1
|
Robinson KE, Moniz HA, Stokes AN, Feldman CR. Where Does All the Poison Go? Investigating Toxicokinetics of Newt (Taricha) Tetrodotoxin (TTX) in Garter Snakes (Thamnophis). J Chem Ecol 2024; 50:489-502. [PMID: 38842636 DOI: 10.1007/s10886-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Animals that consume toxic diets provide models for understanding the molecular and physiological adaptations to ecological challenges. Garter snakes (Thamnophis) in western North America prey on Pacific newts (Taricha), which employ tetrodotoxin (TTX) as an antipredator defense. These snakes possess mutations in voltage-gated sodium channels (Nav), the molecular targets of TTX, that decrease the binding ability of TTX to sodium channels (target-site resistance). However, genetic variation at these loci that cannot explain all the phenotypic variation in TTX resistance in Thamnophis. We explored a separate means of resistance, toxin metabolism, to determine if TTX-resistant snakes either rapidly remove TTX or sequester TTX. We examined the metabolism and distribution of TTX in the body (toxicokinetics), to determine differences between TTX-resistant and TTX-sensitive snakes in the rates at which TTX is eliminated from organs and the whole body (using TTX half-life as our metric). We assayed TTX half-life in snakes from TTX-resistant and TTX-sensitive populations of three garter snake species with a coevolutionary history with newts (T. atratus, T. couchii, T. sirtalis), as well as two non-resistant "outgroup" species (T. elegans, Pituophis catenifer) that seldom (if ever) engage newts. We found TTX half-life varied across species, populations, and tissues. Interestingly, TTX half-life was shortest in T. elegans and P. catenifer compared to all other snakes. Furthermore, TTX-resistant populations of T. couchii and T. sirtalis eliminated TTX faster (shorter TTX half-life) than their TTX-sensitive counterparts, while populations of TTX-resistant and TTX-sensitive T. atratus showed no difference rates of TTX removal (same TTX half-life). The ability to rapidly eliminate TTX may have permitted increased prey consumption, which may have promoted the evolution of additional resistance mechanisms. Finally, snakes still retain substantial amounts of TTX, and we projected that snakes could be dangerous to their own predators days to weeks following the ingestion of a single newt. Thus, aspects of toxin metabolism may have been key in driving predator-prey relationships, and important in determining other ecological interactions.
Collapse
Affiliation(s)
- Kelly E Robinson
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA.
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.
| | - Haley A Moniz
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Amber N Stokes
- Department of Biology, California State University Bakersfield, Bakersfield, CA, USA
| | - Chris R Feldman
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
2
|
Eleftherakos K, Polymeni RM, Mikropoulou EV, Vougogiannopoulou K, Georgiadis C, Petrakis EA, Skaltsounis LA, Halabalaki M. A skin secretion metabolome analysis of the Greek Dodecanese Lycian salamanders: Preliminary evidence of dietary alkaloid sequestration in urodeles. PLoS One 2024; 19:e0300278. [PMID: 39208286 PMCID: PMC11361651 DOI: 10.1371/journal.pone.0300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/25/2024] [Indexed: 09/04/2024] Open
Abstract
Lyciasalamandra species, like most amphibians, secrete a wide array of compounds from their granular and mucous skin glands, including the internally synthesized samandarine alkaloids, making their skin a complex organ performing a variety of functions. Lyciasalamandra helverseni and L. luschani basoglui are insular endemics of the Dodecanese islands of SE Greece, bearing distinct isolated populations, with well-documented phylogenetic profiles. Here, we employ a metabolomics approach, utilizing UPLC-ESI-HRMS/MS data of the skin secretions sampled from a number of specimens found in the islands of Karpathos, Kasos and Kastellorizo, in an effort to reveal aspects of their chemistry and diversity across populations. The results indicated statistically significant variation between all taxa examined, based on various secreted compounds. The underlying factors of variation highlighted by the multivariate analysis were differences in samandarine and other alkaloid content as well as in animal size. Metabolite annotation, based on dereplication tools and most importantly HRMS and HRMS/MS spectra, yielded a number of known samandarine alkaloids, reported for the first time in the currently studied Lyciasalamandra species. We also present documentation for novel members of the samandarine alkaloid family, as well as preliminary evidence for a possible dietary alkaloid sequestration. This work can set the basis for further research of this often-neglected endemic species of the Salamandridae, as well as the structural investigation of the samandarine alkaloid group.
Collapse
Affiliation(s)
- Karolos Eleftherakos
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Roza Maria Polymeni
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Vougogiannopoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Georgiadis
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios A. Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros A. Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Tarvin RD, Coleman JL, Donoso DA, Betancourth-Cundar M, López-Hervas K, Gleason KS, Sanders JR, Smith JM, Ron SR, Santos JC, Sedio BE, Cannatella DC, Fitch R. Passive accumulation of alkaloids in non-toxic frogs challenges paradigms of the origins of acquired chemical defenses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593697. [PMID: 38798461 PMCID: PMC11118485 DOI: 10.1101/2024.05.13.593697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Further, we confirm the presence of alkaloids in two putatively non-toxic frogs from other families. Our data suggest the existence of a phenotypic intermediate between toxin consumption and sequestration-passive accumulation-that differs from active sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms.
Collapse
Affiliation(s)
- Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jeffrey L. Coleman
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - David A. Donoso
- Grupo de Investigación en Ecología Evolutiva en los Trópicos (EETROP), Universidad de las Américas, Quito, Ecuador
- Ecological Networks Lab, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | - Kimberly S. Gleason
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - J. Ryan Sanders
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - Jacqueline M. Smith
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan C. Santos
- Department of Biological Sciences, St John’s University, NY, USA 11439
| | - Brian E. Sedio
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - David C. Cannatella
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
| | - Richard Fitch
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
4
|
Garay-Talero A, Goulart TAC, Gallo RDC, Pinheiro RDC, Hoyos-Orozco C, Jurberg ID, Gamba-Sánchez D. An aza-Robinson Annulation Strategy for the Synthesis of Fused Bicyclic Amides: Synthesis of (±)-Coniceine and Quinolizidine. Org Lett 2023; 25:7940-7945. [PMID: 37877616 PMCID: PMC10630962 DOI: 10.1021/acs.orglett.3c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/26/2023]
Abstract
An aza-Robinson annulation strategy is described using a NaOEt-catalyzed conjugate addition of cyclic imides onto vinyl ketones, followed by a TfOH-mediated intramolecular aldol condensation to afford densely functionalized fused bicyclic amides. The potential use of these amides in the synthesis of alkaloids is demonstrated by the sequential conversion of appropriate precursors to (±)-coniceine and quinolizidine in two additional steps, thus allowing their preparation in overall 40 and 44% yields, respectively.
Collapse
Affiliation(s)
- Alexander Garay-Talero
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| | - Tales A. C. Goulart
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Rafael D. C. Gallo
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Roberto do C. Pinheiro
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Catalina Hoyos-Orozco
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| | - Igor D. Jurberg
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Diego Gamba-Sánchez
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| |
Collapse
|
5
|
Lazib Y, Naves JG, Labande A, Dauban P, Saget T. Asymmetric Syntheses of Enantioenriched 2,5-Disubstituted Pyrrolidines. ACS ORGANIC & INORGANIC AU 2023; 3:120-129. [PMID: 37303503 PMCID: PMC10251504 DOI: 10.1021/acsorginorgau.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/13/2023]
Abstract
C2-Symmetrical scaffolds are privileged ligands in metal catalysis and are also widely used in organocatalysis. Among these, 2,5-disubstituted pyrrolidines hold a paramount importance, especially since they also find application in medicinal chemistry. This review highlights the stereoselective syntheses of these C2-symmetrical nitrogen heterocycles. It includes synthetic strategies based on the use of the chiral pool as well as the more recent sequences designed following major achievements in asymmetric catalysis.
Collapse
Affiliation(s)
- Yanis Lazib
- Université
Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Junio Guimaraes Naves
- Université
Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Agnès Labande
- LCC-CNRS, Université de Toulouse, CNRS, INPT, 205 route de Narbonne, 31077 Toulouse, France
| | - Philippe Dauban
- Université
Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Tanguy Saget
- Université
Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Krieger AC, Povilaitis SC, Gowda P, O’Connell LA, Eberlin LS. Noninvasive Detection of Chemical Defenses in Poison Frogs Using the MasSpec Pen. ACS MEASUREMENT SCIENCE AU 2022; 2:475-484. [PMID: 36281295 PMCID: PMC9585640 DOI: 10.1021/acsmeasuresciau.2c00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Poison frogs are well-known for their fascinating ability to store alkaloids in their skin as chemical defense against predators. Chemical methods used to study these alkaloids are limited by requirements for euthanasia or stress during sampling. Here, we demonstrate sensitive and biocompatible alkaloid detection and monitoring in vivo using the MasSpec Pen, a handheld, noninvasive chemical detection device coupled to a mass spectrometer. The MasSpec Pen allowed rapid (<15 s), gentle, and consecutive molecular analysis without harm or undue stress to the animals. Through a month-long alkaloid-feeding study with the dyeing poison frog, we observed temporal dynamics of chemical sequestration in vivo by comparing frogs fed the alkaloid decahydroquinoline (DHQ) to vehicle-fed frogs. We also demonstrate the feasibility of the MasSpec Pen for the untargeted detection of rich alkaloid profiles from skin extracts of the Diablito poison frog, collected from two distinct geographical populations in Ecuador. The results obtained in this study demonstrate the utility of the MasSpec Pen for direct, rapid, and biocompatible analysis of poison frog alkaloids.
Collapse
Affiliation(s)
- Anna C. Krieger
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sydney C. Povilaitis
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Prajwal Gowda
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren A. O’Connell
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Livia S. Eberlin
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Department
of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Chen BS, Zhang D, de Souza FZR, Liu L. Recent Advances in the Synthesis of Marine-Derived Alkaloids via Enzymatic Reactions. Mar Drugs 2022; 20:md20060368. [PMID: 35736171 PMCID: PMC9229328 DOI: 10.3390/md20060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alkaloids are a large and structurally diverse group of marine-derived natural products. Most marine-derived alkaloids are biologically active and show promising applications in modern (agro)chemical, pharmaceutical, and fine chemical industries. Different approaches have been established to access these marine-derived alkaloids. Among these employed methods, biotechnological approaches, namely, (chemo)enzymatic synthesis, have significant potential for playing a central role in alkaloid production on an industrial scale. In this review, we discuss research progress on marine-derived alkaloid synthesis via enzymatic reactions and note the advantages and disadvantages of their applications for industrial production, as well as green chemistry for marine natural product research.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Di Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fayene Zeferino Ribeiro de Souza
- Centro Universitário Planalto do Distrito Federal, Universidade Virtual do Estado de São Paulo (UNIPLAN), Campus Bauru 17014-350, Brazil
- Correspondence: ; Tel.: +55-014-32452580
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
8
|
Yeung KA, Chai PR, Russell BL, Erickson TB. Avian Toxins and Poisoning Mechanisms. J Med Toxicol 2022; 18:321-333. [PMID: 35474563 PMCID: PMC9492810 DOI: 10.1007/s13181-022-00891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
All around the world, there are species of birds that have developed the ability to acquire toxic chemicals in their bodies making them less palatable or even lethal when consumed or contacted. Exposure to poisonous bird species is rare among humans, yet their poisons can produce serious clinical outcomes. In this study, we conducted a literature search focusing on seven avian species: the pitohuis (Pitohui spp.), blue-capped ifrita (Ifrita kowaldi), European quail (Cortunix corturnix coturnix), spur or spoor-winged goose (Plectropterus gambensis), North American ruffed grouse (Bonasa umbellus), Brush bronzewings (Phaps elegans), and European hoopoes and woodhoopoes (Upupa epops and Phoeniculus purpureus, respectively). We present the geographic distribution of each poisonous bird, toxin physiology and origin, clinical signs and symptoms of poisoning, cases of human toxicity if available and discuss the birds’ ability to prevent self-intoxication. Our results suggest that most cases of contact with toxic birds produce mild symptoms as most of these birds apart from the European quail (C. c. corturnix) and North American ruffed grouse (B. umbellus) are not commonly consumed by humans. Furthermore, we discuss several methods of toxin acquisition in these bird species, which are mostly diet acquired apart from the hoopoes and woodhoopoes (Upupa and Phoeniculus spp.) who have a symbiotic relationship with chemical-producing bacteria in their uropygial glands. In summary, our study provides a comprehensive review of the toxic physiology, clinical manifestations, and evolutionary insight to avian toxins.
Collapse
Affiliation(s)
- Kara A Yeung
- Harvard Affiliated Emergency Medicine Residency (HAEMR) Program, Mass General Brigham, Boston, MA, USA
| | - Peter R Chai
- Department of Emergency Medicine, Division of Medical Toxicology, Mass General Brigham, Vining St. Neville House Boston, Boston, MA, 02115, USA.,The Fenway Institute, Boston, MA, USA.,The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, MA, USA
| | - Brendan L Russell
- Department of Emergency Medicine, Division of Medical Toxicology, Mass General Brigham, Vining St. Neville House Boston, Boston, MA, 02115, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, Division of Medical Toxicology, Mass General Brigham, Vining St. Neville House Boston, Boston, MA, 02115, USA. .,Harvard Humanitarian Institute, Cambridge, MA, USA.
| |
Collapse
|
9
|
Thompson C, Malcolm B, Tegzes J. Use of Phyllomedusa bicolour secretion during kambô ritual: observational responses, dosage, and risk of adverse events. TOXICOLOGY COMMUNICATIONS 2022. [DOI: 10.1080/24734306.2021.2006524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
| | - Benjamin Malcolm
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | | |
Collapse
|
10
|
Gonzalez M, Palacios-Rodriguez P, Hernandez-Restrepo J, González-Santoro M, Amézquita A, Brunetti AE, Carazzone C. First characterization of toxic alkaloids and volatile organic compounds (VOCs) in the cryptic dendrobatid Silverstoneia punctiventris. Front Zool 2021; 18:39. [PMID: 34446035 PMCID: PMC8390233 DOI: 10.1186/s12983-021-00420-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Poison frogs are known for the outstanding diversity of alkaloid-based chemical defences with promising therapeutic applications. However, current knowledge about chemical defences in Dendrobatoidea superfamily has two sources of bias. First, cryptic, brown-colored species have been neglected in comparison to those conspicuously colored, and second, there has been little interest in characterizing metabolites other than alkaloids mediating defensive functions. In an effort to contribute to fill the gap of knowledge about cryptic species and broadening the spectrum of compounds analyzed we have applied head-space solid phase microextraction coupled to gas chromatography and mass spectrometry (HS-SPME/GC-MS) for extracting amphibian alkaloids and volatile organic compounds (VOCs) from Silverstoneia punctiventris. Results Using the skin from 8 specimens in 4 biological replicates we have found 33 different compounds. Twenty of them were classified as VOCs into 15 chemical classes including alkanes, alcohols, carbonyl compounds, methylpyridines, benzothiazoles, N-alkylpyrrolidines, pyrazines, and sesquiterpenoids, some of which were previously reported as repellents, defence compounds or defence pheromones in other organisms, and as sex pheromones in a treefrog. Interestingly, six of the remaining compounds were identified as alkaloids previously reported in other toxic/unpalatable dendrobatid frogs. Conclusions This is the first report of alkaloids and VOCs found in the Silverstoneia genus, which has been assumed for decades as non-chemically defended. This study establishes HS-SPME/GC-MS as a new application for a simultaneous approach to amphibian alkaloids and VOCs in poison frogs while opens up new research questions to assess the co-occurrence of both type of compounds and to investigate the evolutionary significance of a defence gradient that includes olfactory avoidance, unpalatability, and toxicity in dendrobatids. In addition, our results show that amphibian alkaloids could have a dual function (olfactory at distance, taste by contact) never explored before neither in Silverstonaeia nor in any other dendrobatid species. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00420-1.
Collapse
Affiliation(s)
- Mabel Gonzalez
- Department of Chemistry, Universidad de los Andes, Bogotá, AA, 4976, Colombia
| | | | | | | | - Adolfo Amézquita
- Department of Biological Sciences, Universidad de los Andes, Bogotá, AA, 4976, Colombia
| | - Andrés E Brunetti
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET - UNaM), Facultad de Ciencias Exactas, Universidad Nacional de Misiones, N3300, Posadas, Argentina.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - Chiara Carazzone
- Department of Chemistry, Universidad de los Andes, Bogotá, AA, 4976, Colombia.
| |
Collapse
|
11
|
Fisher MC, Pasmans F, Martel A. Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annu Rev Microbiol 2021; 75:673-693. [PMID: 34351790 DOI: 10.1146/annurev-micro-052621-124212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, Imperial College London, London W2 1PG, United Kingdom;
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
12
|
Biswas RG, Singh VK. Direct enantioselective synthesis of pyrrolizidines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Lu Y, Dey PN, Beaudry CM. Intramolecular Pyridinium Oxide Cycloadditions: Systematic Study of Substitution, Diastereoselectivity, and Regioselectivity. Chemistry 2021; 27:4028-4032. [PMID: 33434367 DOI: 10.1002/chem.202100115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/11/2022]
Abstract
Intramolecular pyridinium oxide cycloadditions form complex polycyclic nitrogenous architectures. The diastereoselectivity and regioselectivity of pyridinium oxide cycloadditions was systematically investigated for the first time using complex substrates. Predictably high levels of diastereoselectivity and regioselectivity are observed, which can be attributed to minimization of steric (syn-pentane) and torsional strain in the products. The reaction is reversible under the reaction conditions, and it is stereospecific with respect to the dipolarophile geometry.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97333, USA
| | - Patrick N Dey
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97333, USA
| | - Christopher M Beaudry
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97333, USA
| |
Collapse
|
14
|
Zvejniece L, Dambrova M, Smits G. Total synthesis and in vivo evaluation of 8-deoxypumiliotoxin 193H. Nat Prod Res 2021; 35:440-446. [PMID: 31264906 DOI: 10.1080/14786419.2019.1636244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022]
Abstract
The total synthesis of both the double bond isomers of indolizine alkaloid 8-deoxypumiliotoxin 193H has been accomplished. Both the double bond isomers Z-4 and E-4 induced convulsions and inhibited neuro-muscular activity at a dose of 25 mg/kg after intraperitoneal injection in mice. The lethal dose of Z-4 and E-4 was 100 mg/kg, indicating that 8-deoxypumiliotoxin 193H is 10-times less toxic than the known pumiliotoxin (+)-251 D.
Collapse
Affiliation(s)
| | | | - Gints Smits
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
15
|
Quevedo-Acosta Y, Jurberg ID, Gamba-Sánchez D. Activating Imides with Triflic Acid: A General Intramolecular Aldol Condensation Strategy Toward Indolizidine, Quinolizidine, and Valmerin Alkaloids. Org Lett 2020; 22:239-243. [PMID: 31845813 DOI: 10.1021/acs.orglett.9b04199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple, inexpensive, step economic, and highly modular synthetic strategy to access izidine alkaloids is described. The key step is a TfOH-promoted intramolecular aldol condensation between enol and cyclic imide moieties. This cyclization strategy can be employed within an aza-Robinson annulation framework and represents a general tool to build fused bicyclic amines. To illustrate the power of this method, we describe the preparation of (±)-coniceine, (±)-quinolizidine, (±)-tashiromine, (±)-epilupinine, and the core of (±)-valmerins.
Collapse
Affiliation(s)
- Yovanny Quevedo-Acosta
- Institute of Chemistry , State University of Campinas , Rua Monteiro Lobato 270 , 13083-862 Campinas , São Paulo , Brazil
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department , Universidad de los Andes , Cra 1 No. 18A-12 Q:305 , 111711 Bogotá , Colombia
| | - Igor D Jurberg
- Institute of Chemistry , State University of Campinas , Rua Monteiro Lobato 270 , 13083-862 Campinas , São Paulo , Brazil
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department , Universidad de los Andes , Cra 1 No. 18A-12 Q:305 , 111711 Bogotá , Colombia
| |
Collapse
|
16
|
Varga JFA, Bui-Marinos MP, Katzenback BA. Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Front Immunol 2019; 9:3128. [PMID: 30692997 PMCID: PMC6339944 DOI: 10.3389/fimmu.2018.03128] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 01/26/2023] Open
Abstract
Amphibian skin is a mucosal surface in direct and continuous contact with a microbially diverse and laden aquatic and/or terrestrial environment. As such, frog skin is an important innate immune organ and first line of defence against pathogens in the environment. Critical to the innate immune functions of frog skin are the maintenance of physical, chemical, cellular, and microbiological barriers and the complex network of interactions that occur across all the barriers. Despite the global decline in amphibian populations, largely as a result of emerging infectious diseases, we understand little regarding the cellular and molecular mechanisms that underlie the innate immune function of amphibian skin and defence against pathogens. In this review, we discuss the structure, cell composition and cellular junctions that contribute to the skin physical barrier, the antimicrobial peptide arsenal that, in part, comprises the chemical barrier, the pattern recognition receptors involved in recognizing pathogens and initiating innate immune responses in the skin, and the contribution of commensal microbes on the skin to pathogen defence. We briefly discuss the influence of environmental abiotic factors (natural and anthropogenic) and pathogens on the immunocompetency of frog skin defences. Although some aspects of frog innate immunity, such as antimicrobial peptides are well-studied; other components and how they contribute to the skin innate immune barrier, are lacking. Elucidating the complex network of interactions occurring at the interface of the frog's external and internal environments will yield insight into the crucial role amphibian skin plays in host defence and the environmental factors leading to compromised barrier integrity, disease, and host mortality.
Collapse
Affiliation(s)
- Joseph F A Varga
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
17
|
Márquez R, Ramírez‐Castañeda V, Amézquita A. Does batrachotoxin autoresistance coevolve with toxicity in
Phyllobates
poison‐dart frogs? Evolution 2019; 73:390-400. [DOI: 10.1111/evo.13672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/29/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Roberto Márquez
- Department of Ecology and Evolution University of Chicago 1101 East 57th St. Chicago Illinois 60637
- Department of Biological Sciences Universidad de los Andes A.A. 4976 Bogotá Colombia
| | | | - Adolfo Amézquita
- Department of Biological Sciences Universidad de los Andes A.A. 4976 Bogotá Colombia
| |
Collapse
|
18
|
Berlinck RGS, Monteiro AF, Bertonha AF, Bernardi DI, Gubiani JR, Slivinski J, Michaliski LF, Tonon LAC, Venancio VA, Freire VF. Approaches for the isolation and identification of hydrophilic, light-sensitive, volatile and minor natural products. Nat Prod Rep 2019; 36:981-1004. [DOI: 10.1039/c9np00009g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water-soluble, volatile, minor and photosensitive natural products are yet poorly known, and this review discusses the literature reporting the isolation strategies for some of these metabolites.
Collapse
Affiliation(s)
| | - Afif F. Monteiro
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Ariane F. Bertonha
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Darlon I. Bernardi
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Juliana R. Gubiani
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Juliano Slivinski
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | | | | | - Victor A. Venancio
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Vitor F. Freire
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
19
|
L. Terán J, M. Aparicio D, Bocardo-Bautista A, L. Orea M, R. Juárez J, Gnecco D. Divergent Synthesis of 5,6- and 3,6-Dihydropyridin-2(1H)-one via Intramolecular Knoevenagel Condensation. HETEROCYCLES 2019. [DOI: 10.3987/com-18-14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Lüddecke T, Schulz S, Steinfartz S, Vences M. A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra. Naturwissenschaften 2018; 105:56. [DOI: 10.1007/s00114-018-1579-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022]
|
21
|
Kuznetsov NY, Tikhov RM, Godovikov IA, Khrustalev VN, Bubnov YN. New enolate-carbodiimide rearrangement in the concise synthesis of 6-amino-2,3-dihydro-4-pyridinones from homoallylamines. Org Biomol Chem 2018; 14:4283-98. [PMID: 27080757 DOI: 10.1039/c6ob00293e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three-step synthesis of 6-amino-2,3-dihydro-4-pyridinones from homoallylamines involving NBS-mediated cyclization of N-(3-butenyl)ureas to 6-(bromomethyl)-2-iminourethanes, dehydrohalogenation and a novel rearrangement as a key step has been developed. The scope and limitations of the method, as well as the mechanism of the rearrangement, supported by kinetic studies and the isolation of N-(1-adamantyl)carbodiimide, are discussed. The final products, imino-analogues of well known piperidine-2,4-diones, are promising building blocks in the synthesis of bio-/pharmacological compounds.
Collapse
Affiliation(s)
- N Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - R M Tikhov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - I A Godovikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - V N Khrustalev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation. and Department of Inorganic Chemistry, Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russian Federation
| | - Yu N Bubnov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation. and N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
22
|
Piccichè M, Pinto A, Griera R, Bosch J, Amat M. Enantioselective Total Synthesis of (+)-Gephyrotoxin 287C. Org Lett 2017; 19:6654-6657. [PMID: 29182285 DOI: 10.1021/acs.orglett.7b03381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthesis of (+)-gephyrotoxin 287C using (S)-phenylglycinol-derived tricyclic lactam 7 as the starting enantiomeric scaffold is reported. From the stereochemical standpoint, the key steps are the generation of the DHQ C-5 stereocenter by hydrogenation of the C-C double bond, removal of the chiral inductor to give a cis-DHQ, introduction of the DHQ C-2 substituent, completion of the (Z)-enyne moiety, and generation of the C-1 stereocenter during closure of the pyrrolidine ring.
Collapse
Affiliation(s)
- Miriam Piccichè
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona , 08028-Barcelona, Spain
| | - Alexandre Pinto
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona , 08028-Barcelona, Spain
| | - Rosa Griera
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona , 08028-Barcelona, Spain
| | - Joan Bosch
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona , 08028-Barcelona, Spain
| | - Mercedes Amat
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona , 08028-Barcelona, Spain
| |
Collapse
|
23
|
Grant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel AM, Machado DJ, Rueda-Almonacid JV. Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives Revisited (Anura: Dendrobatoidea). SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2017. [DOI: 10.2994/sajh-d-17-00017.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Taran Grant
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
- Amphibian Collection, Museum of Zoology of the University of São Paulo, 04263-000, São Paulo, SP, Brazil
| | - Marco Rada
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Marvin Anganoy-Criollo
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Abel Batista
- Universidad Autónoma de Chiriquí, David, Republic of Panama
- Los Naturalistas, David 0426-01459, Chiriquí, Panama
| | - Pedro Henrique Dias
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Adriana Moriguchi Jeckel
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Denis Jacob Machado
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | | |
Collapse
|
24
|
von Byern J, Mebs D, Heiss E, Dicke U, Wetjen O, Bakkegard K, Grunwald I, Wolbank S, Mühleder S, Gugerell A, Fuchs H, Nürnberger S. Salamanders on the bench – A biocompatibility study of salamander skin secretions in cell cultures. Toxicon 2017; 135:24-32. [DOI: 10.1016/j.toxicon.2017.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
|
25
|
Zhou C, Wang Z, Peng X, Liu Y, Lin Y, Zhang Z, Qiu Y, Jin M, Wang R, Kong D. Discovery of two bombinin peptides with antimicrobial and anticancer activities from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Chem Biol Drug Des 2017. [PMID: 28636781 DOI: 10.1111/cbdd.13055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphibian skin secretions are known to contain numerous peptides with a large array of biological activities. Bombinins are a group of amphibian-derived peptides with broad spectrum antimicrobial activities that have been only identified from the ancient toad species, Bombina. In this study, we described the identification and characterization of a novel bombinin precursor which encoded a bombinin-like peptide (BLP-7) and a novel bombinin H-type peptide (named as Bombinin H-BO) from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. The primary structures of both mature peptides were determined by combinations of molecular cloning of peptide precursor-encoding cDNAs and mass spectrometry techniques. Secondary structure prediction revealed that both peptides had cationic amphipathic α-helical structural features. The synthetic replicate of BLP-7 displayed more potent antimicrobial activity than Bombinin H-BO against Gram-positive and Gram-negative bacteria and yeast. Also, in vitro antitumour assay showed that both peptides possessed obvious antiproliferative activity on three human hepatoma cells (Hep G2/SK-HEP-1/Huh7) at the non-toxic doses. These results indicate the peptide family of bombinins could be a potential source of drug candidates for anti-infection and anticancer therapy.
Collapse
Affiliation(s)
- Chang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Haihe Hospital, Tianjin, China
| | - Zhengming Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yangjun Lin
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Edwards CL, Byrne PG, Harlow P, Silla AJ. Dietary Carotenoid Supplementation Enhances the Cutaneous Bacterial Communities of the Critically Endangered Southern Corroboree Frog (Pseudophryne corroboree). MICROBIAL ECOLOGY 2017; 73:435-444. [PMID: 27623966 DOI: 10.1007/s00248-016-0853-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
The rapid spread of infectious disease has resulted in the decline of animal populations globally. Amphibians support a diversity of microbial symbionts on their skin surface that help to inhibit pathogen colonisation and reduce disease susceptibility and virulence. These cutaneous microbial communities represent an important component of amphibian immune defence, however, very little is known about the environmental factors that influence the cutaneous microbiome. Here, we characterise the cutaneous bacterial communities of a captive colony of the critically endangered Australian southern corroboree frog, Pseudophyrne corroboree, and examine the effect of dietary carotenoid supplementation on bacterial abundance, species richness and community composition. Individuals receiving a carotenoid-supplemented diet exhibited significantly higher bacterial abundance and species richness as well as an altered bacterial community composition compared to individuals that did not receive dietary carotenoids. Our findings suggest that dietary carotenoid supplementation enhances the cutaneous bacteria community of the southern corroboree frog and regulates the presence of bacteria species within the cutaneous microbiome. Our study is the second to demonstrate that carotenoid supplementation can improve amphibian cutaneous bacterial community dynamics, drawing attention to the possibility that dietary manipulation may assist with the ex situ management of endangered species and improve resilience to lethal pathogens such as Batrachochytrium dendrobatidis (Bd).
Collapse
Affiliation(s)
- Casey L Edwards
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peter Harlow
- Herpetofauna Division, Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Aimee J Silla
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
27
|
Filer CN. Tritium-labelled alkaloids: Synthesis and applications. J Labelled Comp Radiopharm 2017; 60:96-109. [DOI: 10.1002/jlcr.3480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022]
|
28
|
Trinh HV, Perrin L, Goekjian PG, Gueyrard D. Development of a Modified Julia Olefination of Imides for the Synthesis of Alkaloids. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huu Vinh Trinh
- Laboratoire Chimie Organique 2 Glycochimie; Université de Lyon; ICBMS; UMR 5246 - CNRS, Bat. 308 - Curien (CPE Lyon); Université Claude Bernard Lyon 1; 43 Bd. du 11 Novembre 1918 69622 Villeurbanne France
| | - Lionel Perrin
- Interface Theory/Experiment: Mechanism & Modeling (ITEMM); ICBMS; UMR 5246 - CNRS; Bat. 308 - Curien (CPE Lyon); Université Claude Bernard Lyon 1; 43 Bd. du 11 Novembre 1918 69622 Villeurbanne France
| | - Peter G. Goekjian
- Laboratoire Chimie Organique 2 Glycochimie; Université de Lyon; ICBMS; UMR 5246 - CNRS, Bat. 308 - Curien (CPE Lyon); Université Claude Bernard Lyon 1; 43 Bd. du 11 Novembre 1918 69622 Villeurbanne France
| | - David Gueyrard
- Laboratoire Chimie Organique 2 Glycochimie; Université de Lyon; ICBMS; UMR 5246 - CNRS, Bat. 308 - Curien (CPE Lyon); Université Claude Bernard Lyon 1; 43 Bd. du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
29
|
McInerney EP, Silla AJ, Byrne PG. The influence of carotenoid supplementation at different life-stages on the foraging performance of the Southern Corroboree frog (Pseudophryne corroboree): A test of the Silver Spoon and Environmental Matching Hypotheses. Behav Processes 2016; 125:26-33. [PMID: 26849910 DOI: 10.1016/j.beproc.2016.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Organismal performance can be significantly affected by the nutritional conditions experienced during different life-stages. The Silver Spoon Hypothesis predicts that individuals will always perform better as adults when they experience advantageous conditions during development. In contrast, the Environmental Matching Hypothesis predicts that individuals will perform better if they experience similar conditions during development and adulthood. Past tests of these hypotheses have focussed on the effect of food quantity on growth and development, with little attempt to investigate the effect of individual nutrients on behavioural traits. This study aimed to test the predictions of the Environmental Matching and Silver Spoon Hypotheses by investigating the influence of carotenoid supplementation at different life-stages on the foraging performance of Pseudophryne corroboree. To assess foraging performance, adults were presented with prey in either a cryptic or conspicuous foraging matrix. There was no effect of diet treatment on time to first movement towards prey, number of stalking events, time spent actively foraging, proportion of successful strikes, proportion of prey consumed or number of pedal luring events. These findings indicate that carotenoid supplementation at different life-stages does not influence the foraging performance of P. corroboree, providing no support for either the Silver Spoon or Environmental Matching Hypotheses.
Collapse
Affiliation(s)
- Emma P McInerney
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - Aimee J Silla
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
30
|
Liu J, Yan SJ, Cao ZM, Cui SS, Lin J. Synthesis of bicyclic 2-pyridones by regioselective annulations of heterocyclic ketene aminals with anhydrides. RSC Adv 2016. [DOI: 10.1039/c6ra23451h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient strategy for the synthesis of substituted bicyclic 2-pyridones is developed. The proposed approach is based on the regioselective N-acylation of heterocyclic ketene aminals (HKAs) with methacrylic anhydride or crotonic anhydride.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Zheng-Mao Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Shi-Sheng Cui
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
31
|
Hager A, Vrielink N, Hager D, Lefranc J, Trauner D. Synthetic approaches towards alkaloids bearing α-tertiary amines. Nat Prod Rep 2015; 33:491-522. [PMID: 26621771 DOI: 10.1039/c5np00096c] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alkaloids account for some of the most beautiful and biologically active natural products. Although they are usually classified along biosynthetic criteria, they can also be categorized according to certain structural motifs. Amongst these, the α-tertiary amine (ATA), i.e. a tetrasubstituted carbon atom surrounded by three carbons and one nitrogen, is particularly interesting. A limited number of methods have been described to access this functional group and fewer still are commonly used in synthesis. Herein, we review some approaches to asymmetrically access ATAs and provide an overview of alkaloid total syntheses where those have been employed.
Collapse
Affiliation(s)
- Anastasia Hager
- Fakultät für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, and Munich Center for Integrated Protein Science, Butenandtstr. 5 - 13, 81377 München, Germany.
| | | | | | | | | |
Collapse
|
32
|
Perera Córdova WH, Leitão SG, Cunha-Filho G, Bosch RA, Alonso IP, Pereda-Miranda R, Gervou R, Touza NA, Quintas LEM, Noël F. Bufadienolides from parotoid gland secretions of Cuban toad Peltophryne fustiger (Bufonidae): Inhibition of human kidney Na(+)/K(+)-ATPase activity. Toxicon 2015; 110:27-34. [PMID: 26615828 DOI: 10.1016/j.toxicon.2015.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/24/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022]
Abstract
Parotoid gland secretions of toad species are a vast reservoir of bioactive molecules with a wide range of biological properties. Herein, for the first time, it is described the isolation by preparative reversed-phase HPLC and the structure elucidation by NMR spectroscopy and/or mass spectrometry of nine major bufadienolides from parotoid gland secretions of the Cuban endemic toad Peltophryne fustiger: ψ-bufarenogin, gamabufotalin, bufarenogin, arenobufagin, 3-(N-suberoylargininyl) marinobufagin, bufotalinin, telocinobufagin, marinobufagin and bufalin. In addition, the secretion was analyzed by UPLC-MS/MS which also allowed the identification of azelayl arginine. The effect of arenobufagin, bufalin and ψ-bufarenogin on Na(+)/K(+)-ATPase activity in a human kidney preparation was evaluated. These bufadienolides fully inhibited the Na(+)/K(+)-ATPase in a concentration-dependent manner, although arenobufagin (IC50 = 28.3 nM) and bufalin (IC50 = 28.7 nM) were 100 times more potent than ψ-bufarenogin (IC50 = 3020 nM). These results provided evidence about the importance of the hydroxylation at position C-14 in the bufadienolide skeleton for the inhibitory activity on the Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- Wilmer H Perera Córdova
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Bloco A,Ilha do Fundão, 21.941-590 Rio de Janeiro, Brazil.
| | - Suzana Guimarães Leitão
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Bloco A,Ilha do Fundão, 21.941-590 Rio de Janeiro, Brazil
| | - Geraldino Cunha-Filho
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, CCS Bloco J, Ilha do Fundão, 21941-902, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Alonso Bosch
- Facultad de Biología, Universidad de La Habana, Calle 25 No. 455, Vedado, Havana City, Cuba
| | - Isel Pascual Alonso
- Facultad de Biología, Universidad de La Habana, Calle 25 No. 455, Vedado, Havana City, Cuba
| | - Rogelio Pereda-Miranda
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510 DF, Mexico
| | - Rodrigo Gervou
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, CCS Bloco J, Ilha do Fundão, 21941-902, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Araújo Touza
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, CCS Bloco J, Ilha do Fundão, 21941-902, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, CCS Bloco J, Ilha do Fundão, 21941-902, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, CCS Bloco J, Ilha do Fundão, 21941-902, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Marson CM, Yau KC. Regioselective synthesis of substituted piperidine-2,4-diones and their derivatives via Dieckmann cyclisations. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Xue F, Xiao T, Wang H, Zhang D, Song H, Qin Y. Synthesis of chiral trans-fused 2-methyl-5-hydroxyldecahydroquinoline. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Balakrishna B, Núñez-Rico JL, Vidal-Ferran A. Substrate Activation in the Catalytic Asymmetric Hydrogenation ofN-Heteroarenes. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500588] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Ligabue-Braun R, Carlini CR. Poisonous birds: A timely review. Toxicon 2015; 99:102-8. [PMID: 25839151 DOI: 10.1016/j.toxicon.2015.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/19/2022]
Abstract
Until very recently, toxicity was not considered a trait observed in birds, but works published in the last two decades started to shed light on this subject. Poisonous birds are rare (or little studied), and comprise Pitohui and Ifrita birds from Papua New Guinea, the European quail, the Spoor-winged goose, the Hoopees, the North American Ruffed grouse, the Bronzewings, and the Red warbler. A hundred more species are considered unpalatable or malodorous to humans and other animals. The present review intends to present the current understanding of bird toxicity, possibly pointing to an ignored research field. Whenever possible, biochemical characteristics of these poisons and their effects on humans and other animals are discussed, along with historical aspects of poison discovery and evolutionary hypothesis regarding their function.
Collapse
Affiliation(s)
- Rodrigo Ligabue-Braun
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil.
| | - Célia Regina Carlini
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil; Instituto do Cérebro (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Rai VK, Sahu GP, Rai A. The first NHC-induced regioselective introduction of C- and N-nucleophiles in to Baylis–Hillman enals. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Jeckel AM, Grant T, Saporito RA. Sequestered and Synthesized Chemical Defenses in the Poison Frog Melanophryniscus moreirae. J Chem Ecol 2015; 41:505-12. [PMID: 25902958 DOI: 10.1007/s10886-015-0578-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/18/2015] [Accepted: 03/30/2015] [Indexed: 01/28/2023]
Abstract
Bufonid poison frogs of the genus Melanophryniscus contain alkaloid-based chemical defenses that are derived from a diet of alkaloid-containing arthropods. In addition to dietary alkaloids, bufadienolide-like compounds and indolealkylamines have been identified in certain species of Melanophryniscus. Our study reports, for the first time, the co-occurrence of large quantities of both alkaloids sequestered from the diet and an endogenously biosynthesized indolalkylamine in skin secretions from individual specimens of Melanophryniscus moreirae from Brazil. GC/MS analysis of 55 individuals of M. moreirae revealed 37 dietary alkaloids and the biosynthesized indolealkylamine bufotenine. On average, pumiliotoxin 267C, bufotenine, and allopumilitoxin 323B collectively represent ca. 90 % of the defensive chemicals present in an individual. The quantity of defensive chemicals differed between sexes, with males possessing significantly less dietary alkaloid and bufotenine than females. Most of the dietary alkaloids have structures with branched-chains, indicating they are likely derived from oribatid mites. The ratio of bufotenine:alkaloid quantity decreased with increasing quantities of dietary alkaloids, suggesting that M. moreirae might regulate bufotenine synthesis in relation to sequestration of dietary alkaloids.
Collapse
Affiliation(s)
- Adriana M Jeckel
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
39
|
Xi X, Li B, Chen T, Kwok HF. A review on bradykinin-related peptides isolated from amphibian skin secretion. Toxins (Basel) 2015; 7:951-70. [PMID: 25793726 PMCID: PMC4379535 DOI: 10.3390/toxins7030951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
Abstract
Amphibian skin secretion has great potential for drug discovery and contributes hundreds of bioactive peptides including bradykinin-related peptides (BRPs). More than 50 BRPs have been reported in the last two decades arising from the skin secretion of amphibian species. They belong to the families Ascaphidae (1 species), Bombinatoridae (3 species), Hylidae (9 speices) and Ranidae (25 species). This paper presents the diversity of structural characteristics of BRPs with N-terminal, C-terminal extension and amino acid substitution. The further comparison of cDNA-encoded prepropeptides between the different species and families demonstrated that there are various forms of kininogen precursors to release BRPs and they constitute important evidence in amphibian evolution. The pharmacological activities of isolated BRPs exhibited unclear structure–function relationships, and therefore the scope for drug discovery and development is limited. However, their diversity shows new insights into biotechnological applications and, as a result, comprehensive and systematic studies of the physiological and pharmacological activities of BRPs from amphibian skin secretion are needed in the future.
Collapse
Affiliation(s)
- Xinping Xi
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
- Natural Drug Discovery Group, School of Pharmacy, Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
40
|
Heravi MM, Ahmadi T, Ghavidel M, Heidari B, Hamidi H. Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Adv 2015. [DOI: 10.1039/c5ra17488k] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The synthetic utility and potential power of the Diels–Alder (D–A) reaction in organic chemistry is evident.
Collapse
Affiliation(s)
| | | | | | | | - Hoda Hamidi
- Department of Chemistry
- Alzahra University
- Tehran
- Iran
| |
Collapse
|
41
|
Das P, Dileepkumar R, Anaswara Krishnan S, Nair AS, Dhar PK, Oommen OV. Decahydroquinolines from the venom of a formicinae ant, Oecophylla smaragdina. Toxicon 2014; 92:50-3. [PMID: 25286394 DOI: 10.1016/j.toxicon.2014.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Ecologically significant species in controlling pests, Oecophylla smaragdina uses its venom to paralyze their prey and to communicate with their colony mates. But no significant analysis of the ant's venom gland secretions has been carried out hitherto. This study describes the identification of venom constituents of Oecophylla smaragdina using coupled gas chromatography and mass spectroscopy (GC-MS) analysis. The results indicate the anticipated presence of a neurotoxin i.e., 2, 5 dipropyl decahydroquinoline and phenol, 2, 4-bis (1, 1 dimethylethyl). This is the first report on presence of decahydroquinolines in the venom of formicinae ant species of genera Oecophylla.
Collapse
Affiliation(s)
- Priya Das
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, 695581, Kerala, India.
| | - R Dileepkumar
- Centre for Venom Informatics, University of Kerala, Thiruvananthapuram, 695581, Kerala, India
| | - S Anaswara Krishnan
- Department of Zoology, University of Kerala, Thiruvananthapuram, 695581, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, 695581, Kerala, India
| | - Pawan K Dhar
- Centre for Systems & Synthetic Biology, University of Kerala, Thiruvananthapuram, 695581, Kerala, India; Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, Uttar Pradesh, India
| | - Oommen V Oommen
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, 695581, Kerala, India; Kerala State Biodiversity Board, Thiruvananthapuram, 695011, Kerala, India
| |
Collapse
|
42
|
Amara Z, Drège E, Troufflard C, Retailleau P, Tran Huu-Dau ME, Joseph D. Switchable stereocontrolled divergent synthesis induced by aza-Michael addition of deactivated primary amines under acid catalysis. Chemistry 2014; 20:15840-8. [PMID: 25308396 DOI: 10.1002/chem.201404589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/31/2022]
Abstract
Switchable tandem intramolecular aza-Michael/Michael and double aza-Michael reactions allow the oriented synthesis of highly functionalised cyclic skeletons. Conjugate addition of deactivated anilines triggers chemo- and stereo-divergent ring-closure reaction pathways with a striking selectivity depending on reaction conditions.
Collapse
Affiliation(s)
- Z Amara
- Université Paris-Sud, UMR 8076 BioCIS, LabEx LERMIT, Equipe de Chimie des Substances naturelles 5, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry (France)
| | | | | | | | | | | |
Collapse
|
43
|
Gregory AW, Chambers A, Hawkins A, Jakubec P, Dixon DJ. Iridium-catalyzed reductive nitro-Mannich cyclization. Chemistry 2014; 21:111-4. [PMID: 25399919 PMCID: PMC4730865 DOI: 10.1002/chem.201405256] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 11/23/2022]
Abstract
A new chemoselective reductive nitro-Mannich cyclization reaction sequence of nitroalkyl-tethered lactams has been developed. Relying on the rapid and chemoselective iridium(I)-catalyzed reduction of lactams to the corresponding enamine, subsequent nitro-Mannich cyclization of tethered nitroalkyl functionality provides direct access to important alkaloid natural-product-like structures in yields up to 81 % and in diastereoselectivities that are typically good to excellent. An in-depth understanding of the reaction mechanism has been gained through NMR studies and characterization of reaction intermediates. The new methodology has been applied to the total synthesis of (±)-epi-epiquinamide in four steps.
Collapse
Affiliation(s)
- Alex W Gregory
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (UK)
| | | | | | | | | |
Collapse
|
44
|
Scope and limitations of the synthesis of functionalized quinolizidinones and related compounds by a simple precursor approach via addition of lithium allylmagnesates to 2-pyridones and RCM as key steps. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull 2014; 30:777-811. [PMID: 25172118 DOI: 10.1007/s12264-014-1460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
Collapse
|
46
|
Zhang X, Kuča K, Dohnal V, Dohnalová L, Wu Q, Wu C. Military potential of biological toxins. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
47
|
Wang SG, You SL. Hydrogenative Dearomatization of Pyridine and an Asymmetric Aza-Friedel-Crafts Alkylation Sequence. Angew Chem Int Ed Engl 2014; 53:2194-7. [DOI: 10.1002/anie.201309876] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 11/11/2022]
|
48
|
Wang SG, You SL. Hydrogenative Dearomatization of Pyridine and an Asymmetric Aza-Friedel-Crafts Alkylation Sequence. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Haslam IS, Roubos EW, Mangoni ML, Yoshizato K, Vaudry H, Kloepper JE, Pattwell DM, Maderson PFA, Paus R. From frog integument to human skin: dermatological perspectives from frog skin biology. Biol Rev Camb Philos Soc 2013; 89:618-55. [DOI: 10.1111/brv.12072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Iain S. Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
| | - Eric W. Roubos
- Department of Anatomy; Radboud University Medical Centre; Geert Grooteplein Noord 2, 6525 EZ, Nijmegen P.O. Box 9101, 6500 HB Nijmegen The Netherlands
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti; La Sapienza University of Rome, Piazzale Aldo Moro, 5-00185; Rome Italy
| | - Katsutoshi Yoshizato
- Academic Advisors Office, Synthetic Biology Research Center; Osaka City University Graduate School of Medicine; Osaka Japan
- Phoenixbio Co. Ltd; 3-4-1, Kagamiyama; Higashihiroshima Hiroshima 739-0046 Japan
| | - Hubert Vaudry
- European Institute for Peptide Research; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
- INSERM U-982, CNRS; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
| | - Jennifer E. Kloepper
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| | - David M. Pattwell
- Leahurst Campus, Institute of Learning & Teaching; School of Veterinary Science, University of Liverpool; Neston CH64 7TE U.K
| | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| |
Collapse
|
50
|
Zhang C, Liu C, Shao Y, Bao X, Wan X. Nucleophilic Attack of α-Aminoalkyl Radicals on CarbonNitrogen Triple Bonds to Construct α-Amino Nitriles: An Experimental and Computational Study. Chemistry 2013; 19:17917-25. [DOI: 10.1002/chem.201303296] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 01/09/2023]
|