1
|
Lei Y, Liao XJ, Xing XW, Xu SH, Zhao BX. Two new diketopiperazines from the marine sponge Dysidea sp. Nat Prod Res 2024:1-6. [PMID: 38591101 DOI: 10.1080/14786419.2024.2337116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
A chemical investigation on the marine sponge Dysidea sp. resulted in the isolation of a series of diketopiperazines, including two new compounds, dysidines A (1) and B (2) as well as six known ones (3-8). Their structures with absolute configurations were determined on the basis of UV, IR, HRMS, NMR and calculated ECD method. Additionally, the cytotoxic, anti-inflammatory, antibacterial and antiviral activities of 1-8 were also tested. However, none of them exhibited significant bioactivities.
Collapse
Affiliation(s)
- Yu Lei
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, PR China
| | | | | | | | | |
Collapse
|
2
|
Zhang Z, Sun Y, Li Y, Song X, Wang R, Zhang D. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities. Eur J Med Chem 2024; 265:116081. [PMID: 38181652 DOI: 10.1016/j.ejmech.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Marine-derived piperazine alkaloids (MDPAs) constitute a significant group of natural compounds known for their diverse structures and biological activities. Over the past five decades, substantial efforts have been devoted to isolating these alkaloids from marine sources and characterizing their chemical and bioactive profiles. To date, a total of 922 marine-derived piperazine alkaloids have been reported from various marine organisms. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and various other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of marine-derived piperazine alkaloids. This review also summarizes the structure-activity relationship (SAR) studies associated with the cytotoxicity of these compounds. In summary, our objective is to provide an overview of the research progress concerning marine-derived piperazine alkaloids, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| |
Collapse
|
3
|
Jiao WH, Li JX, Liu HY, Luo XC, Hu TY, Shi GH, Xie DD, Chen HF, Cheng BH, Lin HW. Dysambiol, an Anti-inflammatory Secomeroterpenoid from a Dysidea sp. Marine Sponge. Org Lett 2023; 25:6391-6395. [PMID: 37610094 DOI: 10.1021/acs.orglett.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An unusual secomeroterpenoid, dysambiol (1), was isolated from a Dysidea sp. marine sponge collected from the South China Sea. Dysambiol features an unprecedented secomeroterpene scaffold with a rare lactone bridge. The structure of 1 was determined by extensive spectroscopic analysis, Mosher's method, and electronic circular dichroism calculation. Dysambiol displayed potent anti-inflammatory activity in LPS-induced Raw 264.7 macrophages by regulating the NF-κB/MPAK signaling pathway.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jia-Xin Li
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong-Yan Liu
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiang-Chao Luo
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen 518172, China
| | - Guo-Hua Shi
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dong-Dong Xie
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hai-Feng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen 518172, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
4
|
Harada S, Masuda R, Morikawa T, Nishida A. Trichloromethylative Olefin Cycloamination by Photoredox Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shinji Harada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
- Molecular Chirality Research Center Chiba University 1-33 Yayoi-cho Inage-ku, Chiba 2638522 Japan
| | - Ryuya Masuda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
| | - Takahiro Morikawa
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
| |
Collapse
|
5
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
6
|
Zhang YX, Jin RX, Yin H, Li Y, Wang XS. Copper-Catalyzed Dichloromethylazidation of Alkenes Using BrCCl2H as a Stoichiometric Dichloromethylating Reagent. Org Lett 2018; 20:7283-7287. [DOI: 10.1021/acs.orglett.8b03208] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya-Xuan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Han Yin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Lohmann JS, von Nussbaum M, Brandt W, Mülbradt J, Steglich W, Spiteller P. Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Callyspongiamides A and B, sterol O-acyltransferase inhibitors, from the Indonesian marine sponge Callyspongia sp. Bioorg Med Chem Lett 2018; 28:1911-1914. [DOI: 10.1016/j.bmcl.2018.03.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 11/22/2022]
|
9
|
Khan R, Basha A, Goverdhanam R, Rao PC, Tanemura Y, Fujimoto Y, Begum AS. Attenuation of TNF-α secretion by L-proline-based cyclic dipeptides produced by culture broth of Pseudomonas aeruginosa. Bioorg Med Chem Lett 2015; 25:5756-61. [PMID: 26546220 DOI: 10.1016/j.bmcl.2015.10.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/08/2015] [Accepted: 10/24/2015] [Indexed: 12/31/2022]
Abstract
To identify small molecule inhibitors of TNF-α, bioassay- and LC-MS-guided chemical investigation on EtOAc extract of Pseudomonas aeruginosa ABS-36 culture broth (EEPA) was performed, which yielded four proline-based cyclic dipeptides, cyclo(Gly-l-Pro) (1), cyclo(l-Pro-l-Phe) (2), cyclo(trans-4-hydroxy-l-Pro-l-Phe) (3) and cyclo(trans-4-hydroxy-l-Pro-l-Leu) (4). Compounds 1 and 3 exhibited potent inhibition of TNF-α release with IC50 values of 4.5 and 14.2μg/mL, respectively, while EEPA showed IC50 of 38.8μg/mL under lipopolysaccharide treated RAW 264.7 cell ELISA assay. Also, marked attenuation of mRNA-expression of TNF-α was shown by all compounds. In vivo testing in rats of EEPA and chemically synthesized 4 validated significant TNF-α reduction with 51% (500mg/kg) and 79% (50mg/kg), respectively. In addition, all compounds exhibited significant diminution of IL-1β and IL-6 mRNA-expression levels and NO production. All samples displayed only weak toxicity to lipopolysaccharide-induced RAW 264.7 cells.
Collapse
Affiliation(s)
- Rukaiyya Khan
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India
| | - Ameer Basha
- Regional Agricultural Research Station, Professor Jayashankar Telangana State Agricultural University, Palem 509 215, Mahaboobnagar District, Telangana State, India
| | - Ragavendra Goverdhanam
- Regional Agricultural Research Station, Professor Jayashankar Telangana State Agricultural University, Palem 509 215, Mahaboobnagar District, Telangana State, India
| | - Poorna Chandra Rao
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India
| | - Yuhei Tanemura
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8551, Japan
| | - Yoshinori Fujimoto
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8551, Japan
| | - Ahil Sajeli Begum
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India.
| |
Collapse
|
10
|
Jiang J, Ma Z, Castle SL. Bulky α,β-dehydroamino acids: their occurrence in nature, synthesis, and applications. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg Med Chem Lett 2015; 25:2181-3. [PMID: 25863431 DOI: 10.1016/j.bmcl.2015.03.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/14/2023]
Abstract
Three polybrominated diphenyl ethers, 2-(2',4'-dibromophenoxy)-3,5-dibromophenol (1) and 2-(2',4'-dibromophenoxy)-3,4,5-tribromophenol (2) were isolated from the marine sponge Dysidea granulosa; and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol (3) from Dysidea spp. They exhibited potent and broad spectrum in vitro antibacterial activity, especially against methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Escherichia coli O157:H7, and Salmonella. Minimal inhibitory concentration (MIC) was evaluated against 12 clinical and standard strains of Gram positive and negative bacteria. The observed MIC range was 0.1-4.0mg/L against all the Gram positive bacteria and 0.1-16.0mg/L against Gram negative bacteria. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol showed stronger broad spectrum antibacterial activity than other two compounds. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol are thermo-stable. The results suggest that 2-(2',4'-dibromophenoxy)-3,5-dibromophenol could be used as a potential lead molecule for anti-MRSA, anti-E. coli O157:H7, and anti-Salmonella for drug development.
Collapse
|
12
|
Dysidinoid A, an unusual meroterpenoid with anti-MRSA activity from the South China Sea sponge Dysidea sp. Molecules 2014; 19:18025-32. [PMID: 25379641 PMCID: PMC6270960 DOI: 10.3390/molecules191118025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 11/17/2022] Open
Abstract
An unusual meroterpenoid, dysidinoid A (1), was isolated from the South China Sea sponge Dysidea sp. Its structure was elucidated by extensive spectroscopic methods including HRESIMS and 2D NMR, and its absolute configuration was determined by single-crystal X-ray diffraction analysis. Dysidinoid A (1) is the first meroterpenoid from Nature bearing a 9,4-friedodrime skeleton and a 2,5-dionepyrrole unit. Dysidinoid A (1) showed potent antibacterial activity against two strains of pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA) with MIC90 values of 8.0 μg/mL against both.
Collapse
|
13
|
Jiao WH, Xu TT, Yu HB, Chen GD, Huang XJ, Yang F, Li YS, Han BN, Liu XY, Lin HW. Dysideanones A-C, unusual sesquiterpene quinones from the South China Sea sponge Dysidea avara. JOURNAL OF NATURAL PRODUCTS 2014; 77:346-350. [PMID: 24547794 DOI: 10.1021/np4009392] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dysideanones A-C (1-3), three unusual sesquiterpene quinones with unprecedented carbon skeletons, were isolated from the South China Sea sponge Dysidea avara. Their structures including absolute configurations were determined by a combination of spectroscopic analyses and calculated ECD spectra. Within the sesquiterpene quinone structures, dysideanones A (1) and B (2) share an unprecedented 6/6/6/6-fused tetracyclic carbon skeleton, while dysideanone C (3) possesses an unusual 6/6/5/6-fused tetracyclic core. Dysideanone B (2) showed cytotoxicity against two human cancer cell lines, HeLa and HepG2, with IC50 values of 7.1 and 9.4 μM, respectively.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Key Laboratory for Marine Drugs, Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200127, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu Y, Zhang JL, Song RJ, Li JH. 1,2-Alkylarylation of activated alkenes with dual C–H bonds of arenes and alkyl halides toward polyhalo-substituted oxindoles. Org Chem Front 2014. [DOI: 10.1039/c4qo00251b] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkylarylation of N-arylacrylamides with alkyl halides through selective scission of the C(sp3)–H bond adjacent to halide atoms is presented.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Jia-Ling Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Ren-Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082, China
| |
Collapse
|
15
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 611] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
A preliminary study of the microbial resources and their biological activities of the East china sea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:806485. [PMID: 21789045 PMCID: PMC3140816 DOI: 10.1155/2011/806485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/15/2011] [Accepted: 05/16/2011] [Indexed: 11/30/2022]
Abstract
East China Sea is one of the four sea areas in China, which possesses peculiar ecological environment and many kinds of living creatures, especially the microorganisms. We established the East China Sea microorganism library (during 2006–2010) for the first time, which stored about 30000 strains that covered most kinds of the species. In this paper, 395 pure strains of East China Sea microorganism library which belong to 33 different genera were mainly introduced. Sulfitobacter, Halomonas, Bacillus, Pseudoalteromonas, and Idiomarina were the most dominant species. On the large-scale biological activity screening of the 395 strains, 100 strains possess different biological activities based on different screening models, of which 11.4% strains have antibacterial activities, 15.9% have cytotoxicity activities, and 6.1% have antioxidation activities. Besides, the secondary metabolites of 6 strains with strong biological activities were studied systematically; diketopiperazines and macrocyclic lactones are the active secondary metabolites. The species and the biological activity of microorganisms diversity, the abundant structure type of the secondary metabolites, and their bioactivities all indicate that East China Sea is a potent marine microorganisms-derived developing resource for drug discovery.
Collapse
|
17
|
Abstract
Diketopiperazines (DKPs), which are cyclic dipeptides, have been detected in a variety of natural resources. Recently, the interest in these compounds increased significantly because of their remarkable bioactivity. This review deals with the chemical structures, biosynthetic pathways, and biological activities of DKPs from marine microorganisms, sponges, sea stars, tunicates (ascidians), and red algae. The literature has been covered up to December 2008, and a total 124 DKPs from 104 publications have been discussed and reviewed. Some of these compounds have been found to possess various bioactivities including cytotoxicity, and antibacterial, antifungal, antifouling, plant-growth regulatory, and other activities.
Collapse
Affiliation(s)
- Riming Huang
- Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P R China
| | | | | | | | | |
Collapse
|
18
|
Diketopiperazines from two strains of South China Sea sponge-associated microorganisms. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Fu X, Su JY, Zeng LM. Dysamide U, a new trichlorinated diketopiperazine from the sponge Dysidea sp. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20000180616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
|
21
|
Li Z, Peng C, Shen Y, Miao X, Zhang H, Lin H. l,l-Diketopiperazines from Alcaligenes faecalis A72 associated with South China Sea sponge Stelletta tenuis. BIOCHEM SYST ECOL 2008. [DOI: 10.1016/j.bse.2007.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Durow AC, Long GC, O'Connell SJ, Willis CL. Total Synthesis of the Chlorinated Marine Natural Product Dysamide B. Org Lett 2006; 8:5401-4. [PMID: 17078728 DOI: 10.1021/ol062279f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[Structure: see text] Two approaches to the synthesis of (2S,4S)-5,5-dichloroleucine are compared, and the parent amino acid was used in the first total synthesis of the polychlorinated marine natural product, dysamide B. A key step was the lead tetraacetate-mediated decarboxylation of an alpha,alpha-dichloro acid in the presence of 1,4-cyclohexadiene to generate the dichloromethyl group.
Collapse
Affiliation(s)
- Amanda C Durow
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | | | |
Collapse
|
23
|
Ardá A, Jiménez C, Rodrı́guez J. A study of polychlorinated leucine derivatives: synthesis of (2S,4S)-5,5-dichloroleucine. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.02.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Brunel FM, Spatola AF. Synthesis of diketopiperazines with on-resin N-methylation and cyclative release. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2004; 63:213-22. [PMID: 15049833 DOI: 10.1111/j.1399-3011.2004.00130.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Enantiomerically pure N-methylated diketopiperazines (DKP) can be obtained by treating a N-methylated resin-bound dipeptide with 20% piperidine in dimethylformamide via a process known as cyclative release. N-methylated resin-bound dipeptides can be formed from N-methylated precursors or N-methylation can be selectively performed on the resin. When on-resin N-methylation was performed on the C-terminal side of the dipeptide, diastereomers were formed. Yet the cyclative release is shown to be a stereoselective process, as seen using preformed N-methylated amino acids. The procedure was also applied to synthesize the pseudodiketopiperazine cyclo(Phepsi[CH2NH]Leu). When comparing nonmethylated, monomethylated and bismethylated derivatives, we find that N-methylation results in a dramatic increase in solubility.
Collapse
Affiliation(s)
- F M Brunel
- Department of Chemistry and the Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, KY 40292, USA.
| | | |
Collapse
|
25
|
Neilson AH. Biological Effects and Biosynthesis of Brominated Metabolites. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2003. [DOI: 10.1007/978-3-540-37055-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
26
|
Stapleton BL, Cameron GM, Garson MJ. New chlorinated peptides from the tropical marine sponge Dysidea sp. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(01)00379-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Delaforge M, Bouillé G, Jaouen M, Jankowski CK, Lamouroux C, Bensoussan C. Recognition and oxidative metabolism of cyclodipeptides by hepatic cytochrome P450. Peptides 2001; 22:557-65. [PMID: 11311724 DOI: 10.1016/s0196-9781(01)00364-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Possible recognition of peptide derivatives by hepatic cytochrome P450 3A has been suggested by binding and metabolism of numerous pseudopeptidic compounds such as ergot derivatives and cyclosporin. Natural linear or cyclic dipeptides containing hydrophobic amino acids produced by microorganisms and present in mammals are able to interact with the P450 active site through either iron-amine interactions (Type II) or hydrophobic Type I interactions. P450 3A from dexamethasone-treated rats or yeast-expressed P450 human 3A4 are the most potent in such interactions, which are particularly strong with peptides containing a histidyl residue. Some cyclodipeptides are rapidly transformed by rat cytochrome P450 3A to mono- or dihydroxylated metabolites, with turnovers around 3 nmoles min(-1) P450(-1). Linear peptides are poorly transformed in these conditions. This metabolism of cyclodipeptides occurs in 8 species including man. Such interactions and metabolism have only minor consequences in terms of P450 3A binding and metabolism of classical P450 3A substrates. These data reinforce the concept that, in addition to their effect on the regulation of P450 neosynthesis, naturally occurring endogenous peptides are also substrates of P450 3A. The physiological activities of these peptides may be modulated by their metabolism.
Collapse
Affiliation(s)
- M Delaforge
- C.E.A. Saclay, DSV/DRM/SPI, 91191, Gif sur Yvette Cedex, France.
| | | | | | | | | | | |
Collapse
|
28
|
Laus G. Biological activities of natural halogen compounds. BIOACTIVE NATURAL PRODUCTS (PART F) 2001. [DOI: 10.1016/s1572-5995(01)80022-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Sitachitta N, Márquez BL, Thomas Williamson R, Rossi J, Ann Roberts M, Gerwick WH, Nguyen VA, Willis CL. Biosynthetic Pathway and Origin of the Chlorinated Methyl Group in Barbamide and Dechlorobarbamide, Metabolites from the Marine Cyanobacterium Lyngbya majuscula. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00763-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Durán R, Zubía E, Ortega MJ, Naranjo S, Salvá J. Novel alkaloids from the red ascidian botryllus leachi. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00803-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|