, MS, United States
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China, China
| | - Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Liang Fang
- College of Life Sciences, Jiujiang University, 332000, Jiujiang, Jiangxi, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| |
Collapse
|
3
|
Zhao SS, Li S, Luo ZH, Zhou ZQ, Li N, Wang Y, Yao XS, Gao H. Bioactive phenylpropanoid derivatives from the fruits of Lycium ruthenicum Murr. Bioorg Chem 2021; 116:105307. [PMID: 34482167 DOI: 10.1016/j.bioorg.2021.105307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Eight new (1-7 and 15) and 18 known (8-14 and 16-26) phenylpropanoid derivatives were isolated from the fruits of Lycium ruthenicum Murr. (black wolfberry). Their structures were determined by comprehensive spectroscopic analyses, chemical methods, and comparisons of spectroscopic data. Four known compounds (16, 17, 24, and 26) were firstly isolated from the genus Lycium. Interestingly, compounds 1/2 and 4/5 were isolated as two pairs of inseparable anomers owing to the tautomerism of the free hemiacetal at C-1'' in solution. The antioxidant, α-glucosidase inhibitory, and acetylcholinesterase (AChE) inhibitory activities of compounds 1-26 were evaluated. Some compounds possessed DPPH radical scavenging activity, and all compounds (1-26) exhibited different levels of oxygen radical absorbance capacity (ORAC). One compound displayed α-glucosidase inhibitory activity with potency close to that of the positive control (acarbose).
Collapse
Affiliation(s)
- Sen-Sen Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Shuang Li
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Ning Li
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Liu BL, Liang QP, Luo D, Wu P, Wang GC, Xu DL, Zhang YB, Zhou GX. Three New Triterpenoids from the Bark and Twigs of Schima crenata. CHEM LETT 2019. [DOI: 10.1246/cl.190200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bai-Lian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Qiu-Ping Liang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ding Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Dong-Lin Xu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
- Shenzhen Songgang Middle School, Shenzhen 518105, P. R. China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Guang-Xiong Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
5
|
Zhang X, Zhang S, Yang Y, Wang D, Gao H. Natural barrigenol-like triterpenoids: A comprehensive review of their contributions to medicinal chemistry. PHYTOCHEMISTRY 2019; 161:41-74. [PMID: 30818173 DOI: 10.1016/j.phytochem.2019.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 05/07/2023]
Abstract
Barrigenol-like triterpenoids (BATs), which contain an unusual oleanane substituted by many hydroxyl groups as the skeleton, are subdivided into five subtypes: barrigenol A1, barrigenol A2, barrigenol R1, barringtogenol C, and 16-deoxybarringtogenol C. The variations in acyl derivatives, hydroxyl groups, and carbohydrate chains in their structures have enhanced the diversity of BATs. Moreover, the stable polyhydroxy-replaced pentacyclic skeleton provides an ideal platform for structural modifications. To date, more than 500 BAT derivatives have been isolated from plants. Synchronously, BATs possess anti-tumour, anti-Alzheimer's disease, anti-inflammatory, anti-microbial, anti-obesity and anti-allergic activities by regulating numerous cellular molecules. Some BAT derivatives, such as escin obtained from Aesculus hippocastanum L. and xanthoceraside isolated from Xanthoceras sorbifolia Bunge, have been used to treat encephaloedema or inflammatory diseases. This review aims to provide comprehensive information about the chemistry, sources, bioavailability, and anti-tumour effects of BATs, with a particular emphasis on the molecular mechanisms of action. The pharmacokinetics and clinical progress are also concerned. More than 300 structures identified over past 25 years are summarized here (249 compounds) and in the supplementary information (114 compounds). Accordingly, the pharmaceutical activity of barrigenol triterpenoids suggests that some compounds should be developed as promising anti-tumour or anti- Alzheimer's disease agents in future.
Collapse
Affiliation(s)
- Xinxin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Song Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yiren Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Da Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
6
|
Ajaghaku DL, Akah PA, Ilodigwe EE, Nduka SO, Osonwa UE, Okoye FBC. Upregulation of CD4+ T-Lymphocytes by Isomeric Mixture of Quercetin-3-O-Rutinoside and Quercetin-3-O-Robinobioside Isolated from Millettia aboensis. Immunol Invest 2018; 47:372-388. [DOI: 10.1080/08820139.2018.1433201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Lotanna Ajaghaku
- Department of Pharmacology/Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Pharmacology, Enugu State University of Science and Technology, Ebeano, Enugu State, Nigeria
| | - Peter Achunike Akah
- Department of Pharmacology/Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Pharmacology/Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Emmanuel Emeka Ilodigwe
- Department of Pharmacology/Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sunday Odunke Nduka
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Uduma Eke Osonwa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | | |
Collapse
|
7
|
Bäcker C, Drwal MN, Preissner R, Lindequist U. Inhibition of DNA-Topoisomerase I by Acylated Triterpene Saponins from Pittosporum angustifolium Lodd. NATURAL PRODUCTS AND BIOPROSPECTING 2016; 6:141-7. [PMID: 26803837 PMCID: PMC4805651 DOI: 10.1007/s13659-016-0087-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/13/2016] [Indexed: 05/23/2023]
Abstract
Previous phytochemical investigation of the leaves and seeds of Pittosporum angustifolium Lodd. led to the isolation and structural elucidation of polyphenols and triterpene saponins. Evaluation for cytotoxicity of isolated saponins revealed that the predominant structural feature for a cytotoxic activity are acyl substituents at the oleanane aglycon backbone. The present work reports the results of a screening of 10 selected acylated saponins for their potential to inhibit the human DNA-topoisomerase I, giving rise to IC50 values in a range of 2.8-46.5 µM. To clarify the mode of observed cytotoxic action and, moreover, to distinguish from a pure surfactant effect which is commonly accompanied with saponins, these results indicate an involvement of the topoisomerase I and its role as a possible target structure for a cytotoxic activity. In addition, computational predictions of the fitting of saponins to the topoisomerase I-DNA complex, indicate a similar binding mode to that of clinically used topoisomerase I inhibitors. Ten acylated triterpene saponins from Pittosporum angustifolium were investigated for their potential to inhibit the human DNA-topoisomerase I and computational predictions of the fitting of saponins to the topoisomerase I-DNA complex were carried out.
Collapse
Affiliation(s)
- Christian Bäcker
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany.
| | - Malgorzata N Drwal
- Structural Bioinformatics Group, Institute for Physiology, Charité - University Medicine Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité - University Medicine Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| |
Collapse
|
8
|
Feng ZL, Wu SP, Li WH, Guo TT, Liu QC. Concise Synthesis and Antidiabetic Effect of Three Natural Triterpenoid Saponins Isolated fromFadogia ancylantha(Makoni tea). Helv Chim Acta 2015. [DOI: 10.1002/hlca.201500061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Wu C, Zhang RL, Li HY, Hu C, Liu BL, Li YL, Zhou GX. Triterpenoid saponins from the root bark of Schima superba and their cytotoxic activity on B16 melanoma cell line. Carbohydr Res 2015; 413:107-14. [DOI: 10.1016/j.carres.2015.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
|
10
|
Liu QC, Guo TT, Zhao C, Sun J, Li WH. Synthesis of a Trisaccharide Related to the Cytotoxic Triterpenoid Saponins Isolated from the Bark ofAlbizia procera. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Synthesis and anti-cancer activity of a glycosyl library of N-acetylglucosamine-bearing oleanolic acid. Mol Divers 2013; 18:13-23. [PMID: 24222528 DOI: 10.1007/s11030-013-9480-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/01/2013] [Indexed: 01/19/2023]
Abstract
N-Acetylglucosamine-bearing triterpenoid saponins (GNTS) were reported to be a unique type of saponins with potent anti-tumor activity. In order to study the structure-activity relationship of GNTS, 24 oleanolic acid saponins with (1 --> 3)-linked, (1 --> 4)-linked, (1 --> 6)-linked N-acetylglucosamine oligosaccharide residues were synthesized in a combinatorial and concise method. The cytotoxicity of these compounds toward the leukemia cell line HL-60 and the colorectal cancer cell line HT-29 could not be improved. Half maximal inhibition below 10 μM was achieved in one single case. The study revealed that the activity decreased following the order of 3' > 4' > 6' glycosyl modifications. GNTS that incorporated (D/L)-xylose and L-arabinose at positions 3' and 4' were more potent than those bearing other sugars.
Collapse
|
12
|
Xu W, Wang H, Zhou GX, Yao XS. Two new 8-O-4'-type lignans from the stem of Schima superba and their cell growth inhibitory activities against human cancer cell lines. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:874-878. [PMID: 20924901 DOI: 10.1080/10286020.2010.508036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two new lignans (1 and 2) were isolated from the EtOH extracts of the stem of Schima superba, and elucidated as (7R,8S)-1-(3,4-dimethoxyphenyl)-2-O-(2-methoxy-4-omegahydroxypropylphenyl)propane-1,3-diol (1) and threo-1-(4-hydroxy-3-methoxyphenyl)-1-methoxy-2-{4-[1-formyl-(E)-vinyl]-2-methoxyphenoxy}-3-propanol (2) by spectral analysis. Compounds 1 and 2 showed cell growth inhibitory activity against HeLa, CNE, HepG-2, and HEp-2 cell lines. Compound 1 exhibited significant cytotoxicities with IC₅₀ values of less than 4 μg/ml against all the tested cell lines.
Collapse
Affiliation(s)
- Wen Xu
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
13
|
Verma P, Raj R, Roy B, Mukhopadhyay B. Synthesis of a tetrasaccharide related to the triterpenoid saponin isolated from Schima noronhae. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
This review covers the isolation and structure determination of triterpenoids including squalene derivatives, protostanes, lanostanes, holostanes, cycloartanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, lupanes, oleananes, friedelanes, ursanes, hopanes, isomalabaricanes and saponins; 574 references are cited.
Collapse
|
15
|
Liu Q, Zhang L, Li X, Guo T, Wang P, Li Y. Efficient Synthesis of Flaccidoside II, a Bioactive Component of Chinese Folk Medicine Di Wu. J Carbohydr Chem 2009. [DOI: 10.1080/07328300903260192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qingchao Liu
- a School of Medicine and Pharmacy , Ocean University of China , Qingdao, 266003, China
| | - Lei Zhang
- a School of Medicine and Pharmacy , Ocean University of China , Qingdao, 266003, China
| | - Xiangpeng Li
- a School of Medicine and Pharmacy , Ocean University of China , Qingdao, 266003, China
| | - Tiantian Guo
- a School of Medicine and Pharmacy , Ocean University of China , Qingdao, 266003, China
| | - Peng Wang
- a School of Medicine and Pharmacy , Ocean University of China , Qingdao, 266003, China
| | - Yingxia Li
- b School of Pharmacy , Fudan University , Shanghai, 201203, China
| |
Collapse
|
16
|
Fuligoic acid, a new yellow pigment with a chlorinated polyene–pyrone acid structure isolated from the myxomycete Fuligo septica f. flava. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.01.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Liu Q, Wang P, Zhang L, Guo T, Lv G, Li Y. Concise synthesis of two natural triterpenoid saponins, oleanolic acid derivatives isolated from the roots of Pulsatilla chinensis. Carbohydr Res 2009; 344:1276-81. [PMID: 19524216 DOI: 10.1016/j.carres.2009.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 11/29/2022]
Abstract
The first synthesis of two natural triterpenoid saponins, which were isolated from the roots of Pulsatilla chinensis and exhibited excellent in vitro cytotoxic activity against HL-60 cells, was concisely achieved in a convergent approach. We employed an odourless 2-methyl-5-tert-butylphenyl (Mbp) thioglycoside and trichloroacetimidate donors in one-pot reaction as a key step.
Collapse
Affiliation(s)
- Qingchao Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
18
|
Nie W, Luo J, Wang X, Wan X, Kong L. An insight into enrichment and separation of oleanane-type triterpenoid saponins by various chromatographic materials. Sep Purif Technol 2009. [DOI: 10.1016/j.seppur.2008.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Aida W, Ohtsuki T, Li X, Ishibashi M. Isolation of new carbamate- or pyridine-containing natural products, fuzanins A, B, C, and D from Kitasatospora sp. IFM10917. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|