Lena G, Lallemand E, Gruner AC, Boeglin J, Roussel S, Schaffner AP, Aubry A, Franetich JF, Mazier D, Landau I, Briand JP, Didierjean C, Rénia L, Guichard G. 1,3,5-Triazepan-2,6-diones as Structurally Diverse and Conformationally Constrained Dipeptide Mimetics: Identification of Malaria Liver Stage Inhibitors from a Small Pilot Library.
Chemistry 2006;
12:8498-512. [PMID:
16927352 DOI:
10.1002/chem.200600560]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of the 1,3,5-triazepane-2,6-dione system as a novel, conformationally restricted, and readily accessible class of dipeptidomimetics is reported. The synthesis of the densely functionalized 1,3,5-triazepane-2,6-dione skeleton was achieved in only four steps from a variety of simple linear dipeptide precursors. To extend the practical value of 1,3,5-triazepane-2,6-diones, a general polymer-assisted solution-phase synthesis approach amenable to library production in a multiparallel format was developed. The conformational preferences of the 1,3,5-triazepane-2,6-dione skeleton were investigated in detail by NMR spectroscopy and X-ray diffraction. The ring exhibits a characteristic folded conformation which was compared to that of related dipeptide-derived scaffolds including the more planar 2,5-diketopiperazine (DKP). Molecular and structural diversity was increased further through post-cyclization appending operations at urea nitrogens. Preliminary biological screens of a small collection of 1,3,5-triazepane-2,6-diones revealed inhibitors of the underexplored malaria liver stage and suggest strong potential for this dipeptide-derived scaffold to interfere with and to modulate biological pathways.
Collapse