1
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Lei JC, Ruan YX, Luo S, Yang JS. Stereodirecting Effect of C3-Ester Groups on the Glycosylation Stereochemistry of L-Rhamnopyranose Thioglycoside Donors: Stereoselective Synthesis of α- and β-L-Rhamnopyranosides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jin-Cai Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Yu-Xiong Ruan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Sheng Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| |
Collapse
|
3
|
Kang WJ, Pan HX, Wang S, Yu B, Hua H, Tang GL. Identification of the Amipurimycin Gene Cluster Yields Insight into the Biosynthesis of C9 Sugar Nucleoside Antibiotics. Org Lett 2019; 21:3148-3152. [PMID: 30990701 DOI: 10.1021/acs.orglett.9b00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Feeding studies indicate a possible synthetic pattern for the N-terminal cis-aminocyclopentane carboxylic acid (ACPC) and suggest an unusual source of the high-carbon sugar skeleton of amipurimycin (APM). The biosynthetic gene cluster of APM was identified and confirmed by in vivo experiments. A C9 core intermediate was discovered from null mutants of ACPC pathway, and an ATP-grasp enzyme (ApmA8) was reconstituted in vitro for ACPC loading. Our observations allow a first proposal of the APM biosynthetic pathway.
Collapse
Affiliation(s)
- Wen-Jia Kang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Shengyang Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| |
Collapse
|
4
|
Zhao Z, Wang A, Zhang X, Yang S, Luo Z, Lei P. Synthesis of novel 5-O-(6′-O-modified)-desosamine 14-membered ketolides. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Wu J, Bishop L, Guo J, Guo Z. An investigation of the reactions between azido alcohols and phosphoramidites. Synlett 2019; 30:348-352. [PMID: 31772422 DOI: 10.1055/s-0037-1611461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reactions of several β-, γ-, and δ-azido alcohols with dibenzyl and dimethyl N,N-diisopropylphosphoramidites were examined. Detailed analysis of the intermediates and products formed from the reactions under different conditions provided useful information to gain insights into their mechanisms involving intramolecular Staudinger reaction, as well as the structure-reactivity relationships of both substrates. The reactions of γ- and δ-azido alcohols with dibenzyl N,N-diisopropylphosphoramidite could produce 6- and 7-membered cyclic phosphoramidates, thereby providing a new synthetic method for these biologically important molecules.
Collapse
Affiliation(s)
- Jian Wu
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Lee Bishop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.,Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA
| |
Collapse
|
6
|
Hydrophobic and Hydrophilic Balance and Its Effect on Mesophase Behaviour in Hydroxyalkyl Ethers of Methyl Glucopyranoside. Chemistry 2013; 19:5041-9. [DOI: 10.1002/chem.201202933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/09/2013] [Indexed: 11/07/2022]
|
7
|
Deng LM, Liu X, Liang XY, Yang JS. Regioselective glycosylation method using partially protected arabino- and galactofuranosyl thioglycosides as key glycosylating substrates and its application to one-pot synthesis of oligofuranoses. J Org Chem 2012; 77:3025-37. [PMID: 22369586 DOI: 10.1021/jo300084g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe in this paper the development of a novel regioselective furanosylation methodology using partially protected furanosyl thioglycosides as central glycosylating building blocks and its application in the efficient one-pot synthesis of a series of linear and branched-type arabino- and galactofuranoside fragments structurally related to the cell wall polysaccharides of Mycobacterium tuberculosis , Streptococcus pneumoniae serostype 35A, and sugar beet.
Collapse
Affiliation(s)
- Li-Min Deng
- Key Laboratory of Drug Targeting, Ministry of Education, and Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Best MD, Rowland MM, Bostic HE. Exploiting bioorthogonal chemistry to elucidate protein-lipid binding interactions and other biological roles of phospholipids. Acc Chem Res 2011; 44:686-98. [PMID: 21548554 DOI: 10.1021/ar200060y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipids play critical roles in a litany of physiological and pathophysiological events, often through the regulation of protein function. These activities are generally difficult to characterize, however, because the membrane environment in which lipids operate is very complex. Moreover, lipids have a diverse range of biological functions, including the recruitment of proteins to membrane surfaces, actions as small-molecule ligands, and covalent protein modification through lipidation. Advancements in the development of bioorthogonal reactions have facilitated the study of lipid activities by providing the ability to selectively label probes bearing bioorthogonal tags within complex biological samples. In this Account, we discuss recent efforts to harness the beneficial properties of bioorthogonal labeling strategies in elucidating lipid function. Initially, we summarize strategies for the design and synthesis of lipid probes bearing bioorthogonal tags. This discussion includes issues to be considered when deciding where to incorporate the tag, particularly the presentation within a membrane environment. We then present examples of the application of these probes to the study of lipid activities, with a particular emphasis on the elucidation of protein-lipid binding interactions. One such application involves the development of lipid and membrane microarray analysis as a high-throughput platform for characterizing protein-binding interactions. Here we discuss separate strategies for binding analysis involving the immobilization of either whole liposomes or simplified isolated lipid structures. In addition, we present the different strategies that have been used to derivatize membrane surfaces via bioorthogonal reactions, either by using this chemistry to produce functionalized lipid scaffolds that can be incorporated into membranes or through direct modification of intact membrane surfaces. We then provide an overview of the development of lipid activity probes to label and identify proteins that bind to a particular lipid from complex biological samples. This process involves the strategy of activity-based proteomics, in which proteins are collectively labeled on the basis of function (in this case, ligand binding) rather than abundance. We summarize strategies for designing and applying lipid activity probes that allow for the selective labeling and characterization of protein targets. Additionally, we briefly comment on applications other than studying protein-lipid binding. These include the generation of new lipid structures with beneficial properties, labeling of tagged lipids in live cells for studies involving fluorescence imaging, elucidation of covalent protein lipidation, and identification of biosynthetic lipid intermediates. These applications illustrate the early phase of the promising field of applying bioorthogonal chemistry to the study of lipid function.
Collapse
Affiliation(s)
- Michael D. Best
- Department of Chemistry, the University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Meng M. Rowland
- Department of Chemistry, the University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Heidi E. Bostic
- Department of Chemistry, the University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Coppola C, Simeone L, De Napoli L, Montesarchio D. On the Compatibility of Azides in Phosphoramidite-Based Couplings: Synthesis of a Novel, Convertible Azido-Functionalized CyPLOS Analogue. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Schilling CI, Jung N, Biskup M, Schepers U, Bräse S. Bioconjugation via azide–Staudinger ligation: an overview. Chem Soc Rev 2011; 40:4840-71. [DOI: 10.1039/c0cs00123f] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Jaradat DMM, Hamouda H, Hackenberger CPR. Solid-Phase Synthesis of Phosphoramidate-Linked Glycopeptides. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Serwa R, Majkut P, Horstmann B, Swiecicki JM, Gerrits M, Krause E, Hackenberger CPR. Site-specific PEGylation of proteins by a Staudinger-phosphite reaction. Chem Sci 2010. [DOI: 10.1039/c0sc00324g] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Böhrsch V, Serwa R, Majkut P, Krause E, Hackenberger CPR. Site-specific functionalisation of proteins by a Staudinger-type reaction using unsymmetrical phosphites. Chem Commun (Camb) 2010; 46:3176-8. [DOI: 10.1039/b926818a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Serwa R, Wilkening I, Del Signore G, Mühlberg M, Claußnitzer I, Weise C, Gerrits M, Hackenberger C. Chemoselektive Staudinger-Phosphit-Reaktion von Aziden für die Phosphorylierung von Proteinen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Serwa R, Wilkening I, Del Signore G, Mühlberg M, Claußnitzer I, Weise C, Gerrits M, Hackenberger C. Chemoselective Staudinger-Phosphite Reaction of Azides for the Phosphorylation of Proteins. Angew Chem Int Ed Engl 2009; 48:8234-9. [DOI: 10.1002/anie.200902118] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|