1
|
Elbermawi A, Zulfiqar F, Khan IA, Ali Z. Fatimanols Y and Z: two neo-clerodane diterpenoids from Teucrium yemense. RSC Adv 2023; 13:30264-30268. [PMID: 37868827 PMCID: PMC10587887 DOI: 10.1039/d3ra06083g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Teucrium yemense (Defl.), a medicinal plant, grows in Yemen and Saudi Arabia and is also referred to as Reehal Fatima. The plant has a long history of use in these regions for the treatment of diabetes, rheumatism, and renal conditions. Phytochemical investigation of the aerial parts of T. yemense yielded two previously undescribed neo-clerodane diterpenoids, namely fatimanols Y and Z (1 and 2) along with the known teulepicephin (3), 8-acetylharpagide (4) and teucardosid (5). Structure elucidation was accomplished from their 1D and 2D NMR, ECD, and MS characteristics as well as by comparing them to related reported compounds. The new molecules expand understanding of secondary metabolites of this genus. Compounds 1-5 did not show antimicrobial activity against various bacterial and fungal strains.
Collapse
Affiliation(s)
- Ahmed Elbermawi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt +20 10-0481-1533
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University MS 38677 USA
| | - Fazila Zulfiqar
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University MS 38677 USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University MS 38677 USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University MS 38677 USA
| |
Collapse
|
2
|
Ren JL, Yang L, Qiu S, Zhang AH, Wang XJ. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine. Trends Endocrinol Metab 2023; 34:146-157. [PMID: 36710216 DOI: 10.1016/j.tem.2023.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/03/2023] [Indexed: 01/29/2023]
Abstract
Evidence shows that herbal medicine (HM) could be beneficial for the treatment of various diseases. However, complexities present in HM due to the unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, and nonspecific features for metabolism, are currently an obstacle for the progression of novel drug discovery. Metabolomics could be a potential tool to overcome these issues and for the understanding of HM from a small-molecule metabolism level. The chinmedomics-based metabolomics method assesses the overall metabolism of organisms with a holistic view and shows great potential for understanding metabolic pathways, evaluating curative effects, clarifying mechanisms, discovering active ingredients, and precision medicine. This review focuses on the efficacy evaluation, active ingredient discovery, and target exploration of HM based on metabolomics and chinmedomics.
Collapse
Affiliation(s)
- Jun-Ling Ren
- National Chinmedomics Research Center, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Ai-Hua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
3
|
NMR-Based Chromatography Readouts: Indispensable Tools to “Translate” Analytical Features into Molecular Structures. Cells 2022; 11:cells11213526. [DOI: 10.3390/cells11213526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Gaining structural information is a must to allow the unequivocal structural characterization of analytes from natural sources. In liquid state, NMR spectroscopy is almost the only possible alternative to HPLC-MS and hyphenating the effluent of an analyte separation device to the probe head of an NMR spectrometer has therefore been pursued for more than three decades. The purpose of this review article was to demonstrate that, while it is possible to use mass spectrometry and similar methods to differentiate, group, and often assign the differentiating variables to entities that can be recognized as single molecules, the structural characterization of these putative biomarkers usually requires the use of NMR spectroscopy.
Collapse
|
4
|
Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods 2021; 18:733-746. [PMID: 33972782 DOI: 10.1038/s41592-021-01116-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) variants currently represent the best tools to tackle the challenges of complexity and lack of comprehensive coverage of the metabolome. UHPLC offers flexible and efficient separation coupled with high-sensitivity detection via HRMS, allowing for the detection and identification of a broad range of metabolites. Here we discuss current common strategies for UHPLC-HRMS-based metabolomics, with a focus on expanding metabolome coverage.
Collapse
|
5
|
Znini M, Costa J, Majidi L. Chemical constituents of the essential oil of endemic Teucrium luteum subsp. flavovirens (batt.) Greuter & burdet collected from two localities in Morocco. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1857853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mohamed Znini
- Laboratory of Natural Substances & Synthesis and Molecular Dynamics, Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco
| | - Jean Costa
- Laboratory of Chemistry of Natural Products, UMR CNRS 6134, Faculty of Sciences and Techniques, University of Corte, Corte, France
| | - Lhou Majidi
- Laboratory of Natural Substances & Synthesis and Molecular Dynamics, Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco
| |
Collapse
|
6
|
Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020; 10:E37. [PMID: 31952212 PMCID: PMC7023240 DOI: 10.3390/metabo10010037] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Plant-derived natural products have long been considered a valuable source of lead compounds for drug development. Natural extracts are usually composed of hundreds to thousands of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between several metabolites. However, isolating every single compound from a natural extract is not always possible due to the complex chemistry and presence of most secondary metabolites at very low levels. Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research. Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used to comprehensively annotate the constituents of plant natural products for screening, drug discovery as well as for quality control purposes such as those required for phytomedicine. In this review, the current advancements in plant sample preparation, sample measurements, and data analysis are presented alongside a few case studies of the successful applications of these processes in plant natural product drug discovery.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| |
Collapse
|
7
|
Liu F, Wang YN, Li Y, Ma SG, Qu J, Liu YB, Niu CS, Tang ZH, Li YH, Li L, Yu SS. Minor Nortriterpenoids from the Twigs and Leaves of Rhododendron latoucheae. JOURNAL OF NATURAL PRODUCTS 2018; 81:1721-1733. [PMID: 30106288 DOI: 10.1021/acs.jnatprod.7b01074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A hyphenated NMR technique (analytical HPLC with a DAD connected to MS, SPE, and NMR) has proven effective for the full structural analysis and identification of minor natural products in complex mixtures. Application of this hyphenated technique to the CH2Cl2-soluble fraction of Rhododendron latoucheae led to the identification of 15 new minor ursane-type 28-nortriterpenoids (1-15). Compounds 1 and 12 inhibited HSV-1 with IC50 values of 6.4 and 0.4 μM, respectively.
Collapse
|
8
|
Rhodoterpenoids A‒C, Three New Rearranged Triterpenoids from Rhododendron latoucheae by HPLC‒MS‒SPE‒NMR. Sci Rep 2017; 7:7944. [PMID: 28801631 PMCID: PMC5554136 DOI: 10.1038/s41598-017-06320-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/09/2017] [Indexed: 11/12/2022] Open
Abstract
Rhodoterpenoids A‒C (1‒3), three new rearranged triterpenoids, together with one new biogenetically related compound, rhodoterpenoid D (4), were isolated and efficiently elucidated from Rhododendron latoucheae by high-performance liquid chromatography−mass spectrometry−solid-phase extraction−nuclear magnetic resonance (HPLC‒MS‒SPE‒NMR). Compounds 1 and 2 possess an unprecedented skeleton with a 5/7/6/6/6-fused pentacyclic ring system, while compound 3 contains a unique 6/7/6/6/6-fused pentacyclic carbon backbone. Their structures were determined by extensive spectroscopic methods and electronic circular dichroism (ECD) analyses. Plausible biogenetic pathways for 1‒4 were proposed. Compounds 1 and 4 showed potential activity against herpes simplex virus 1 (HSV-1) with IC50 values of 8.62 and 6.87 μM, respectively.
Collapse
|
9
|
Vasundhara M, Kumar A, Reddy MS. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi. Front Microbiol 2016; 7:1774. [PMID: 27895623 PMCID: PMC5108243 DOI: 10.3389/fmicb.2016.01774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023] Open
Abstract
Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s). Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel), podophyllotoxin, and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are discussed.
Collapse
|
10
|
Kilgore MB, Kutchan TM. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:317-337. [PMID: 27340382 PMCID: PMC4914137 DOI: 10.1007/s11101-015-9451-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 05/21/2023]
Abstract
Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4'-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS).
Collapse
Affiliation(s)
- Matthew B. Kilgore
- Donald Danforth Plant Science Center, 63132 St. Louis, Missouri, 975 N. Warson Rd., St. Louis, MO
| | - Toni M. Kutchan
- Donald Danforth Plant Science Center, 63132 St. Louis, Missouri, 975 N. Warson Rd., St. Louis, MO
- To whom correspondence should be addressed: Toni M. Kutchan, , Tel.: (314) 587-1473, Fax: (314) 587-1573
| |
Collapse
|
11
|
Sumner LW, Lei Z, Nikolau BJ, Saito K. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 2015; 32:212-29. [PMID: 25342293 DOI: 10.1039/c4np00072b] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.
Collapse
Affiliation(s)
- Lloyd W Sumner
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, OK, USA.
| | | | | | | |
Collapse
|
12
|
Seger C, Sturm S, Stuppner H. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques--state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep 2013; 30:970-87. [PMID: 23739842 DOI: 10.1039/c3np70015a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current natural product research is unthinkable without the use of high resolution separation techniques as high performance liquid chromatography or capillary electrophoresis (HPLC or CE respectively) combined with mass spectrometers (MS) or nuclear magnetic resonance (NMR) spectrometers. These hyphenated instrumental analysis platforms (CE-MS, HPLC-MS or HPLC-NMR) are valuable tools for natural product de novo identification, as well as the authentication, distribution, and quantification of constituents in biogenic raw materials, natural medicines and biological materials obtained from model organisms, animals and humans. Moreover, metabolic profiling and metabolic fingerprinting applications can be addressed as well as pharmacodynamic and pharmacokinetic issues. This review provides an overview of latest technological developments, discusses the assets and drawbacks of the available hyphenation techniques, and describes typical analytical workflows.
Collapse
Affiliation(s)
- Christoph Seger
- Institute of Pharmacy/Pharmacognosy, CCB-Centrum of Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
13
|
Sawada Y, Hirai MY. Integrated LC-MS/MS system for plant metabolomics. Comput Struct Biotechnol J 2013; 4:e201301011. [PMID: 24688692 PMCID: PMC3962214 DOI: 10.5936/csbj.201301011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 12/31/2022] Open
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is highly sensitive, selective, and enables extensive detection of metabolites within a sample. The result allows us to characterize comprehensive metabolite accumulation patterns without dependence on authentic standard compounds and isolation of the individual metabolites. A reference database search is essential for the structural assignment process of un-targeted MS and MS/MS data. Moreover, the characterization of unknown metabolites is challenging, since these cannot be assigned a candidate structure by using a reference database. In this case study, integrated LC-MS/MS based plant metabolomics allows us to detect several hundred metabolites in a sample; and integrated omics analyses, e.g., large-scale reverse genetics, linkage mapping, and association mapping, provides a powerful tool for candidate structure selection or rejection. We also examine emerging technology and applications for LC-MS/MS-based un-targeted plant metabolomics. These activities promote the characterization of massive extended detectable metabolites.
Collapse
Affiliation(s)
- Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan ; RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan ; RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan ; JST, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012,Japan
| |
Collapse
|
14
|
Sonboli A, Bahadori MB, Dehghan H, Aarabi L, Savehdroudi P, Nekuei M, Pournaghi N, Mirzania F. Chemotaxonomic Importance of the Essential-Oil Composition in Two Subspecies ofTeucrium stocksianumBoiss. from Iran. Chem Biodivers 2013; 10:687-94. [DOI: 10.1002/cbdv.201200088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 11/10/2022]
|
15
|
Wu H, Guo J, Chen S, Liu X, Zhou Y, Zhang X, Xu X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2013; 72:267-91. [DOI: 10.1016/j.jpba.2012.09.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 12/14/2022]
|
16
|
Application of UPLC-Quadrupole-TOF-MS Coupled with Recycling Preparative HPLC in Isolation and Preparation of Coumarin Isomers with Similar Polarity from Peucedanum praeruptorum. Chromatographia 2012. [DOI: 10.1007/s10337-012-2368-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Zhou M, Hou Y, Hamza A, Pain C, Zhan CG, Bugni TS, Thorson JS. Probing the regiospecificity of enzyme-catalyzed steroid glycosylation. Org Lett 2012; 14:5424-7. [PMID: 23075289 DOI: 10.1021/ol3024924] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The potential of a uniquely permissive engineered glycosyltransferase (OleD ASP) as a catalyst for steroid glycosylation is highlighted. The ability of OleD ASP to glucosylate a range of cardenolides and bufadienolides was assessed using a rapid LC-UV/MS-SPE-NMR analytical platform. While a bias toward OleD-catalyzed C3 monoglucosylation was observed, subtle alterations of the steroidal architecture, in some cases, invoked diglucosylation or, in one case (digoxigenin), C12 glucosylation. This latter case represents the first, and highly efficient, synthesis of digoxigenin 12-O-β-D-glucoside.
Collapse
Affiliation(s)
- Maoquan Zhou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kesting JR, Olsen L, Staerk D, Tejesvi MV, Kini KR, Prakash HS, Jaroszewski JW. Production of unusual dispiro metabolites in Pestalotiopsis virgatula endophyte cultures: HPLC-SPE-NMR, electronic circular dichroism, and time-dependent density-functional computation study. JOURNAL OF NATURAL PRODUCTS 2011; 74:2206-2215. [PMID: 21942847 DOI: 10.1021/np2005665] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The endophytic fungus Pestalotiopsis virgatula, derived from the plant Terminalia chebula and previously found to produce a large excess of a single metabolite when grown in the minimal M1D medium, was induced to produce a variety of unusual metabolites by growing in potato dextrose broth medium. Analysis of the fermentation medium extract was performed using an HPLC-PDA-MS-SPE-NMR hyphenated system, which led to the identification of a total of eight metabolites (1-8), six of which are new. Most of the metabolites are structurally related and are derivatives of benzo[c]oxepin, rare among natural products. This includes dispiro derivatives 7 and 8 (pestalospiranes A and B), having a novel 1,9,11,18-tetraoxadispiro[6.2.6.2]octadecane skeleton. Relative and absolute configurations of the latter were determined by a combination of NOESY spectroscopy and electronic circular dichroism spectroscopy supported by time-dependent density-functional theory calculations (B3LYP/TZVP level). This work demonstrates that a largely complete structure elucidation of numerous metabolites present in a raw fermentation medium extract can be performed by the HPLC-SPE-NMR technique using only a small amount of the extract, even with unstable metabolites that are difficult to isolate by traditional methods.
Collapse
Affiliation(s)
- Julie R Kesting
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrometry. BIOANALYTICAL REVIEWS 2010; 2:23-60. [PMID: 21289855 PMCID: PMC3015162 DOI: 10.1007/s12566-010-0015-9] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 08/03/2010] [Indexed: 12/22/2022]
Abstract
The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Kind
- Genome Center–Metabolomics, University of California Davis, Davis, CA 95616 USA
| | - Oliver Fiehn
- Genome Center–Metabolomics, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|