1
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
2
|
Walesch S, Garcia R, Mahmoud AB, Panter F, Bollenbach S, Mäser P, Kaiser M, Krug D, Müller R. New myxobacteria of the Myxococcaceae clade produce angiolams with antiparasitic activities. Microbiol Spectr 2024; 12:e0368923. [PMID: 38298128 PMCID: PMC10913735 DOI: 10.1128/spectrum.03689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
In the past century, microbial natural products have proven themselves to be substantial and fruitful sources of anti-infectives. In addition to the well-studied Actinobacteria, understudied bacterial taxa like the Gram-negative myxobacteria have increasingly gained attention in the ongoing search for novel and biologically active natural products. In the course of a regional sampling campaign to source novel myxobacteria, we recently uncovered new myxobacterial strains MCy12716 and MCy12733 belonging to the Myxococcaceae clade. Early bioactivity screens of the bacterial extracts revealed the presence of bioactive natural products that were identified as angiolam A and several novel derivatives. Sequencing of the corresponding producer strains allowed the identification of the angiolam biosynthetic gene cluster, which was verified by targeted gene inactivation. Based on bioinformatic analysis of the biosynthetic gene cluster, a concise biosynthesis model was devised to explain angiolam biosynthesis. Importantly, novel angiolam derivatives uncovered in this study named angiolams B, C, and D were found to display promising antiparasitic activities against the malaria pathogen Plasmodium falciparum in the 0.3-0.8 µM range.IMPORTANCEThe COVID-19 pandemic and continuously emerging antimicrobial resistance (AMR) have recently raised awareness about limited treatment options against infectious diseases. However, the shortage of treatment options against protozoal parasitic infections, like malaria, is much more severe, especially for the treatment of so-called neglected tropical diseases. The detection of anti-parasitic bioactivities of angiolams produced by MCy12716 and MCy12733 displays the hidden potential of scarcely studied natural products to have promising biological activities in understudied indications. Furthermore, the improved biological activities of novel angiolam derivatives against Plasmodium falciparum and the evaluation of its biosynthesis display the opportunities of the angiolam scaffold on route to treat protozoal parasitic infections as well as possible ways to increase the production of derivatives with improved bioactivities.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Ronald Garcia
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Abdelhalim B. Mahmoud
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Fabian Panter
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany
| | - Sophie Bollenbach
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Daniel Krug
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany
| |
Collapse
|
3
|
Tsoy O, Mushegian A. Florigen and its homologs of FT/CETS/PEBP/RKIP/YbhB family may be the enzymes of small molecule metabolism: review of the evidence. BMC PLANT BIOLOGY 2022; 22:56. [PMID: 35086479 PMCID: PMC8793217 DOI: 10.1186/s12870-022-03432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Flowering signals are sensed in plant leaves and transmitted to the shoot apical meristems, where the formation of flowers is initiated. Searches for a diffusible hormone-like signaling entity ("florigen") went on for many decades, until a product of plant gene FT was identified as the key component of florigen in the 1990s, based on the analysis of mutants, genetic complementation evidence, and protein and RNA localization studies. Sequence homologs of FT protein are found throughout prokaryotes and eukaryotes; some eukaryotic family members appear to bind phospholipids or interact with the components of the signal transduction cascades. Most FT homologs are known to share a constellation of five charged residues, three of which, i.e., two histidines and an aspartic acid, are located at the rim of a well-defined cavity on the protein surface. RESULTS We studied molecular features of the FT homologs in prokaryotes and analyzed their genome context, to find tentative evidence connecting the bacterial FT homologs with small molecule metabolism, often involving substrates that contain sugar or ribonucleoside moieties. We argue that the unifying feature of this protein family, i.e., a set of charged residues conserved at the sequence and structural levels, is more likely to be an enzymatic active center than a catalytically inert ligand-binding site. CONCLUSIONS We propose that most of FT-related proteins are enzymes operating on small diffusible molecules. Those metabolites may constitute an overlooked essential ingredient of the florigen signal.
Collapse
Affiliation(s)
- Olga Tsoy
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 3, Maximus-von-Imhof-Forum, 85354, Freising, Germany
- Current address: Chair of Computational Systems Biology, University of Hamburg, Notkestrasse, 9, 22607, Hamburg, Germany
| | - Arcady Mushegian
- Molecular and Cellular Biology Division, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia, 22314, USA.
- Clare Hall College, University of Cambridge, Cambridge, CB3 9AL, UK.
| |
Collapse
|
4
|
Mnguni FC, Padayachee T, Chen W, Gront D, Yu JH, Nelson DR, Syed K. More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium. Int J Mol Sci 2020; 21:ijms21134814. [PMID: 32646068 PMCID: PMC7369989 DOI: 10.3390/ijms21134814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Unraveling the role of cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins present in living and non-living entities, in secondary metabolite synthesis is gaining momentum. In this direction, in this study, we analyzed the genomes of 203 Streptomyces species for P450s and unraveled their association with secondary metabolism. Our analyses revealed the presence of 5460 P450s, grouped into 253 families and 698 subfamilies. The CYP107 family was found to be conserved and highly populated in Streptomyces and Bacillus species, indicating its key role in the synthesis of secondary metabolites. Streptomyces species had a higher number of P450s than Bacillus and cyanobacterial species. The average number of secondary metabolite biosynthetic gene clusters (BGCs) and the number of P450s located in BGCs were higher in Streptomyces species than in Bacillus, mycobacterial, and cyanobacterial species, corroborating the superior capacity of Streptomyces species for generating diverse secondary metabolites. Functional analysis via data mining confirmed that many Streptomyces P450s are involved in the biosynthesis of secondary metabolites. This study was the first of its kind to conduct a comparative analysis of P450s in such a large number (203) of Streptomyces species, revealing the P450s’ association with secondary metabolite synthesis in Streptomyces species. Future studies should include the selection of Streptomyces species with a higher number of P450s and BGCs and explore the biotechnological value of secondary metabolites they produce.
Collapse
Affiliation(s)
- Fanele Cabangile Mnguni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
5
|
Blake-Hedges JM, Pereira JH, Cruz-Morales P, Thompson MG, Barajas JF, Chen J, Krishna RN, Chan LJG, Nimlos D, Alonso-Martinez C, Baidoo EEK, Chen Y, Gin JW, Katz L, Petzold CJ, Adams PD, Keasling JD. Structural Mechanism of Regioselectivity in an Unusual Bacterial Acyl-CoA Dehydrogenase. J Am Chem Soc 2020; 142:835-846. [PMID: 31793780 DOI: 10.1021/jacs.9b09187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Terminal alkenes are easily derivatized, making them desirable functional group targets for polyketide synthase (PKS) engineering. However, they are rarely encountered in natural PKS systems. One mechanism for terminal alkene formation in PKSs is through the activity of an acyl-CoA dehydrogenase (ACAD). Herein, we use biochemical and structural analysis to understand the mechanism of terminal alkene formation catalyzed by an γ,δ-ACAD from the biosynthesis of the polyketide natural product FK506, TcsD. While TcsD is homologous to canonical α,β-ACADs, it acts regioselectively at the γ,δ-position and only on α,β-unsaturated substrates. Furthermore, this regioselectivity is controlled by a combination of bulky residues in the active site and a lateral shift in the positioning of the FAD cofactor within the enzyme. Substrate modeling suggests that TcsD utilizes a novel set of hydrogen bond donors for substrate activation and positioning, preventing dehydrogenation at the α,β position of substrates. From the structural and biochemical characterization of TcsD, key residues that contribute to regioselectivity and are unique to the protein family were determined and used to identify other putative γ,δ-ACADs that belong to diverse natural product biosynthetic gene clusters. These predictions are supported by the demonstration that a phylogenetically distant homologue of TcsD also regioselectively oxidizes α,β-unsaturated substrates. This work exemplifies a powerful approach to understand unique enzymatic reactions and will facilitate future enzyme discovery, inform enzyme engineering, and aid natural product characterization efforts.
Collapse
Affiliation(s)
- Jacquelyn M Blake-Hedges
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jose Henrique Pereira
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Pablo Cruz-Morales
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Mitchell G Thompson
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Plant and Microbial Biology , University of California-Berkeley , Berkeley , California 94720 , United States
| | - Jesus F Barajas
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Plant and Microbial Biology , University of California-Berkeley , Berkeley , California 94720 , United States
| | - Jeffrey Chen
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Rohith N Krishna
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Leanne Jade G Chan
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Danika Nimlos
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Catalina Alonso-Martinez
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Edward E K Baidoo
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yan Chen
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Energy Agile BioFoundry , Emeryville , California 94608 , United States
| | - Jennifer W Gin
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Energy Agile BioFoundry , Emeryville , California 94608 , United States
| | - Leonard Katz
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,QB3 Institute , University of California-Berkeley , Emeryville , California 94608 , United States
| | - Christopher J Petzold
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Energy Agile BioFoundry , Emeryville , California 94608 , United States
| | - Paul D Adams
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jay D Keasling
- Joint BioEnergy Institute , Emeryville , California 94608 , United States.,Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,QB3 Institute , University of California-Berkeley , Emeryville , California 94608 , United States.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering , University of California-Berkeley , Berkeley , California 94720 , United States.,Novo Nordisk Foundation Center for Biosustainability , Technical University Denmark , DK2970 Horsholm , Denmark.,Center for Synthetic Biochemistry , Shenzhen Institutes for Advanced Technologies , Shenzhen 518055 , P. R. China
| |
Collapse
|
6
|
Annaval T, Han L, Rudolf JD, Xie G, Yang D, Chang CY, Ma M, Crnovcic I, Miller MD, Soman J, Xu W, Phillips GN, Shen B. Biochemical and Structural Characterization of TtnD, a Prenylated FMN-Dependent Decarboxylase from the Tautomycetin Biosynthetic Pathway. ACS Chem Biol 2018; 13:2728-2738. [PMID: 30152678 DOI: 10.1021/acschembio.8b00673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tautomycetin (TTN) is a polyketide natural product featuring a terminal alkene. Functional characterization of the genes within the ttn gene cluster from Streptomyces griseochromogenes established the biosynthesis of the TTN polyketide backbone, its dialkylmaleic anhydride moiety, the coupling of the two moieties to form the nascent intermediate TTN F-1, and the tailoring steps converting TTN F-1 to TTN. Here, we report biochemical and structural characterization of TtnD, a prenylated FMN (prFMN)-dependent decarboxylase belonging to the UbiD family that catalyzes the penultimate step of TTN biosynthesis. TtnD catalyzes decarboxylation of TTN D-1 to TTN I-1, utilizing prFMN as a cofactor generated by the TtnC flavin prenyltransferase; both TtnD and TtnC are encoded within the ttn biosynthetic gene cluster. TtnD exhibits substrate promiscuity but accepts only TTN D-1 congeners that feature an α,β-unsaturated acid, supporting the [3+2] cycloaddition mechanism during catalysis that requires the double bond of an α,β-unsaturated acid substrate. TtnD shares a similar overall structure with other members of the UbiD family but forms a homotetramer in solution. Each protomer is composed of three domains with the active site located between the middle and C-terminal domains; R169-E272-E277, constituting the catalytic triad, and E228, involved in Mn(II)-mediated binding of prFMN, were confirmed by site-directed mutagenesis. TtnD represents the first example of a prFMN-dependent decarboxylase involved in polyketide biosynthesis, expanding the substrate scope of the UbiD family of decarboxylases beyond simple aromatic and cinnamic acids. TtnD and its homologues are widespread in nature and could be exploited as biocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Thibault Annaval
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | - Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Guangbo Xie
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Ivana Crnovcic
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | | | | | | | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
7
|
Zhang B, Wang KB, Wang W, Bi SF, Mei YN, Deng XZ, Jiao RH, Tan RX, Ge HM. Discovery, Biosynthesis, and Heterologous Production of Streptoseomycin, an Anti-Microaerophilic Bacteria Macrodilactone. Org Lett 2018; 20:2967-2971. [DOI: 10.1021/acs.orglett.8b01006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kai Biao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu Feng Bi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ya Ning Mei
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhao Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Competition and co-regulation of spirotoamide and tautomycetin biosynthesis in Streptomyces griseochromogenes, and isolation and structural elucidation of spirotoamide C and D. J Antibiot (Tokyo) 2017; 70:710-714. [PMID: 28196980 DOI: 10.1038/ja.2017.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
|
9
|
Choi SS, Nah HJ, Pyeon HR, Kim ES. Biosynthesis, regulation, and engineering of a linear polyketide tautomycetin: a novel immunosuppressant in Streptomyces sp. CK4412. J Ind Microbiol Biotechnol 2016; 44:555-561. [PMID: 27734184 DOI: 10.1007/s10295-016-1847-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/28/2016] [Indexed: 01/25/2023]
Abstract
Tautomycetin (TMC) is a natural product with a linear structure that includes an ester bond connecting a dialkylmaleic moiety to a type I polyketide chain. Although TMC was originally identified as an antifungal antibiotic in the late 1980s, follow-up studies revealed its novel immunosuppressant activity. Specifically, TMC exhibited a mechanistically unique immunosuppressant activity about 100 times higher than that of cyclosporine A, a widely used immunosuppressant drug. Interestingly, a structurally close relative, tautomycin (TTM), was reported to not possess TMC-like immunosuppressant activity, suggesting that a distinctive polyketide moiety of TMC plays a critical role in immunosuppressant activity. Cloning and engineering of a TMC polyketide biosynthetic gene cluster generated several derivatives showing different biological activities. TMC was also found to be biosynthesized as a linear structure without forming a lactone ring, unlike the most polyketide-based compounds, implying the presence of a unique polyketide thioesterase in the cluster. Although TMC biosynthesis was limited due to its tight regulation by two pathway-specific regulatory genes located in the cluster, its production was significantly stimulated through homologous and heterologous expression of its entire biosynthetic gene cluster using a Streptomyces artificial chromosome vector system. In this mini-review, we summarize recent advances in the biosynthesis, regulation, and pathway engineering of a linear polyketide, TMC, in Streptomyces sp. CK4412.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Hee-Ju Nah
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Hye-Rim Pyeon
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea.
| |
Collapse
|
10
|
Chiu HT, Weng CP, Lin YC, Chen KH. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes. Org Biomol Chem 2016; 14:1988-2006. [DOI: 10.1039/c5ob02292d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From Nocardia was cloned and functionally characterized a giant gene cluster for biosyntheses of brasilinolides as potent immunosuppressive and anticancer agents.
Collapse
Affiliation(s)
- Hsien-Tai Chiu
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Chien-Pao Weng
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Yu-Chin Lin
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
- Department of Biological Science and Technology
| | - Kuan-Hung Chen
- Department of Biological Science and Technology
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|
11
|
Kong R, Liu X, Su C, Ma C, Qiu R, Tang L. Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus. ACTA ACUST UNITED AC 2013; 20:45-54. [DOI: 10.1016/j.chembiol.2012.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/05/2012] [Accepted: 10/25/2012] [Indexed: 11/26/2022]
|
12
|
Wang F, Kong R, Liu B, Zhao J, Qiu R, Tang L. Functional characterization of the genes tauO, tauK, and tauI in the biosynthesis of tautomycetin. J Microbiol 2012; 50:770-6. [PMID: 23124744 DOI: 10.1007/s12275-012-2154-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/14/2012] [Indexed: 12/01/2022]
Abstract
Tautomycetin is a specific protein phosphatase I inhibitor. In an effort to elucidate the biosynthetic mechanism of tautomycetin, we inactivated genes of the tautomycetin biosynthetic gene cluster, tauI, tauO, and tauK, which encode for putative P450 oxidase, citryl-CoA lyase, and esterase enzymes, respectively. The mutant STQ0606 (ΔtauO) did not produce any detectable amount of tautomycetin intermediates but could convert dialkylmaleic anhydride to tautomycetin, strongly indicating that TauO was involved in dialkylmaleic anhydride biosynthesis. STQ1211 (ΔtauK) accumulated dialkylmaleic anhydride, whereas the cofermentation of STQ1211 (ΔtauK) and STQ0606 (ΔtauO) restored the production of tautomycetin. Together, these results suggest that TauK was responsible for the conjugation of dialkylmaleic anhydride and the polyketide moiety in tautomycetin biosynthesis. The disruption of tauI resulted in the accumulation of 5-des-keto-tautomycetin, revealing that TauI was responsible for the oxidation at C5 as the last step. Although the shunt pathways were involved in the biosynthesis of tautomycetin, the main post-polyketide synthase tailoring steps were dehydration, decarboxylation and oxidation, taking place consecutively. This study allowed us to predict the biosynthesis of tautomycetin more accurately and provided novel insights into the mechanism of the biosynthesis of tautomycetin.
Collapse
Affiliation(s)
- Fen Wang
- Research Center for Molecular Medicine, Dalian University of Technology, Dalian 116024, P. R. China
| | | | | | | | | | | |
Collapse
|
13
|
Liu Q, Yao F, Chooi YH, Kang Q, Xu W, Li Y, Shao Y, Shi Y, Deng Z, Tang Y, You D. Elucidation of Piericidin A1 biosynthetic locus revealed a thioesterase-dependent mechanism of α-pyridone ring formation. ACTA ACUST UNITED AC 2012; 19:243-53. [PMID: 22365607 DOI: 10.1016/j.chembiol.2011.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/25/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022]
Abstract
Piericidins are a class of α-pyridone antibiotics that inhibit mitochondrial respiratory chain and exhibit antimicrobial, antifungal, and antitumor activities. Sequential analysis of Streptomyces piomogeues var. Hangzhouwanensis genome revealed six modular polyketide synthases, an amidotransferase, two methyltransferases, and a monooxygenase for piericidin A1 production. Gene functional analysis and deletion results provide overview of the biosynthesis pathway. Furthermore, in vitro characterization of the terminal polyketide synthase module with the thioesterase domain using β-ketoacyl substrates was performed. That revealed a pathway where the α-pyridone ring formation is dependent on hydrolysis of the product β, δ-diketo carboxylic acid by the C-terminal thioesterase followed by amidation and cyclization. These findings set the stage to investigate unusual enzymatic mechanisms in α-pyridone antibiotics biosynthesis, provide a foundation for genome mining of α-pyridone antibiotics, and produce analogs by molecular engineering.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim D, Nah JH, Choi SS, Shin HS, Sherman DH, Kim ES. Biological activities of an engineered tautomycetin analogue via disruption of tmcR-encoding hydroxylase in Streptomyces sp. CK4412. J Ind Microbiol Biotechnol 2012; 39:1563-8. [PMID: 22733296 DOI: 10.1007/s10295-012-1157-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 05/31/2012] [Indexed: 11/25/2022]
Abstract
Tautomycetin (TMC), originally isolated from Streptomyces griseochromogenes, has been reported to possess biological functions including T cell-specific immunosuppressive and anticancer activities through a mechanism of differential inhibition of protein phosphatases such as PP1, PP2A, and SHP2. Independently isolated Streptomyces sp. CK4412 was also reported to produce a structurally identical TMC compound. Previously, we isolated and characterized the entire TMC biosynthetic gene cluster from Streptomyces sp. CK4412. In silico database comparison revealed a 1,359-bp tmcR as a putative bacterial Cytochrome P450 hydroxylase gene in the TMC biosynthetic gene cluster. Through targeted gene disruption and complementation, the tmcR mutant was confirmed to produce a C5-deoxy-TMC, the same analogue produced by the S. griseochromogenes ttnI mutant, implying that TmcR behaves as a regiospecific C5-oxygenase in the TMC biosynthetic pathway in Streptomyces sp. CK4412. In particular, the C5-deoxy-TMC from the tmcR mutant exhibited 3.2-fold higher inhibition activity toward SHP2 with significantly reduced inhibition activities toward PP1, and human Vero and lung cancer cells. These results suggested that C5 regiospecific modification of the TMC polyketide moiety may result in a drug development target for use in preferentially enhancing immunosuppressive activity while minimizing its undesirable biological activities.
Collapse
Affiliation(s)
- Dongju Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Yang D, Li W, Huang SX, Shen B. Functional characterization of ttnI completing the tailoring steps for tautomycetin biosynthesis in Streptomyces griseochromogenes. Org Lett 2012; 14:1302-5. [PMID: 22339318 PMCID: PMC3307584 DOI: 10.1021/ol300187p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tautomycetin (TTN) biosynthetic gene cluster has been recently cloned and sequenced from Streptomyces griseochromogenes, unveiling four genes, ttnCDFI, as candidates to encode the tailoring steps for TTN biosynthesis. It is reported that (i) TtnC plays no essential role in TTN biosynthesis, (ii) TtnI catalyzes C-5 oxidation, and (iii) combining the previous findings with TtnFD, the tailoring steps from TTN F-1 to TTN take place in the order of TtnF-catalyzed C-1"/C-2" dehydration, TtnD-catalyzed C-3" decarboxylation, and TtnI-catalyzed C-5 oxidation.
Collapse
Affiliation(s)
| | - Wenli Li
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705-2222, United States
| | | | - Ben Shen
- Department of Chemistry
- Department of Molecular Therapeutics
- Natural Product Library Initiative at TSRI, The Scripps Research Institute, Jupiter, Florida, 33458, United States
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
16
|
Wilson MC, Moore BS. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat Prod Rep 2011; 29:72-86. [PMID: 22124767 DOI: 10.1039/c1np00082a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the emerging biosynthetic role of crotonyl-CoA carboxylase/reductase (CCR) homologs in extending the structural and functional diversity of polyketide natural products. CCRs catalyze the reductive carboxylation of α,β-unsaturated acyl-CoA substrates to produce a variety of substituted malonyl-CoA derivatives employed as polyketide synthase extender units. Here we discuss the history of CCRs in both primary and secondary metabolism, the mechanism by which they function, examples of new polyketide diversity from pathway specific CCRs, and the role of CCRs in facilitating the bioengineering novel polyketides.
Collapse
Affiliation(s)
- Micheal C Wilson
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
17
|
SHP2 is a target of the immunosuppressant tautomycetin. ACTA ACUST UNITED AC 2011; 18:101-10. [PMID: 21276943 DOI: 10.1016/j.chembiol.2010.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/23/2010] [Accepted: 10/29/2010] [Indexed: 02/02/2023]
Abstract
SHP2 phosphatase is a positive transducer of growth factor and cytokine signaling. SHP2 is also a bona fide oncogene; gain-of-function SHP2 mutations leading to increased phosphatase activity cause Noonan syndrome, as well as multiple forms of leukemia and solid tumors. We report that tautomycetin (TTN), an immunosuppressor in organ transplantation, and its engineered analog TTN D-1 are potent SHP2 inhibitors. TTN and TTN D-1 block T cell receptor-mediated tyrosine phosphorylation and ERK activation and gain-of-function mutant SHP2-induced hematopoietic progenitor hyperproliferation and monocytic differentiation. Crystal structure of the SHP2⋅TTN D-1 complex reveals that TTN D-1 occupies the SHP2 active site in a manner similar to that of a peptide substrate. Collectively, the data support the notion that SHP2 is a cellular target for TTN and provide a potential mechanism for the immunosuppressive activity of TTN. Moreover, the structure furnishes molecular insights upon which therapeutics targeting SHP2 can be developed on the basis of the TTN scaffold.
Collapse
|
18
|
Scaglione JB, Akey DL, Sullivan R, Kittendorf JD, Rath CM, Kim ES, Smith JL, Sherman DH. Biochemical and structural characterization of the tautomycetin thioesterase: analysis of a stereoselective polyketide hydrolase. Angew Chem Int Ed Engl 2011; 49:5726-30. [PMID: 20623733 DOI: 10.1002/anie.201000032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jamie B Scaglione
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Luo Y, Li W, Ju J, Yuan Q, Peters NR, Hoffmann FM, Huang SX, Bugni TS, Rajski S, Osada H, Shen B. Functional characterization of TtnD and TtnF, unveiling new insights into tautomycetin biosynthesis. J Am Chem Soc 2010; 132:6663-71. [PMID: 20426415 DOI: 10.1021/ja9082446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biosynthetic gene cluster for tautomycetin (TTN), a highly potent and selective protein phosphatase (PP) inhibitor isolated from Streptomyces griseochromogenes, has recently been cloned and sequenced. To better understand the transformations responsible for converting the post-polyketide synthase product into the exciting anticancer and immunosuppressive chemotherapeutic candidate TTN, we produced and characterized new analogues resulting from inactivation of two genes, ttnD and ttnF, in S. griseochromogenes. Inactivation of ttnD and ttnF, which encode for putative decarboxylase and dehydratase enzymes, respectively, afforded mutant strains SB13013 and SB13014. The DeltattnD mutant SB13013 accumulated four new TTN analogues, TTN D-1, TTN D-2, TTN D-3, and TTN D-4, whereas the DeltattnF mutant accumulated only one new TTN analogue, TTN F-1. The accumulation of these new TTN analogues defines the function of TtnD and TtnF and the timing of their chemistries in relation to installation of the C5 ketone moiety within TTN. Notably, all new analogues possess a structurally distinguishing carboxylic acid moiety, revealing that TtnD apparently cannot catalyze decarboxylation in the absence of TtnF. Additionally, cytotoxicity and PP inhibition assays reveal the importance of the functional groups installed by TtnDF and, consistent with earlier proposals, the C2''-C5 fragment of TTN to be a critical structural determinant behind the important and unique PP-1 selectivity displayed by TTN.
Collapse
Affiliation(s)
- Yinggang Luo
- Division of Pharmaceutical Sciences, University of Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Scaglione J, Akey D, Sullivan R, Kittendorf J, Rath C, Kim ES, Smith J, Sherman D. Biochemical and Structural Characterization of the Tautomycetin Thioesterase: Analysis of a Stereoselective Polyketide Hydrolase. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria. Appl Environ Microbiol 2010; 76:2487-99. [PMID: 20154113 DOI: 10.1128/aem.02852-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A diverse collection of 60 marine-sediment-derived Actinobacteria representing 52 operational taxonomic units was screened by PCR for genes associated with secondary-metabolite biosynthesis. Three primer sets were employed to specifically target adenylation domains associated with nonribosomal peptide synthetases (NRPSs) and ketosynthase (KS) domains associated with type I modular, iterative, hybrid, and enediyne polyketide synthases (PKSs). In total, two-thirds of the strains yielded a sequence-verified PCR product for at least one of these biosynthetic types. Genes associated with enediyne biosynthesis were detected in only two genera, while 88% of the ketosynthase sequences shared greatest homology with modular PKSs. Positive strains included representatives of families not traditionally associated with secondary-metabolite production, including the Corynebacteriaceae, Gordoniaceae, Intrasporangiaceae, and Micrococcaceae. In four of five cases where phylogenetic analyses of KS sequences revealed close evolutionary relationships to genes associated with experimentally characterized biosynthetic pathways, secondary-metabolite production was accurately predicted. Sequence clustering patterns were used to provide an estimate of PKS pathway diversity and to assess the biosynthetic richness of individual strains. The detection of highly similar KS sequences in distantly related strains provided evidence of horizontal gene transfer, while control experiments designed to amplify KS sequences from Salinispora arenicola strain CNS-205, for which a genome sequence is available, led to the detection of 70% of the targeted PKS pathways. The results provide a bioinformatic assessment of secondary-metabolite biosynthetic potential that can be applied in the absence of fully assembled pathways or genome sequences. The rapid identification of strains that possess the greatest potential to produce new secondary metabolites along with those that produce known compounds can be used to improve the process of natural-product discovery by providing a method to prioritize strains for fermentation studies and chemical analysis.
Collapse
|
22
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Schneider P, Jacobs JM, Neres J, Aldrich CC, Allen C, Nett M, Hoffmeister D. The Global Virulence Regulators VsrAD and PhcA Control Secondary Metabolism in the Plant PathogenRalstonia solanacearum. Chembiochem 2009; 10:2730-2. [DOI: 10.1002/cbic.200900510] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Ju J, Li W, Yuan Q, Peters NR, Hoffmann FM, Rajski SR, Osada H, Shen B. Functional characterization of ttmM unveils new tautomycin analogs and insight into tautomycin biosynthesis and activity. Org Lett 2009; 11:1639-42. [PMID: 19281218 DOI: 10.1021/ol900293j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthetic gene cluster for tautomycin (TTM), a potent protein phosphatase (PP) inhibitor has recently been characterized. Inactivation of ttmM, which encodes a putative C3' hydroxylase, afforded mutant SB6005 which accumulated three new 3'-deshydroxy TTM analogs, supporting the function of TtmM and the previously proposed linear pathway for TTM biosynthesis. Bioassays reveal the importance of the C3' OH moiety in PP inhibition and that PP inhibition is not the exclusive mechanism driving TTM-induced cell death.
Collapse
Affiliation(s)
- Jianhua Ju
- Division of Pharmaceutical Sciences, UW Paul P. Carbone Comprehensive Cancer Center Small Molecule Screening Facility, University of Wisconsin National Cooperative Drug Discovery Group, University of Wisconsin, Madison, Wisconsin 53705-2222, USA
| | | | | | | | | | | | | | | |
Collapse
|