1
|
Maestro MA, Seoane S. The Centennial Collection of VDR Ligands: Metabolites, Analogs, Hybrids and Non-Secosteroidal Ligands. Nutrients 2022; 14:nu14224927. [PMID: 36432615 PMCID: PMC9692999 DOI: 10.3390/nu14224927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of vitamin D a century ago, a great number of metabolites, analogs, hybrids and nonsteroidal VDR ligands have been developed. An enormous effort has been made to synthesize compounds which present beneficial properties while attaining lower calcium serum levels than calcitriol. This structural review covers VDR ligands published to date.
Collapse
Affiliation(s)
- Miguel A. Maestro
- Department of Chemistry-CICA, University of A Coruña, Campus da Zapateira, s/n, 15008 A Coruña, Spain
- Correspondence:
| | - Samuel Seoane
- Department of Physiology-CIMUS, University of Santiago, Campus Vida, 15005 Santiago, Spain
| |
Collapse
|
2
|
Jenkinson C. The vitamin D metabolome: An update on analysis and function. Cell Biochem Funct 2019; 37:408-423. [PMID: 31328813 DOI: 10.1002/cbf.3421] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
Collapse
Affiliation(s)
- Carl Jenkinson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Kato A, Yamao M, Hashihara Y, Ishida H, Itoh T, Yamamoto K. Vitamin D Analogues with a p-Hydroxyphenyl Group at the C25 Position: Crystal Structure of Vitamin D Receptor Ligand-Binding Domain Complexed with the Ligand Explains the Mechanism Underlying Full Antagonistic Action. J Med Chem 2017; 60:8394-8406. [DOI: 10.1021/acs.jmedchem.7b00819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akira Kato
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Makiko Yamao
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuta Hashihara
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Ishida
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
4
|
Belorusova AY, Martínez A, Gándara Z, Gómez G, Fall Y, Rochel N. Structure-activity relationship study of vitamin D analogs with oxolane group in their side chain. Eur J Med Chem 2017; 134:86-96. [DOI: 10.1016/j.ejmech.2017.03.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/06/2017] [Accepted: 03/31/2017] [Indexed: 11/29/2022]
|
5
|
Kato A, Itoh T, Anami Y, Egawa D, Yamamoto K. Helix12-Stabilization Antagonist of Vitamin D Receptor. Bioconjug Chem 2016; 27:1750-61. [PMID: 27294600 DOI: 10.1021/acs.bioconjchem.6b00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To develop strong vitamin D receptor (VDR) antagonists and reveal their antagonistic mechanism, we designed and synthesized vitamin D analogues with bulky side chains based on the "active antagonist" concept in which antagonist prevents helix 12 (H12) folding. Of the synthesized analogues, compounds 3a and 3b showed strong antagonistic activity. Dynamic hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) and static X-ray crystal structure analyses indicated that compound 3a stabilizes H11-H12 but displaces H6-H7 so that 3a is a novel rather than "active" or "passive" type of antagonist. We classified 3a as a third type of antagonist and called it "H11-H12 stabilization antagonist". HDX-MS analysis indicated that antagonist 3b is an "active" antagonist. To date there are no reports relating to nuclear receptor antagonist that strongly stabilizes H12. In this study, we found first VDR antagonist that stabilizes H12 and we showed that antagonistic mechanism is diverse depending on each antagonist structure. Additionally, HDX-MS was proven to be very useful for investigations of protein structure alterations resulting from ligand binding.
Collapse
Affiliation(s)
- Akira Kato
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yasuaki Anami
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Daichi Egawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
6
|
Teske KA, Yu O, Arnold LA. Inhibitors for the Vitamin D Receptor-Coregulator Interaction. VITAMINS AND HORMONES 2015; 100:45-82. [PMID: 26827948 DOI: 10.1016/bs.vh.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vitamin D receptor (VDR) belongs to the superfamily of nuclear receptors and is activated by the endogenous ligand 1,25-dihydroxyvitamin D3. The genomic effects mediated by VDR consist of the activation and repression of gene transcription, which includes the formation of multiprotein complexes with coregulator proteins. Coregulators bind many nuclear receptors and can be categorized according to their role as coactivators (gene activation) or corepressors (gene repression). Herein, different approaches to develop compounds that modulate the interaction between VDR and coregulators are summarized. This includes coregulator peptides that were identified by creating phage display libraries. Subsequent modification of these peptides including the introduction of a tether or nonhydrolyzable bonds resulted in the first direct VDR-coregulator inhibitors. Later, small molecules that inhibit VDR-coregulator inhibitors were identified using rational drug design and high-throughput screening. Early on, allosteric inhibition of VDR-coregulator interactions was achieved with VDR antagonists that change the conformation of VDR and modulate the interactions with coregulators. A detailed discussion of their dual agonist/antagonist effects is given as well as a summary of their biological effects in cell-based assays and in vivo studies.
Collapse
Affiliation(s)
- Kelly A Teske
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Olivia Yu
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| |
Collapse
|
7
|
Anami Y, Itoh T, Egawa D, Yoshimoto N, Yamamoto K. A Mixed Population of Antagonist and Agonist Binding Conformers in a Single Crystal Explains Partial Agonism against Vitamin D Receptor: Active Vitamin D Analogues with 22R-Alkyl Group. J Med Chem 2014; 57:4351-67. [DOI: 10.1021/jm500392t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yasuaki Anami
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Daichi Egawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuko Yoshimoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
8
|
Yoshimoto N, Sakamaki Y, Haeta M, Kato A, Inaba Y, Itoh T, Nakabayashi M, Ito N, Yamamoto K. Butyl pocket formation in the vitamin D receptor strongly affects the agonistic or antagonistic behavior of ligands. J Med Chem 2012; 55:4373-81. [PMID: 22512505 DOI: 10.1021/jm300230a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously, we reported that 22S-butyl-25,26,27-trinor-1α,24-dihydroxyvitamin D(3)2 represents a new class of antagonist for the vitamin D receptor (VDR). The crystal structure of the ligand-binding domain (LBD) of VDR complexed with 2 showed the formation of a butyl pocket to accommodate the 22-butyl group and insufficient interactions between ligand 2 and the C-terminus of VDR. Here, we designed and synthesized new analogues 5a-c and evaluated their biological activities to probe whether agonistic activity is recovered when the analogue restores interactions with the C-terminus of VDR. Analogues 5a-c exhibited full agonistic activity in transactivation. Interestingly, 5c, which bears a 24-diethyl group, completely recovered agonistic activity, although 3c and 4c act as an antagonist and a weak agonist, respectively. The crystal structures of VDR-LBD complexed with 3a, 4a, 5a, and 5c were solved, and the results confirmed that butyl pocket formation in VDR strongly affects the agonistic or antagonistic behaviors of ligands.
Collapse
Affiliation(s)
- Nobuko Yoshimoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Carlberg C, Molnár F, Mouriño A. Vitamin D receptor ligands: the impact of crystal structures. Expert Opin Ther Pat 2012; 22:417-35. [PMID: 22449247 DOI: 10.1517/13543776.2012.673590] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the past years, the biologically active form of vitamin D(3), 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)), has received large appreciation due to the broad physiological impact of the hormone and its nuclear receptor, the transcription factor vitamin D receptor (VDR). Recently, the understanding of VDR actions has progressed greatly, due to VDR crystal structures with various ligands. AREAS COVERED This review will present and discuss new synthetic agonistic and antagonistic 1α,25(OH)(2)D(3) analogs in the context of the recent insights provided by VDR crystal structures. EXPERT OPINION During the last 5 years, a large number of new 1α,25(OH)(2)D(3) analogs, many of which have an interesting functional profile, have been patented. Moreover, for a surprisingly high number of 1α,25(OH)(2)D(3) analogs, the crystal structure data of their complex with the VDR is available. This structural information provides important insight into the functional potential of the VDR ligands and explains their agonistic and antagonistic action. However, so far, only for a few VDR ligands, a rational design, based on crystal structure information, has been applied. The design of future analogs may also take the specificity of co-factor interaction into account, in order to create selective VDR modulators.
Collapse
Affiliation(s)
- Carsten Carlberg
- University of Eastern Finland, School of Medicine, Institute of Biomedicine, Kuopio, Finland.
| | | | | |
Collapse
|
10
|
Chen Y, Ju T. Enantioselective Synthesis of A Key A-Ring Intermediate for the Preparation of 1α,25-Dihydroxyvitamin D3. Org Lett 2010; 13:86-9. [DOI: 10.1021/ol102586w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tong Ju
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Sakamaki Y, Inaba Y, Yoshimoto N, Yamamoto K. Potent antagonist for the vitamin D receptor: vitamin D analogues with simple side chain structure. J Med Chem 2010; 53:5813-26. [PMID: 20608741 DOI: 10.1021/jm100649d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that 22S-butyl-25,26,27-trinor-1alpha,24-dihydroxyvitamin D(3) 2 was a potent VDR antagonist. The X-ray crystal structure of the ligand binding domain of VDR complexed with 2 indicated that this ligand induces an extra cavity within the ligand-binding pocket. The structure also showed that the ligand forms only poor hydrophobic interactions with helix 12 of the protein. Here, to study the effects of the induction of the extra cavity and of insufficient interactions with helix 12 on antagonism, we designed and synthesized a series of vitamin D(3) analogues with or without a 22-alkyl substituent and evaluated their biological potency. We found that the 22-butyl analogues 3c and 5c act as full antagonists, the 22-ethyl analogues 3b, 4b, 5b, and 22-butyl analogue 4c act as partial agonists, and the others (3a, 4a, 5a, 6a, 6b, and 6c) act as full agonists for VDR. It is intriguing that 6c is a potent agonist for VDR, whereas its 26,27-dinor analogue 5c is a potent antagonist. Analogue 6c recruited coactivator SRC-1 well, but 5c did not. These results indicate that a combination of induction of the extra cavity and insufficient hydrophobic interactions with helix 12 is important for VDR antagonism in this class of ligands.
Collapse
Affiliation(s)
- Yuta Sakamaki
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
Nagasawa K, Kato-Nakamura Y, Ishizuka S, Saitoh H, Namekawa JI, Takenouchi K. Synthesis and Biological Activities of VDR Antagonists; 25-Modified 1α,25-Dihdyroxyvitamin D3-26,23-lactam (DLAM) Derivatives. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(f)51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Chiellini G, Grzywacz P, Plum LA, Barycki R, Clagett-Dame M, DeLuca HF. Synthesis and biological properties of 2-methylene-19-nor-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactones--weak agonists. Bioorg Med Chem 2008; 16:8563-73. [PMID: 18722130 DOI: 10.1016/j.bmc.2008.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 01/25/2023]
Abstract
In a continuing effort to explore the 2-methylene-1alpha-hydroxy-19-norvitamin D(3) class of pharmacologically important vitamin D compounds, two novel 2-methylene-19-nor-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactones, GC-3 and HLV, were synthesized and biologically tested. Based on reports of similarly structured molecules, it was hypothesized that these compounds might act as antagonists, at least in vitro. The pathway designed to synthesize these compounds was based on two key steps: first, the Lythgoe-type Wittig-Horner coupling of Windaus-Grundmann-type ketone 18, with phosphine oxide 15, followed, later in the synthesis, by the Zn-mediated Reformatsky-type allylation of aldehyde 20 with methylbromomethylacrylate 8. Our biological data show that neither compound has antagonistic activity but acts as weak agonists in vitro and in vivo.
Collapse
Affiliation(s)
- Grazia Chiellini
- Department of Biochemistry, College of Agriculture and Life Sciences, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yoshimoto N, Inaba Y, Yamada S, Makishima M, Shimizu M, Yamamoto K. 2-Methylene 19-nor-25-dehydro-1α-hydroxyvitamin D3 26,23-lactones: Synthesis, biological activities and molecular basis of passive antagonism. Bioorg Med Chem 2008; 16:457-73. [PMID: 17904370 DOI: 10.1016/j.bmc.2007.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 01/20/2023]
Abstract
To investigate the molecular mechanism of vitamin D receptor (VDR) antagonists having no structurally bulky group interfering with helix 12 of the ligand-binding domain of the VDR, we have synthesized four diastereomers at C(20) and C(23) of 19-nor-1alpha-hydroxyvitamin D(3) 25-methylene-26,23-lactone bearing a 2MD-type A-ring. All four analogs showed significant VDR affinity. Transactivation was tested by using Cos7 cells and HEK293 cells. In both types of cells, LAC67a showed little transactivation potency and inhibited the activation induced by the natural hormone concentration-dependently, indicating that LAC67a works as an antagonist for the VDR in these cells. LAC67b, LAC82a and LAC82b similarly acted as VDR antagonists in Cos7 cells, but in HEK293 cells they behaved as potent VDR agonists. Docking of four lactones into the VDR-LBD, followed by structural analysis, demonstrated that each lactone lacks the hydrophobic interaction with helix12 necessary for maintaining the active conformation of the VDR, indicating that these lactones are passive-type antagonists. Furthermore, each docking structure explained the characteristic transactivation profiles of the four lactones. On the basis of our present findings, we suggest that the ligand acts as an agonist if there are appropriate coactivators in the cells to bind to the looser VDR-ligand complex, and as an antagonist if there are no such appropriate coactivators. The molecular basis of the passive antagonism is discussed in detail.
Collapse
Affiliation(s)
- Nobuko Yoshimoto
- School of Biomedical Sciences, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Vitamin D receptor antagonist has attracted significant level of interests because of its potential utility in the treatment of Paget's disease, which is known as the most flagrant example of disordered bone remodeling and the second most common bone disease after osteoporosis in Anglo-Saxons. Recent studies on Paget's disease suggested a specific increase in osteoclasts sensitivity to the differentiation activity of active vitamin D(3) as the principal mechanism for abnormal bone formation. We set out to conduct a structure-activity relationship study on the first VDR antagonists of TEI-9647 and TEI-9648 (25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone) toward improved VDR antagonistic activity. Given that both potent agonists and antagonists must have high affinity for the VDR, we hoped that our accumulated knowledge in VDR agonists would help us identify potent antagonists. First, 2alpha-modified TEI-9647 analogs were synthesized, and then, 24-substitution was next investigated to stabilize its lactone structure under the physiological conditions. Finally, 2alpha-modified 24-methyl-, 24,24-dimethyl-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone analogs were synthesized. It was found that 2alpha,24,24-trimethyl-TEI-9647 was found to possess approximately 90-fold improved antagonistic activity (IC(50) 0.093 nM) over the original TEI-9647 (IC(50) 8.3 nM).
Collapse
Affiliation(s)
- Nozomi Saito
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara City, Japan.
| |
Collapse
|
16
|
Kittaka A, Saito N, Honzawa S, Takenouchi K, Ishizuka S, Chen TC, Peleg S, Kato S, Arai MA. Creative synthesis of novel vitamin D analogs for health and disease. J Steroid Biochem Mol Biol 2007; 103:269-76. [PMID: 17223554 DOI: 10.1016/j.jsbmb.2006.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We report new analogs of 1alpha,25-dihydroxyvitamin D(3) (1) in three categories. First, design and synthesis of ligands for a mutant vitamin D receptor (VDR)(Arg274Leu), which possess proper functional groups at both C1alpha and C2alpha positions of 1 to study the biological activity of the mutant VDR. Among our synthetic analogs, 1alpha-methyl-2alpha-(3-hydroxypropyl)-25-hydroxyvitamin D(3) (8) showed 7.3-fold greater transcriptional activity for the VDR(Arg274Leu) than that of 1. Next, we examined the antiproliferative activity of 2-substituted 19-norvitamin D(3) analogs on an immortalized normal prostate cell line, PZ-HPV-7, and we found MART 10 (14) showed the activity even at very low concentration of 10(-10) to 10(-11)M. We also synthesized 25-hydroxy-19-norvitamin D(3) (13) using Julia-type olefination to connect between the C5 and C6 positions, effectively, to test it as a prohormone type agent for antiprostate diseases. Synthesized compound 13 showed potent antiproliferative activity in PZ-HPV-7, which has high 1alpha-hydroxylase activity. Finally, we describe design and synthesis of a new TEI-9647 analog, 2alpha-(3-hydroxypropoxy)-24-propyl-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (17), which showed the strongest VDR antagonism. Its IC(50) value is 7.4pM to inhibit differentiation of HL-60 cells induced by 10nM of 1.
Collapse
Affiliation(s)
- Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Sagamihara, Kanagawa 199-0195, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saito N, Kittaka A. Highly Potent Vitamin D Receptor Antagonists: Design, Synthesis, and Biological Evaluation. Chembiochem 2006; 7:1479-90. [PMID: 16871612 DOI: 10.1002/cbic.200600054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Vitamin D receptor (VDR) antagonists have attracted significant levels of interest because of their potential utility in the treatment of Paget's disease, which is known as the most flagrant example of disordered bone remodeling and the second most common bone disease after osteoporosis in Anglo-Saxons. Recent studies on Paget's disease suggested a specific increase in osteoclasts' sensitivity to the differentiation activity of active vitamin D(3) as the principal mechanism for abnormal bone formation. We set out to conduct a structure-activity relationship study on the first VDR antagonists, TEI-9647 and TEI-9648 (25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone), with the goal of improved VDR antagonistic activity. Given that both potent agonists and antagonists must have high affinity for the VDR, we hoped that our accumulated knowledge in the field of VDR agonists would help us identify potent antagonists. First 2alpha-modified TEI-9647 analogues were synthesized, and then 24-substitution to stabilize the lactone structure under physiological conditions was investigated. Finally, 2alpha-modified 24-methyl-, 24,24-dimethyl-, and 24,24-ethano-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone analogues were synthesized. The synthesis of the 24,24-ethano-TEI lactone was accomplished through Ru-catalyzed intermolecular enyne metathesis of the alkynone CD-ring side chain with ethylene to give a dienone, followed by regioselective cyclopropanation. It was found that 2alpha,24,24-trimethyl-TEI-9647 (39) possessed an antagonistic activity (IC(50)=0.093 nM) approximately 90 times that of the original TEI-9647 (IC(50)=8.3 nM).
Collapse
Affiliation(s)
- Nozomi Saito
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Sagamihara, Kanagawa 199-0195, Japan
| | | |
Collapse
|
18
|
|
19
|
Kittaka A, Saito N, Matsunaga T, Saito H, Anzai M, Takenouchi K, Miura D, Ishizuka S, Takayama H. Synthesis and 2a-Modification of 24-Phenylvitamin D3 Lactones: Effects on VDR Antagonistic Activity. HETEROCYCLES 2006. [DOI: 10.3987/com-05-s(t)32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Peräkylä M, Molnár F, Carlberg C. A structural basis for the species-specific antagonism of 26,23-lactones on vitamin D signaling. ACTA ACUST UNITED AC 2005; 11:1147-56. [PMID: 15324816 DOI: 10.1016/j.chembiol.2004.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Revised: 05/05/2004] [Accepted: 05/25/2004] [Indexed: 11/21/2022]
Abstract
The 26,23-lactone derivative of 1alpha,25-dihydroxyvitamin D3, TEI-9647, is a partial antagonist of the of human vitamin D receptor (VDR). However, we found that TEI-9647 in rat cells behaves as a weak VDR agonist. This behavior could be mimicked in human cells by the double mutagenesis of human VDR (specifically C403S and C410N). The increased agonistic action of TEI-9647 correlates to a gain in the interaction of the VDR with coactivator protein and a decreased stabilization of the antagonistic conformation of the receptor. Molecular dynamics simulations indicated that TEI-9647 acts as antagonist of human VDR by reducing the stability of helix 12 of the ligand binding domain. In contrast, N410 of the rat VDR stabilized, via backbone contacts, the interaction between helices 11 and 12. This results in TEI-9647 becoming a weak agonist in this organism.
Collapse
Affiliation(s)
- Mikael Peräkylä
- Department of Chemistry, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | |
Collapse
|
21
|
Abstract
This article reviews the progress in the chemistry of the steroids that was published between January and December 2003. The reactions and partial synthesis of estrogens, androgens, pregnanes, cholic acid derivatives, cholestanes and vitamin D analogues are covered. There are 152 references.
Collapse
Affiliation(s)
- James R Hanson
- Department of Chemistry, University of Sussex, Brighton, Sussex, UK
| |
Collapse
|
22
|
Saito N, Masuda M, Matsunaga T, Saito H, Anzai M, Takenouchi K, Miura D, Ishizuka S, Takimoto-Kamimura M, Kittaka A. 24,24-Dimethylvitamin D3-26,23-lactones and their 2α-functionalized analogues as highly potent VDR antagonists. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.05.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|