1
|
Wu S, Chen H, Yu R, Li H, Zhao J, Stanton C, Paul Ross R, Chen W, Yang B. Human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation. Food Funct 2025; 16:1267-1283. [PMID: 39918321 DOI: 10.1039/d4fo04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The prebiotic properties of human milk oligosaccharides (HMOs) and emerging evidence of immunomodulatory effects suggest their potential therapeutic value in allergy management. 2'-Fucosyllactose (2'-FL) has been reported to alleviate food allergies, while the effect of other fucosylated HMOs on food allergy remains unclear. In this study, we assess the effect of two HMOs, 2'-FL and 3-fucosyllactose (3-FL), on symptomatology and immunological responses in an ovalbumin (OVA)-sensitized mouse model of food allergy as well as their influence on gut microbiota. The assessment of allergic symptoms, specific immunoglobulin E (IgE), and related gene expression levels in sensitized mice indicated that 3-FL was as effective as 2'-FL in alleviating food allergy. 2'-FL and 3-FL significantly decreased serum levels of OVA-specific IgE, mouse mast cell protease (mMCP-1) and IL-4 while increasing the levels of IFN-γ. Additionally, 2'-FL and 3-FL down-regulated gene expression of allergy-related cytokines in the small intestine and improved intestinal barrier damage. Furthermore, both 2'-FL and 3-FL treatment positively influenced the gut microbial profiles, in particular by enhancing the proportion of beneficial bacteria such as Lactobacillus and Bifidobacterium and decreasing the percentage of Turicibacter and Lachnospiraceae NK4A136 group, thereby modulating the immune system. Therefore, this study can provide insights into 2'-FL and 3-FL to alleviate OVA-induced allergy.
Collapse
Affiliation(s)
- Siya Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Lin Y, Hu Q, Ye Q, Zhang H, Bao Z, Li Y, Mo LJ. Diosgenin biosynthesis pathway and its regulation in Dioscorea cirrhosa L. PeerJ 2024; 12:e16702. [PMID: 38282859 PMCID: PMC10812585 DOI: 10.7717/peerj.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
Dioscorea cirrhosa L. (D. cirrhosa) tuber is a traditional medicinal plant that is abundant in various pharmacological substances. Although diosgenin is commonly found in many Dioscoreaceae plants, its presence in D. cirrhosa remained uncertain. To address this, HPLC-MS/MS analysis was conducted and 13 diosgenin metabolites were identified in D. cirrhosa tuber. Furthermore, we utilized transcriptome data to identify 21 key enzymes and 43 unigenes that are involved in diosgenin biosynthesis, leading to a proposed pathway for diosgenin biosynthesis in D. cirrhosa. A total of 3,365 unigenes belonging to 82 transcription factor (TF) families were annotated, including MYB, AP2/ERF, bZIP, bHLH, WRKY, NAC, C2H2, C3H, SNF2 and Aux/IAA. Correlation analysis revealed that 22 TFs are strongly associated with diosgenin biosynthesis genes (-r2- > 0.9, P < 0.05). Moreover, our analysis of the CYP450 gene family identified 206 CYP450 genes (CYP450s), with 40 being potential CYP450s. Gene phylogenetic analysis revealed that these CYP450s were associated with sterol C-22 hydroxylase, sterol-14-demethylase and amyrin oxidase in diosgenin biosynthesis. Our findings lay a foundation for future genetic engineering studies aimed at improving the biosynthesis of diosgenin compounds in plants.
Collapse
Affiliation(s)
- Yan Lin
- Dongguan Institute of Forestry Science, Dongguan, Guangdong, China
| | - Qiuyan Hu
- Dongguan Institute of Forestry Science, Dongguan, Guangdong, China
| | - Qiang Ye
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haohua Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ziyu Bao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongping Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, Hainan, China
| | - Luo Jian Mo
- Dongguan Institute of Forestry Science, Dongguan, Guangdong, China
| |
Collapse
|
3
|
Jingying C, Baocai L, Ying C, Wujun Z, Yunqing Z, Yingzhen H, Tew WY, Ong PS, Yan CS, Loh HW, Yam MF. Discrimination of Dioscorea species (Chinese yam) using FT-IR integrated with chemometric approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123229. [PMID: 37625275 DOI: 10.1016/j.saa.2023.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Dioscorea oppositifolia is an important crop and functional food. D. oppositifolia tuber is often adulterated with D. persimilis, D. alata, and D. fordii tuber in the commercial market. This study proposed an integrated Fourier transform infrared spectroscopy (FT-IR) with chemometric approach to differentiate these four Dioscorea species. A total of 107 Dioscorea spp. tuber samples were collected from different locations in China. Principal Component Analysis (PCA), PCA-Class, and Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) were utilised to classify the FT-IR spectra. In this PCA is unable to differentiate the Dioscorea spp. tuber effectively. However, PCA-Class and OPLS-DA can distinguish spp. these 4 species Dioscorea tuber with high accuracy, sensitivity, and specificity. Additionally, the RMSEE, RMSEP and RMSECV values for OPLS-DA model were low, showing that it is a good model. The combination of FT-IR with the PCA-Class and OPLS-DA is practical in discriminating Dioscorea spp. tubers.
Collapse
Affiliation(s)
- Chen Jingying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China.
| | - Liu Baocai
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Chen Ying
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhang Wujun
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Zhao Yunqing
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Huang Yingzhen
- Research Center for Medicinal Plant, Institute of Agricultural Bio-resource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
| | - Wan Yin Tew
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Peng Shun Ong
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Chong Seng Yan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Hui Wei Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia; Faculty of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350122, China.
| |
Collapse
|
4
|
Liu JS, Huang RY, Wei YJ, Tsai GJ, Huang CH. Influence of Cordyceps militaris-fermented grain substrate extracts on alleviating food allergy in mice. Heliyon 2023; 9:e23315. [PMID: 38144334 PMCID: PMC10746508 DOI: 10.1016/j.heliyon.2023.e23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Background Cordyceps militaris is recognized as a tonic in traditional Chinese medicine, and there have been documented findings on the anti-allergic properties of its extract derived from the fruiting body. Due to the limited availability of wild C. militaris, a specialized grain substrate has been devised for the solid-state fermentation of its fruiting bodies. However, the fermented grain substrate is considered waste and usually used as feeds for animals. To achieve the sustainable development goals, C. militaris-fermented grain substrate (CFGS) was collected to prepare CFGS extracts. Further, the anti-allergic properties of these extracts were assessed with the aim of exploring novel applications. Methods The water extract and ethanol extract of CFGS were prepared, and their potential in alleviating allergic enteritis was assessed in mice with food allergy. Assessment of immunomodulatory effects included the measurement of serum antibodies and splenic cytokines. Additionally, influence of extracts on gut microbiota composition was examined through sequencing analysis of 16S rRNA gene from freshly collected feces of the mice. Results Daily administration of the water and ethanol extracts, at doses of 50 or 250 mg/kg body weight, demonstrated a notable alleviation of allergic diarrhea and enteritis. This was accompanied by a decrease in mast cell infiltration in the duodenum and a reduction in allergen-specific IgE production in the serum. Both extracts led to a significant decrease in IL-4 secretion. Conversely, there was an increase in IFN-γ, IL-10, and TGF-β secretion from splenocytes. Remarkably, allergic mice exhibited a distinct fecal microbiota profile compared to that of normal mice. Intriguingly, the administration of these extracts had varying effects on the fecal microbiota. Conclusion Taken together, these findings collectively indicate the potential of CFGS extracts as promising candidates for functional foods. These extracts show promise in managing allergic enteritis and modulating gut microbiota.
Collapse
Affiliation(s)
- Jia-Shan Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Rong-Yi Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Jyun Wei
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
5
|
Lu HY, Tsai WC, Liu JS, Huang CH. Preparation and evaluation of Cordyceps militaris polysaccharide- and sesame oil-loaded nanoemulsion for the treatment of candidal vaginitis in mice. Biomed Pharmacother 2023; 167:115506. [PMID: 37716120 DOI: 10.1016/j.biopha.2023.115506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Candida albicans is the most prevalent fungal pathogen, affecting over 75% of women who have experienced candidal vaginitis. Given the identification of drug-resistant C. albicans strains, there is an urgent need to develop therapeutic methods for treating vaginal Candida infection. Polysaccharide is the major bioactive component of Cordyceps militaris, known to modulate immune responses and alleviate inflammation. Sesame oil is known with anti-microbial and anti-inflammatory activities. METHODS C. militaris polysaccharide was prepared and formulated with sesame oil to prepare emulsion and nanoemulsion, which are ideal mucosal delivery systems for both hydrophobic and hydrophilic compounds concurrently. The physical property and storage stability of these formulations were illustrated, and their effects on ameliorating vaginitis were investigated in a murine model of vaginal Candida infection. RESULTS C. militaris polysaccharide-containing nanoemulsion showed smaller particle size, lower polydispersity index, higher zeta-potential and better stability than emulsion. Intravaginal administration of C. militaris polysaccharide-containing nanoemulsion significantly attenuated C. militaris colonization and vaginitis. Notably, these formulations exerted distinct effects on modulating cell infiltration and splenic cytokine production. Moreover, different profile of vaginal microflora was observed among the treatment groups, revealing the potential action mechanisms of these formulations to mitigate vaginal Candida infection. CONCLUSION C. militaris polysaccharide- and sesame oil-containing nanoemulsion is potential to be developed as intravaginal therapeutic strategy for C. albicans-induced vaginitis.
Collapse
Affiliation(s)
- Hsueh-Yu Lu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jia-Shan Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
6
|
Zhong Y, Jin C, Han J, Zhu J, Liu Q, Sun D, Xia X, Zhang Y, Peng X. Diosgenin Protects Against Kidney Injury and Mitochondrial Apoptosis Induced by 3-MCPD Through the Regulation of ER Stress, Ca 2+ Homeostasis, and Bcl2 Expression. Mol Nutr Food Res 2021; 65:e2001202. [PMID: 34075698 DOI: 10.1002/mnfr.202001202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/05/2021] [Indexed: 12/20/2022]
Abstract
SCOPE Diosgenin (DIO) is a natural steroid sapogenin presented in various plants. It exerts anti-oxidant, anti-inflammatory and anti-diabetic nephropathy properties. The present study evaluates the intervention effect of DIO on nephrotoxicity induced by food contaminant 3-chloro-1, 2-propanediol (3-MCPD) in vivo and in vitro. METHODS AND RESULTS Treatment with DIO (15 mg kg-1 d-1 ) in Sprague-Dawley rats for 4-week relieves kidney injury induced by 3-MCPD (30 mg kg-1 d-1 ). In vitro, DIO (2, 6, and 8 µM) alleviates cell injury and apoptosis effectively in human embryonic kidney (HEK293) cells. DIO realizes its protective function via the regulation of endoplasmic reticulum (ER) stress and mitochondrial apoptosis pathway. Blockage of ER stress by 4-phenylbutyric acid (4-PBA), a specific ER stress antagonist, inhibits mitochondrial apoptosis, suggesting a connection between mitochondrial apoptosis and ER stress. Furthermore, the study demonstrates that the maintenance of Ca2+ homeostasis and Bcl2 expression, two main targets of ER stress, contributes to the protection role of DIO on mitochondrial-dependent apoptosis. In addition, DIO relieves the impairment of oxidative phosphorylation. CONCLUSION This study demonstrates that DIO exerts protective effect against kidney injury, mitochondrial dysfunction, and apoptosis through the inhibition of ER stress and the further maintenance of Ca2+ homeostasis and Bcl2 expression.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Chengni Jin
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Jiahui Han
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Jiachang Zhu
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Qi Liu
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Dianjun Sun
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
7
|
Cong S, Tong Q, Peng Q, Shen T, Zhu X, Xu Y, Qi S. In vitro anti‑bacterial activity of diosgenin on Porphyromonas gingivalis and Prevotella intermedia. Mol Med Rep 2020; 22:5392-5398. [PMID: 33174005 PMCID: PMC7647021 DOI: 10.3892/mmr.2020.11620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Diosgenin (Dios), a natural steroidal sapogenin, is a bioactive compound extracted from dietary fenugreek seeds. It has a wide range of applications, exhibiting anti-oxidant, anti-inflammatory and anti-cancer activities. However, whether the extracts have beneficial effects on periodontal pathogens has so far remained elusive. The aim of the present study was to investigate the anti-bacterial effects of Dios on Porphyromonas gingivalis (P. gingivalis) and Prevotella intermedia (P. intermedia) in vitro. The anti-microbial effect of Dios on P. gingivalis and P. intermedia was assessed by a direct contact test (DCT) and the Cell Counting Kit (CCK)-8 assay at 60, 90 and 120 min. In addition, counting of colony-forming units (CFU) and live/dead cell staining were used to evaluate the anti-bacterial effects. The results of the DCT and CCK-8 assays indicated that Dios had beneficial dose-dependent inhibitory effects on P. gingivalis and P. intermedia. The CFU counting results also indicated that Dios had dose-dependent anti-bacterial effects on P. gingivalis and P. intermedia. Of note, Dios had significant anti-bacterial effects on the biofilms of P. gingivalis and P. intermedia in vitro as visualized by the live/dead cell staining method. In conclusion, the present results demonstrated that Dios had a marked anti-bacterial activity against P. gingivalis and P. intermedia in vitro, both in suspension and on biofilms. The present study highlighted the potential applications of Dios as a novel natural agent to prevent and treat periodontitis through its anti-bacterial effects.
Collapse
Affiliation(s)
- Shaohua Cong
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Qingchun Tong
- Department of Stomatology, Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Qian Peng
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Tao Shen
- School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xueqin Zhu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Shengcai Qi
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
8
|
Wang Y, Li X, Wu S, Dong L, Hu Y, Wang J, Zhang Y, Wang S. Methylglyoxal Decoration of Glutenin during Heat Processing Could Alleviate the Resulting Allergic Reaction in Mice. Nutrients 2020; 12:E2844. [PMID: 32957487 PMCID: PMC7551842 DOI: 10.3390/nu12092844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It is widely believed that Maillard reactions could affect the sensitization of allergens. However, the mechanism of action of methylglyoxal (MGO) production in Maillard reactions in the sensitization variation of glutenin (a predominant allergen in wheat) during heat processing is still unclear. METHODS This research evaluated the effect of MGO on the immune response against glutenin in a mouse model. The resulting variations in conformation and corresponding digestibility of glutenin were determined. The immune response and gut microflora variation in mice were analyzed following administering of glutenin and MGO-glutenin. RESULTS The results of the study showed that MGO-glutenin induced a lower immune response than native glutenin. Cytokine analysis showed that MGO-glutenin regulated mouse immune response by inducing Treg differentiation. MGO decoration changed the structure and digestibility of glutenin. In addition, MGO-glutenin contributes to the maintenance of the beneficial gut microflora. CONCLUSION MGO decoration of glutenin during heat processing could alleviate the resulting allergic reaction in mice. Decoration with MGO appears to contribute to the aggregation of glutenin, potentially masking surface epitopes and abating sensitization. Furthermore, Bacteroides induced regulatory T-cell (Treg) differentiation, which may contribute to inhibition of the Th2 immune response and stimulation of immune tolerance.
Collapse
Affiliation(s)
- Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Xiang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Junping Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China;
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| |
Collapse
|
9
|
Liu T, Chen P, Munir M, Liu L, Li C, Li A, Fu H. HMOs modulate immunoregulation and gut microbiota in a β-lactoglobulin-induced allergic mice model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Wu S, Zhao M, Sun Y, Xie M, Le K, Xu M, Huang C. The potential of Diosgenin in treating psoriasis: Studies from HaCaT keratinocytes and imiquimod-induced murine model. Life Sci 2020; 241:117115. [DOI: 10.1016/j.lfs.2019.117115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
|
11
|
Fu G, Zhao K, Chen H, Wang Y, Nie L, Wei H, Wan C. Effect of 3 lactobacilli on immunoregulation and intestinal microbiota in a β-lactoglobulin–induced allergic mouse model. J Dairy Sci 2019; 102:1943-1958. [DOI: 10.3168/jds.2018-15683] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
|
12
|
Huang CH, Lin YC, Jan TR. Lactobacillus reuteri induces intestinal immune tolerance against food allergy in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
13
|
Bhuvanalakshmi G, Basappa, Rangappa KS, Dharmarajan A, Sethi G, Kumar AP, Warrier S. Breast Cancer Stem-Like Cells Are Inhibited by Diosgenin, a Steroidal Saponin, by the Attenuation of the Wnt β-Catenin Signaling via the Wnt Antagonist Secreted Frizzled Related Protein-4. Front Pharmacol 2017; 8:124. [PMID: 28373842 PMCID: PMC5357646 DOI: 10.3389/fphar.2017.00124] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Identification of breast cancer stem cells as the chemo-resistant and tumor-initiating population represents an important milestone in approaching anticancer therapies. Targeting this minor subpopulation of chemo- and radio-resistant stem-like cells, termed as the cancer stem cells (CSCs) and their eradication could significantly enhance clinical outcomes. Most of the presently administered chemotherapeutics target the tumor bulk but are ineffective against the CSCs. We report here that diosgenin (DG), a naturally occurring steroidal saponin, could effectively inhibit CSCs from three breast cancer cell lines, MCF7, T47D and MDA-MB-231, by inducing apoptosis and inhibiting the CSC associated phenotypes. Methods: CSCs were enriched in these cells lines, characterized for CSC traits by immunocytochemistry and flow cytometry. Proliferation and apoptosis assays were performed in these breast CSCs in the presence of DG to obtain the inhibitory concentration. Apoptosis was confirmed with gene expression analysis, Western blotting and propidium iodide staining. TCF-LEF reporter assay, sFRP overexpression and RNAi silencing studies were performed to study regulation of the Wnt pathway. Statistical significance was evaluated by a two-sided Student’s t-test. Results: Using the TCF-LEF reporter system, we show the effect of DG on CSCs is predominantly through the network regulating CSC self renewal, the Wnt β-catenin pathway. Specifically, the Wnt antagonist, the secreted frizzled related protein 4, (sFRP4), had a defining role in the action of DG. Gain-of-function of sFRP4 in CSCs could improve the response to DG wherein CSC mediators were inhibited, β-catenin was down regulated and the effectors of epithelial to mesenchymal transition and pro-invasive markers were repressed. Conversely, the loss-of-function of sFRP4 had a reverse effect on the CSC population which therein became enriched, their response to DG treatment was modest, β-catenin levels increased, GSK3β expression decreased and the expression of epithelial markers of CSC was completely abrogated. Conclusion: These findings demonstrate the effect of DG on inhibiting the resilient breast CSCs which could provide a benchmark for the development of DG-based therapies in breast cancer treatment.
Collapse
Affiliation(s)
- G Bhuvanalakshmi
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal School of Regenerative Medicine, Manipal University Bangalore, India
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University Bangalore, India
| | | | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Gautam Sethi
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore; Cancer Science Institute of Singapore, National University of SingaporeSingapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, PerthWA, Australia; National University Cancer Institute, National University Health SystemSingapore, Singapore; Department of Biological Sciences, University of North Texas, DentonTX, USA; Manipal School of Regenerative Medicine, Manipal UniversityBangalore, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal School of Regenerative Medicine, Manipal UniversityBangalore, India; Curtin Medical School, Faculty of Health Sciences, Curtin University, PerthWA, Australia; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| |
Collapse
|
14
|
Hamid AA, Kaushal T, Ashraf R, Singh A, Chand Gupta A, Prakash O, Sarkar J, Chanda D, Bawankule DU, Khan F, Shanker K, Aiyelaagbe OO, Negi AS. (22β,25R)-3β-Hydroxy-spirost-5-en-7-iminoxy-heptanoic acid exhibits anti-prostate cancer activity through caspase pathway. Steroids 2017; 119:43-52. [PMID: 28143704 DOI: 10.1016/j.steroids.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/16/2016] [Accepted: 01/12/2017] [Indexed: 11/20/2022]
Abstract
Prostate cancer is one of the most common cancers in men. Diosgenin and related compounds are potential cytotoxic agents. Twelve diverse analogues of long chain fatty acid/ester of diosgenin-7-ketoxime have been prepared. Six of the analogues exhibited significant anticancer activity against a panel of human cancer cell lines with IC50 ranging from 12 to 35μM. Compound 16, the best representative of the series exerted S phase arrest in DU145 prostate cancer cells and induced apoptosis through caspase pathway. Additionally, these analogues inhibited lipopolysaccharide induced pro-inflammatory cytokines (TNF-α and IL-6) up to 47.7% and 23.3% respectively. Compound 16 was found to be safe in acute oral toxicity in Swiss albino mice up to 300mg/kg dose. The anticancer and antiinflammatory properties of compound 16 are important and can further be optimized for a better anti-prostate cancer candidate.
Collapse
Affiliation(s)
- A A Hamid
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India; Department of Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Tanu Kaushal
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Raghib Ashraf
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arjun Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Amit Chand Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Om Prakash
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - D U Bawankule
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - O O Aiyelaagbe
- Organic Chemistry Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
15
|
Huang CH, Wang CC, Lin YC, Hori M, Jan TR. Oral administration with diosgenin enhances the induction of intestinal T helper 1-like regulatory T cells in a murine model of food allergy. Int Immunopharmacol 2016; 42:59-66. [PMID: 27886644 DOI: 10.1016/j.intimp.2016.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 02/02/2023]
Abstract
Although the development of T helper (Th)1-like regulatory T (Treg) cells under Th1 inflammatory conditions has been reported, the role of Th1-like Treg cells in Th2 allergic responses remains mostly unclear. We previously demonstrated that diosgenin, the major sapogenin contained in the Chinese yam, attenuated food allergy and augmented Th1 and Treg immune responses. In this study, we hypothesized that diosgenin may enhance the induction of Th1-like Treg cells in the gut of mice with food allergy. Ovalbumin (OVA)-sensitized BALB/c mice were gavaged daily with diosgenin and received repeatedly intragastric ovalbumin challenges to induce intestinal allergic responses. The induction of Foxp3+ Treg cells co-expressing Th1-type transcription factors, cytokines and chemokines in the intestine was examined, and the mRNA expression of the chemokines corresponding to Th1-like Treg cells was measured. Diosgenin administration increased the number of Foxp3+ Treg cells co-expressing Th1 markers, including CCR5, CXCR3, IFN-γ and T-bet in the intestine, and enhanced populations of Foxp3+IFN-γ+ and Foxp3+T-bet+ cells that expressed the regulatory cytokine IL-10 in the Peyer's patches. Diosgenin also augmented the intestinal expression of CXCR3, CCL3, and CXCL10. Concordantly, diosgenin increased the number of CXCR3+Foxp3+IL-10 cells in the Peyer's patches. Our data demonstrated the enhanced induction of Th1-like Treg cells in allergic mice treated with diosgenin, providing evidence to suggest a role for Th1-like Treg cells in diosgenin-mediated anti-allergic effects against Th2-type allergy.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chin Lin
- Department of Medicinal Botanicals and Health Applications, College of Biotechnology & Bio-resources, Dayeh University, Changhua, Taiwan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tong-Rong Jan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Sánchez-Sánchez L, Hernández-Linares MG, Escobar ML, López-Muñoz H, Zenteno E, Fernández-Herrera MA, Guerrero-Luna G, Carrasco-Carballo A, Sandoval-Ramírez J. Antiproliferative, Cytotoxic, and Apoptotic Activity of Steroidal Oximes in Cervicouterine Cell Lines. Molecules 2016; 21:molecules21111533. [PMID: 27854258 PMCID: PMC6273349 DOI: 10.3390/molecules21111533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Steroidal sapogenins have shown antiproliferative effects against several tumor cell lines; and their effects on human cancer cells are currently under study. Changes in the functionality on the steroidal structure make it possible to modify the biological activity of compounds. Herein, we report the synthesis and in vitro antitumor activity of two steroidal oxime compounds on cervical cancer cells. These derivatives were synthesized from the steroidal sapogenin diosgenin in good yields. The in vitro assays show that the steroidal oximes show significant antiproliferative activity compared to the one observed for diosgenin. Cell proliferation, cell death, and the cytotoxic effects were determined in both cervical cancer cells and human lymphocytes. The cancer cells showed apoptotic morphology and an increased presence of active caspase-3, providing the notion of a death pathway in the cell. Significantly, the steroidal oximes did not exert a cytotoxic effect on lymphocytes.
Collapse
Affiliation(s)
- Luis Sánchez-Sánchez
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Ciudad de México, Mexico.
| | | | - María L Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Hugo López-Muñoz
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Ciudad de México, Mexico.
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
- Centro de Investigación UNAM-UABJO, 68120 Oaxaca, Oax., Mexico.
| | - María A Fernández-Herrera
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados-Unidad Mérida, km 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yuc., Mexico.
| | - Gabriel Guerrero-Luna
- Laboratorio de Investigación, Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico.
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico.
| | - Alan Carrasco-Carballo
- Laboratorio de Investigación, Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico.
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico.
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico.
| |
Collapse
|
17
|
|
18
|
Huang BZ, Xin G, Ma LM, Wei ZL, Shen Y, Zhang R, Zheng HJ, Zhang XH, Niu H, Huang W. Synthesis, characterization, and biological studies of diosgenyl analogs. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 19:272-298. [PMID: 27380052 DOI: 10.1080/10286020.2016.1202240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bao-Zhan Huang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li-Mei Ma
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ze-Liang Wei
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Shen
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Zhang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua-Jie Zheng
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang-Hua Zhang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Sort Science, Sichuan University, Chengdu 610041, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
- College of Mathematics, Sichuan University, Chengdu 610041, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Kim JE, Go J, Koh EK, Song SH, Sung JE, Lee HA, Kim DS, Son HJ, Lee HS, Lee CY, Hong JT, Hwang DY. Diosgenin effectively suppresses skin inflammation induced by phthalic anhydride in IL-4/Luc/CNS-1 transgenic mice. Biosci Biotechnol Biochem 2016; 80:891-901. [PMID: 26998565 DOI: 10.1080/09168451.2015.1135040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To quantitatively evaluate the therapeutic effects of diosgenin (DG) and investigate the role of IL-4 on skin inflammation, alterations in luciferase-derived signal and general phenotype biomarkers were measured in IL-4/Luc/CNS-1 transgenic mice with phthalic anhydride (PA)-induced skin inflammation after treatment with DG for 4 weeks. High levels of luciferase-derived signal detected in the abdominal region and submandibular lymph node (SL) of the PA treated group was significantly decreased by 67-88% in the PA + DG cotreated group. Furthermore, the weight of the lymph node and spleen, IgE concentration, epidermis thickness, and number of infiltrated mast cells were lower in the PA + DG treated group than the PA + Vehicle treated group. Moreover, expression of IL-6 and vascular endothelial growth factor (VEGF) also decreased in the PA + DG cotreated group. These results suggest that PA-induced skin inflammation could be successfully suppressed by DG treatment in IL-4/Luc/CNS-1 Tg mice through attenuation of IL-4 and IL-6 expression, as well as decreased IgE concentration and mast cells infiltration.
Collapse
Affiliation(s)
- Ji Eun Kim
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Jun Go
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Eun Kyoung Koh
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Sung Hwa Song
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Ji Eun Sung
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Hyun Ah Lee
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Dong Seob Kim
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Hong Joo Son
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Hee Seob Lee
- b College of Human Ecology, Pusan National University , Busan , Korea
| | | | - Jin Tae Hong
- d College of Pharmacy , Chungbuk National University , Chungju , Korea
| | - Dae Youn Hwang
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| |
Collapse
|
20
|
Coumes F, Huang CY, Huang CH, Coudane J, Domurado D, Li S, Darcos V, Huang MH. Design and Development of Immunomodulatory Antigen Delivery Systems Based on Peptide/PEG-PLA Conjugate for Tuning Immunity. Biomacromolecules 2015; 16:3666-73. [PMID: 26473322 DOI: 10.1021/acs.biomac.5b01150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer vaccines are considered to be a promising tool for cancer immunotherapy. However, a well-designed cancer vaccine should combine a tumor-associated antigen (TAA) with the most effective immunomodulatory agents and/or delivery system to provoke intense immune responses against the TAA. In the present study, we introduced a new approach by conjugating the immunomodulatory molecule LD-indolicidin to the hydrophilic chain end of the polymeric emulsifier poly(ethylene glycol)-polylactide (PEG-PLA), allowing the molecule to be located close to the surface of the resulting emulsion. A peptide/polymer conjugate, named LD-indolicidin-PEG-PLA, was synthesized by conjugation of the amine end-group of LD-indolicidin to the N-hydroxysuccinimide-activated carboxyl end-group of PEG. As an adjuvant for cancer immunotherapeutic use, TAA vaccine candidate formulated with the LD-indolicidin-PEG-PLA-stabilized squalene-in-water emulsion could effectively help to elicit a T helper (Th)1-dominant antigen-specific immune response as well as antitumor ability, using ovalbumin (OVA) protein/EG7 cells as a TAA/tumor cell model. Taken together, these results open up a new approach to the development of immunomodulatory antigen delivery systems for vaccine adjuvants and cancer immunotherapy technologies.
Collapse
Affiliation(s)
- Fanny Coumes
- Max Mousseron Institute of Biomolecules, UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy , 34093 Montpellier Cedex 5, France
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , 35053 Miaoli, Taiwan
| | - Chung-Hsiung Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , 35053 Miaoli, Taiwan
| | - Jean Coudane
- Max Mousseron Institute of Biomolecules, UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy , 34093 Montpellier Cedex 5, France
| | - Dominique Domurado
- Max Mousseron Institute of Biomolecules, UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy , 34093 Montpellier Cedex 5, France.,Institut National de la Santé et de la Recherche Médicale, 34000 Montpellier, France
| | - Suming Li
- Institut Europeen des Membranes, UMR CNRS 5635, University of Montpellier , 34095 Montpellier, France
| | - Vincent Darcos
- Max Mousseron Institute of Biomolecules, UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy , 34093 Montpellier Cedex 5, France
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , 35053 Miaoli, Taiwan.,Graduate Institute of Immunology, China Medical University , 40402 Taichung, Taiwan
| |
Collapse
|
21
|
Wei Z, Liang Y, Ma L, Li K, Niu H, Huang W. Distribution and effect of steroidal saponin derivative WRC3 in B16 melanoma cells. Mol Med Rep 2015; 12:6019-24. [PMID: 26299565 DOI: 10.3892/mmr.2015.4225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/07/2015] [Indexed: 02/05/2023] Open
Abstract
Steroidal saponins have recently attracted attention due to their structural diversity and significant biological activities, including anti‑hyperlipidemic, antibacterial, anti‑inflammatory, immunomodulatory and anti‑HIV activities. In the present study, it was demonstrated that WRC3, a novel saponin derivative, can inhibit B16 cancer cells by inducing apoptotic cell death with an IC50 value of 12.09 µM. The inhibitory effect of WRC3 on B16 cells appears to occur in a time‑ and concentration‑dependent manner. The fluorescence distribution observed by confocal microscopy revealed that WRC3 entered cells and acted in the cytoplasm without causing genetic toxicity. Following administration of WRC3 (2.5, 5.0 and 7.5 g/kg body weight) once a day for 7 days, no obvious abnormalities were observed in the organs of the mice as demonstrated by hematoxylin and eosin staining. Compared with the normal control group, aspartate transaminase (AST), alanine transaminase (ALT), creatine and urea levels in the serum of mice treated with WRC3 (2.5‑7.5 µM) remained unchanged. In conclusion, it was demonstrated that WRC3 can induce cancer cell death without causing genetic toxicity, hepatotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Zeliang Wei
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuyan Liang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Limei Ma
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ke Li
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hai Niu
- College of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
22
|
CHEN Y, TANG YM, YU SL, HAN YW, KOU JP, LIU BL, YU BY. Advances in the pharmacological activities and mechanisms of diosgenin. Chin J Nat Med 2015; 13:578-87. [DOI: 10.1016/s1875-5364(15)30053-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 12/17/2022]
|
23
|
Zhuang H, Ni Y, Kokot S. A Comparison of Near- and Mid-Infrared Spectroscopic Methods for the Analysis of Several Nutritionally Important Chemical Substances in the Chinese Yam (Dioscorea opposita): Total Sugar, Polysaccharides, and Flavonoids. APPLIED SPECTROSCOPY 2015; 69:488-95. [PMID: 25742643 DOI: 10.1366/14-07655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Chinese yam (Dioscorea opposita) is a basic food in Asia and especially China. Consequently, an uncomplicated, reliable method should be available for the analysis of the quality and origin of the yams. Thus, near-infrared (NIR) and mid-infrared (mid-IR) spectroscopic methods were developed to discriminate among Chinese yam samples collected from four geographical regions. The yam samples were analyzed also for total sugar, polysaccharides, and flavonoids. These three analytes were used to compare the performance of the analytical methods. Overlapping spectra were resolved using chemometrics methods. Such spectra were compared qualitatively using principal component analysis (PCA) and quantitatively using partial least squares (PLS) and least squares-support vector machine (LS-SVM) models. We discriminated among the four sets of yam data using PCA, and the NIR data performed somewhat better than the mid-IR data. We constructed the PLS and LS-SVM calibration models for the prediction of the three key variables, and the LS-SVM model produced better results. Also, the NIR prediction model produced better outcomes than the mid-IR prediction model. Thus, both infrared (IR) techniques performed well for the analysis of the three key analytes, and the samples were qualitatively discriminated according to their provinces of origin. Both techniques may be recommended for the analysis of Chinese yams, although the NIR technique would be preferred.
Collapse
Affiliation(s)
- Hua Zhuang
- Nanchang University, State Key Laboratory of Food Science and Technology, Nanchang 330047, China
| | | | | |
Collapse
|
24
|
Cai H, Wang Z, Zhang HQ, Wang FR, Yu CX, Zhang FX, Gao L, Zhang J, Zhao JJ. Diosgenin relieves goiter via the inhibition of thyrocyte proliferation in a mouse model of Graves' disease. Acta Pharmacol Sin 2014; 35:65-73. [PMID: 24241350 PMCID: PMC4075739 DOI: 10.1038/aps.2013.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
AIM To investigate the effects of diosgenin (Dio), a naturally occurring steroid saponin, on goiter formation in a mouse model of Graves' disease (GD) and the underlying mechanisms. METHODS Female BALB/c mice were injected with adenovirus expressing the A subunit of thyrotropin receptor to induce GD. The mice were treated with Dio (20, 100 mg·kg(-1)·d(-1), ip) for 12 or 24 d. The serum levels of TT4 and TRAb were examined using radioimmunoassay and electrochemiluminescence. The size and morphology of thyroid glands were examined. Thyrocyte proliferation was determined using BrdU incorporation assay. The expression of proliferation-associated proteins IGF-1, NF-κB, cyclin D1, and PCNA in thyroids was analyzed using immunohistochemistry and real-time PCR. RESULTS The GD mice showed significantly high serum levels of TRAb and TT4 compared to the normal mice. Treatment of the GD mice with Dio for 24 d dose-dependently reduced the TT4 level and thyroid size, but did not affect the abnormal level of TRAb. Furthermore, Dio treatment dose-dependently reversed the morphological changes and reduced excessive thyrocyte proliferation in thyroids of the GD mice. Dio treatment also dose-dependently reduced the mRNA and protein levels of IGF-1, NF-κB, cyclin D1, and PCNA in thyroids of the GD mice. CONCLUSION Dio relieves goiter in a mouse model of GD through the inhibition of thyrocyte proliferation. The mechanisms involve the suppression of IGF-1, NF-κB, cyclin D1, and PCNA expression.
Collapse
Affiliation(s)
- Hu Cai
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Ji-nan 250011, China
- Department of Endocrinology, Taizhou First Peoples' Hospital, Taizhou 318000, China
| | - Zhe Wang
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
| | - Hai-qing Zhang
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Ji-nan 250011, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan 250011, China
| | - Fu-rong Wang
- Department of Pharmacology, Shandong University of Traditional Chinese Medicine, Ji-nan 250011, China
| | - Chun-xiao Yu
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Ji-nan 250011, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan 250011, China
| | - Feng-xia Zhang
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Ji-nan 250011, China
- Department of Neurology, Hospital affiliated to Shandong University of Traditional Chinese Medicine, Ji-nan 250011, China
| | - Ling Gao
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Ji-nan 250011, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan 250011, China
| | - Jian Zhang
- Department of Pharmacy, Shandong Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
| | - Jia-jun Zhao
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Ji-nan 250011, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Ji-nan 250011, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan 250011, China
| |
Collapse
|
25
|
Mollica JQ, Cara DC, D’Auriol M, Oliveira VB, Cesar IC, Brandão MG. Anti-inflammatory activity of American yam Dioscorea trifida L.f. in food allergy induced by ovalbumin in mice. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Chiang SS, Pan TM. Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health. Appl Microbiol Biotechnol 2013; 97:1489-500. [PMID: 23318837 DOI: 10.1007/s00253-012-4675-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
Abstract
Phytoestrogens are a class of bioactive compounds derived from plants and exert various estrogenic and antiestrogenic effects. Estrogen deficiency osteoporosis has become a serious problem in elderly women. The use of ovariectomized (OVX) rat or mice models to simulate the postmenopausal condition is well established. This review aimed to clarify the sources, biochemistry, absorption, metabolism, and mode of action of phytoestrogens on bone health in intervention studies. In vitro, phytoestrogens promote protein synthesis, osteoprotegerin/receptor activation of nuclear factor-kappa B ligand ratio, and mineralization by osteoblast-like cells (MC3T3-E1). In the OVX murine model, administration of phytoestrogens can inhibit differentiation and activation of osteoclasts, expression of tartrate-resistant acid phosphatase, and secretion of pyridinoline compound. Phytoestrogens also enhance bone formation and increase bone mineral density and levels of alkaline phosphatase, osteocalcin, osteopontin, and α1(I) collagen. Results of mechanistic studies have indicated that phytoestrogens suppress the rate of bone resorption and enhance the rate of bone formation.
Collapse
Affiliation(s)
- Shen-Shih Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 250 Kuokuang Road, Taichung 40227, Taiwan
| | | |
Collapse
|
27
|
Huang B, Du D, Zhang R, Wu X, Xing Z, He Y, Huang W. Synthesis, characterization and biological studies of diosgenyl analogues. Bioorg Med Chem Lett 2012; 22:7330-4. [PMID: 23153797 DOI: 10.1016/j.bmcl.2012.10.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/14/2012] [Accepted: 10/17/2012] [Indexed: 02/05/2023]
Abstract
A series of optical amino acid diosgenyl esters and diosgenyl salicylate conjugates were designed and synthesized to develop new anticancer and anti-inflammatory agents. The analogue 9c that contains an 6-aminohexanoic acid residue at C-3 of diosgenin exhibits higher potency against all three tumor cell lines with IC(50) values ranging from 4.7 μM in C26 cells to 14.6 μM in Hep G2 cells. In addition, seven of newly synthesized compounds significantly inhibit xylene-induced ear edema and exhibit comparable or better anti-inflammatory activities than those of diosgenin and aspirin. Furthermore, preliminary structure-activity relationship studies demonstrate that diosgenyl salicylate conjugates have stronger anti-inflammatory activities than amino acid diosgenyl esters.
Collapse
Affiliation(s)
- Baozhan Huang
- Institute for Nanobiomedical Technology and Membrane Biology, and Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Patel K, Gadewar M, Tahilyani V, Patel DK. A review on pharmacological and analytical aspects of diosgenin: a concise report. NATURAL PRODUCTS AND BIOPROSPECTING 2012; 2. [PMCID: PMC4131590 DOI: 10.1007/s13659-012-0014-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diosgenin is a steroidal sapogenin found in plants such as Dioscorea nipponoca, Solanum incanum, Solanum xanthocarpum and Trigonella foenum graecum. Diosgenin, biologically active phytochemicals have been used for the treatment of various types of disorder such as leukemia, inflammation, hypercholesterolemia and cancer. It is also able to prevent bone loss to the same extent as that of oestrogen. It is a typical initial intermediate for synthesis of steroidal compounds, oral contraceptives and sex hormones. Dioscorea, Costus and Trigonella are mainly used for the production of diosgenin. On the basis of literature survey it divulges that diosgenin has very impressive pharmacological profile and could be used as a medicine for the treatment of different types of disorders in the future. Thus, the present work aims to provide collective information in concern with its pharmacological activity and phytoanalytical techniques. This review will be beneficial to researches for the development of an alternative method for the treatment of innumerable diseases from diosgenin. ![]()
Collapse
Affiliation(s)
- Kanika Patel
- />G.L.A Institute of Pharmaceutical Research, Mathura, India
| | | | | | - Dinesh Kumar Patel
- />Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
29
|
Huang CH, Cheng JY, Deng MC, Chou CH, Jan TR. Prebiotic effect of diosgenin, an immunoactive steroidal sapogenin of the Chinese yam. Food Chem 2011; 132:428-32. [PMID: 26434311 DOI: 10.1016/j.foodchem.2011.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 10/01/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
This study investigated the effect of diosgenin, a yam-derived phytochemical, on the growth of enteric lactic acid bacteria (LAB). The in vivo effect of diosgenin on the density of intestinal flora was examined in a murine model of food allergy. Oral administration with diosgenin markedly restored the diminished density of faecal LAB associated with allergic reactions. The direct effect of diosgenin and several structure-related steroidal compounds on the growth of faecal anaerobes isolated from diosgenin-administered mice was also investigated. The presence of diosgenin significantly enhanced the growth of Lactobacillus murinus and Lactobacillus reuteri, but not enterococci. Structure-activity relationship analysis showed that the prebiotic activity of steroidal sapogenins might require structural elements of the C5-C6 double bond and intact E- and F-rings. Collectively, these results indicate that steroidal sapogenins may be a novel class of prebiotics to LAB.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Jin-Yi Cheng
- Institute of Nursing, Central Taiwan University of Science and Technology, No. 666, Buzi Rd., Beitun Dist., Taichung City 40601, Taiwan
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, No. 376, Chung-Chung Rd., Tansui, New Taipei City 25158, Taiwan
| | - Chung-Hsi Chou
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Tong-Rong Jan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
30
|
Chiang SS, Chang SP, Pan TM. Osteoprotective effect of Monascus-fermented dioscorea in ovariectomized rat model of postmenopausal osteoporosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9150-7. [PMID: 21800902 DOI: 10.1021/jf201640j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This experiment established the ovariectomized (OVX) rat model of postmenopausal osteoporosis and examined the effect of the oral administration of different dosages of dioscorea, red mold dioscorea (RMD), and soy isoflavones on bone mineral density (BMD). Three months after osteoporosis had been induced and 4 weeks after feeding had begun, the tibia and femur BMD of OVX rats administered RMD showed significant increases compared with that of all other groups of OVX rats. Closer examination using microcomputed tomography also revealed that the RMD-administered rats had denser trabecular bone volume and a higher trabecular number compared to all other rat groups. Reconstructed 3D imaging indicated increases in cancellous bone mineral content, cancellous bone mineral density, and cortical bone mineral content of the proximal tibia in OVX rats. These findings indicate that administration of monacolin K and phytoestrogen diosgenin could prevent bone loss induced by estrogen deficiency.
Collapse
Affiliation(s)
- Shen-Shih Chiang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | |
Collapse
|
31
|
Wang YJ, Pan KL, Hsieh TC, Chang TY, Lin WH, Hsu JTA. Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus. JOURNAL OF NATURAL PRODUCTS 2011; 74:580-4. [PMID: 21391660 DOI: 10.1021/np100578u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Diosgenin (3β-hydroxy-5-spirostene, 1), a plant-derived sapogenin, is used as a dietary supplement. However, the biological effects of 1 related to viral replication remain unexplored. In this study, the effects of 1 on hepatitis C virus (HCV) replication were evaluated. Based on a reporter-based HCV subgenomic replicon system, 1 was found to inhibit HCV replication at low micromolar concentrations. The EC(50) (concentration at which 50% of HCV replication is inhibited) of 1 was 3.8 μM. No cellular toxicity was observed at this concentration. Diosgenin (1) also significantly reduced the levels of viral RNA and viral proteins as evaluated by quantitative real-time reverse transcriptase PCR and Western blot analysis, respectively. In addition, in an alternative HCV antiviral system more closely aligned to all steps involved in the HCV infection and life cycle, 1 totally abolished HCV replication at 20 μM. Moreover, 1 reduced the phosphorylation of signal transducer and activator of transcription 3. A combination of 1 and interferon-α exerted an additive effect on the resultant anti-HCV activity.
Collapse
Affiliation(s)
- Ya-Jean Wang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Wang CC, Lin HL, Liang HJ, Jan TR. Areca nut extracts enhance the development of CD11b(+) Gr-1(+) cells with the characteristics of myeloid-derived suppressor cells in antigen-stimulated mice. J Oral Pathol Med 2011; 40:769-77. [PMID: 21481006 DOI: 10.1111/j.1600-0714.2011.01043.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Areca quid chewing is an etiological factor contributing to the development of oral cancer and pre-cancers, whose pathophysiology has been linked to inflammation and immune deterioration. Myeloid-derived suppressor cells (MDSC) play a key role in the regulation of immunity under certain pathological conditions, such as inflammation and cancer. As areca nut extracts (ANE) have been reported to induce a proinflammatory effect in antigen-stimulated mice, we hypothesized that ANE might enhance the development of MDSC. METHODS Ovalbumin (OVA)-sensitized BALB/c mice were daily administered with ANE (5-50 mg/kg), polyphenol-enriched ANE (PANE; 25 mg/kg) or arecoline (5 mg/kg) by intraperitoneal injection for 10 doses. The mouse footpads were then subcutaneously challenged with OVA to induce local inflammatory responses. RESULTS ANE and PANE treatment significantly increased the spleen index and the population of CD11b(+) Gr-1(+) cells in the spleen and peripheral blood, whereas arecoline was inactive. In addition, ANE and PANE treatment enhanced the expression of cytokines and enzymes associated with the immunosuppressive function of MDSC, including IL-10, arginase-I and iNOS in splenic CD11b(+) cells. Concordantly, ANE and PANE treatment augmented the infiltration of Gr-1(+) IL-10(+) cells in the footpads challenged with OVA. CONCLUSIONS Our results suggested that areca nut constituents, in particular, polyphenols enhanced the development of myeloid-derived suppressor cells in vivo, which may be a critical mechanism linking inflammation and the compromised immunity reported to be associated with the pathophysiology of areca-related oral diseases.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Animal Cancer Center, Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei
| | | | | | | |
Collapse
|