1
|
Ieda N, Nakamura A, Tomita N, Ohkubo K, Izumi R, Hotta Y, Kawaguchi M, Kimura K, Nakagawa H. A BODIPY-picolinium-cation conjugate as a blue-light-responsive caged group. RSC Adv 2023; 13:26375-26379. [PMID: 37671339 PMCID: PMC10476028 DOI: 10.1039/d3ra03826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Caged compounds protected with photolabile protecting groups (PPGs) are useful for controlling various biological events with high spatiotemporal resolution. Most of the commonly used PPGs are controlled by ultraviolet light irradiation, but it is desirable to have PPGs controlled by visible light irradiation in order to minimize tissue damage. Here, we describe a boron-dipyrromethene (BODIPY)-picolinium conjugate (BPc group) that functions as a blue-light-controllable PPG. ESR experiments indicate that the photolysis mechanism is based on intramolecular photoinduced electron transfer. We illustrate the applicability of the BPc group to biologically active compounds by employing it firstly to photocontrol release of histamine, and secondly to photocontrol release of a soluble guanylyl cyclase (sGC) activator, GSK2181236A, which induces photovasodilation. The BPc group is expected to be a useful PPG for controlling various biological events with blue light irradiation.
Collapse
Affiliation(s)
- Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Akira Nakamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Natsumi Tomita
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives & Institute for Advanced Co-Creation Studies, Osaka University 1-6 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Ryo Izumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Yuji Hotta
- Graduate School of Medical Sciences, Nagoya City University 1, Kawasumi, Mizuho-cho, Mizuho-ku Nagoya Aichi 467-8601 Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Kazunori Kimura
- Graduate School of Medical Sciences, Nagoya City University 1, Kawasumi, Mizuho-cho, Mizuho-ku Nagoya Aichi 467-8601 Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1, Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| |
Collapse
|
2
|
Roth M, Seitz O. A Self-immolative Molecular Beacon for Amplified Nucleic Acid Detection*. Chemistry 2021; 27:14189-14194. [PMID: 34516006 PMCID: PMC8597011 DOI: 10.1002/chem.202102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 01/18/2023]
Abstract
Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule activates the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self‐immolative molecular beacon (iMB) that escapes the one‐target/one‐probe paradigm. The iMB probe includes a photoreductively cleavable N‐alkyl‐picolinium (NAP) linkage within the loop region. A fluorophore at the 5’‐end serves, on the one hand, as a reporter group and, on the other hand, as a photosensitizer of a NAP‐linker cleavage reaction. In the absence of target, the iMB adopts a hairpin shape. Quencher groups prevent photo‐induced cleavage. The iMB opens upon hybridization with a target, and both fluorescent emission as well as photo‐reductive cleavage of the NAP linker can occur. In contrast to previous chemical amplification reactions, iMBs are unimolecular probes that undergo cleavage leading to products that have lower target affinity than the probes before reaction. Aided by catalysis, the method allowed the detection of 5 pm RNA target within 100 min.
Collapse
Affiliation(s)
- Magdalena Roth
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Tang X, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal‐Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| |
Collapse
|
5
|
Tang XJ, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal-Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020; 59:18386-18389. [PMID: 32671906 DOI: 10.1002/anie.202005310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The photorelease of bioactive molecules has emerged as a valuable tool in biochemistry. Nevertheless, many important bioactive molecules, such as pyridine derivatives, cannot benefit from currently available organic photoremovable protecting groups (PPGs). We found that the inefficient photorelease of pyridines is attributed to intramolecular photoinduced electron transfer (PET) from PPGs to pyridinium ions. To alleviate PET, we rationally designed a strategy to drive the excited state of PPG from S1 to T1 with a heavy atom, and synthesized a new PPG by substitution of the H atom at the 3-position of 7-dietheylamino-coumarin-4-methyl (DEACM) with Br or I. This resulted in an improved photolytic efficiency of the pyridinium ion by hundreds-fold in aqueous solution. The PPG can be applied to various pyridine derivatives. The successful photorelease of a microtubule inhibitor, indibulin, in living cells was demonstrated for the potential application of this strategy in biochemical research.
Collapse
Affiliation(s)
- Xiao-Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
6
|
Dunkel P, Barosi A, Dhimane H, Maurel F, Dalko PI. Photoinduced Electron Transfer (PET)-Mediated Fragmentation of Picolinium-Derived Redox Probes. Chemistry 2018; 24:12920-12931. [PMID: 29873846 DOI: 10.1002/chem.201801684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Indexed: 12/30/2022]
Abstract
The photolysis of covalently linked N-alkyl picolinium phenylacetate-carbazole dyads was analyzed experimentally and by using density functional theory (DFT) and time dependent-DFT (TD-DFT) calculations. In contrast to earlier observations efficient one and two-photon fragmentations conditions were found for 15 c (δu =0.16 GM at 730 nm) opening the way for the design of a novel class of "caged" compounds.
Collapse
Affiliation(s)
- Petra Dunkel
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601, Université Paris Descartes, 45, rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Anna Barosi
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601, Université Paris Descartes, 45, rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Hamid Dhimane
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601, Université Paris Descartes, 45, rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - François Maurel
- Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, Université Paris Diderot, 15 rue J-A de Baïf, 75013, Paris, France
| | - Peter I Dalko
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601, Université Paris Descartes, 45, rue des Saints-Pères, 75270, Paris Cedex 06, France
| |
Collapse
|
7
|
Todorov AR, Wirtanen T, Helaja J. Photoreductive Removal of O-Benzyl Groups from Oxyarene N-Heterocycles Assisted by O-Pyridine-pyridone Tautomerism. J Org Chem 2017; 82:13756-13767. [PMID: 29135249 DOI: 10.1021/acs.joc.7b02775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Facile photoreductive protocols have been developed to remove benzyl O-protective groups from oxyarene N-heterocycles at positions capable for 2-/4-O-pyridine-2-/4-pyridone tautomerism. Blue light irradiation, a [Ru] or [Ir] photocatalyst, and ascorbic acid in a water-acetonitrile solution debenzylates a variety of aryl N-heterocycles cleanly and selectively. Ascorbic acid has two functions in the reaction. On the one hand, it protonates the N-heterocycles that reduces their reduction potentials notably and on the other hand it acts as a sacrificial reductant. Reduction potentials and free energy barriers calculated at the CPCM-B3LYP/6-31+G** level can predict the reactivities of the studied substrates.
Collapse
Affiliation(s)
- Aleksandar R Todorov
- Department of Chemistry, University of Helsinki , A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Tom Wirtanen
- Department of Chemistry, University of Helsinki , A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Juho Helaja
- Department of Chemistry, University of Helsinki , A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Near-infrared uncaging or photosensitizing dictated by oxygen tension. Nat Commun 2016; 7:13378. [PMID: 27853134 PMCID: PMC5476797 DOI: 10.1038/ncomms13378] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022] Open
Abstract
Existing strategies that use tissue-penetrant near-infrared light for the targeted treatment of cancer typically rely on the local generation of reactive oxygen species. This approach can be impeded by hypoxia, which frequently occurs in tumour microenvironments. Here we demonstrate that axially unsymmetrical silicon phthalocyanines uncage small molecules preferentially in a low-oxygen environment, while efficiently generating reactive oxygen species in normoxic conditions. Mechanistic studies of the uncaging reaction implicate a photoredox pathway involving photoinduced electron transfer to generate a key radical anion intermediate. Cellular studies demonstrate that the biological mechanism of action is O2-dependent, with reactive oxygen species-mediated phototoxicity in normoxic conditions and small molecule uncaging in hypoxia. These studies provide a near-infrared light-targeted treatment strategy with the potential to address the complex tumour landscape through two distinct mechanisms that vary in response to the local O2 environment.
Collapse
|
9
|
Blažek Bregović V, Basarić N. Competing processes in the photochemistry of picolines and their N-methyl salts: photoinduced charge transfer, phototransposition and photohydration. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Ciuciu AI, Korzycka KA, Lewis WJM, Bennett PM, Anderson HL, Flamigni L. Model dyads for 2PA uncaging of a protecting group via photoinduced electron transfer. Phys Chem Chem Phys 2016; 17:6554-64. [PMID: 25660491 DOI: 10.1039/c4cp05812g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three dyads with a fluorene derivative as an electron-donor and with electron-acceptors of variable redox potentials were synthesized as models for two-photon activated uncaging via electron transfer. A spectroscopic and photophysical study of the component units and the dyads in solvents of different polarities demonstrated an efficient electron transfer (efficiencies > 80%) followed by charge recombination in the arrays (30 ps < τ < 1.6 ns). Recombination takes place to the ground state in all cases except for the dyad displaying the highest driving force for charge recombination in the apolar solvent. The effects of changing the solvent polarity, as well as the driving force, for electron-transfer are discussed in the frame of the current theories of electron transfer.
Collapse
Affiliation(s)
- Adina I Ciuciu
- Istituto per la Sintesi Organica e Fotoreattivita' (ISOF), CNR, Via P. Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Kunsberg DJ, Kipping AH, Falvey DE. Visible Light Photorelease of Carboxylic Acids via Charge-Transfer Excitation of N-Methylpyridinium Iodide Esters. Org Lett 2015; 17:3454-7. [PMID: 26120927 DOI: 10.1021/acs.orglett.5b01490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iodide contrast sensitization to direct irradiation of charge transfer salts incurs carboxylic acid release via visible light absorption. The photochemical reduction of N-methyl-4-pyridinium iodide esters to release carboxylic acids is examined using (1)H NMR analysis. Photolysis reactions are carried out under mild, biphasic solvent conditions using a household LED lamp. Carboxylic acid release is reported in high yields, and the viability of this method for synthetic chemistry is demonstrated through a macroscale reaction.
Collapse
Affiliation(s)
- David J Kunsberg
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Allison H Kipping
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Korzycka KA, Bennett PM, Cueto-Diaz EJ, Wicks G, Drobizhev M, Blanchard-Desce M, Rebane A, Anderson HL. Two-photon sensitive protecting groups operating via intramolecular electron transfer: uncaging of GABA and tryptophan. Chem Sci 2015; 6:2419-2426. [PMID: 28706657 PMCID: PMC5488212 DOI: 10.1039/c4sc03775h] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/02/2015] [Indexed: 11/24/2022] Open
Abstract
Improved photo-labile protecting groups, with high sensitivity to two-photon excitation, are needed for the controlled release of drugs, as tools in neuroscience and physiology. Here we present a new modular approach to the design of caging groups based on photoinduced electron transfer from an electron-rich two-photon dye to an electron acceptor, followed by scission of an ester to release a carboxylic acid. Three different electron acceptors were tested: nitrobenzyl, phenacyl and pyridinium. The nitrobenzyl system was ineffective, giving only photochemical decomposition and no release of the carboxylic acid. The phenacyl system also performed poorly, liberating the carboxylic acid in 20% chemical yield and 0.2% photochemical yield. The pyridinium system was most successful, and was tested for the release of two carboxylic acids: γ-amino butyric acid (GABA) and tryptophan. The caged GABA undergoes photochemical cleavage with a chemical yield of >95% and a photochemical yield of 1%; it exhibits a two-photon absorption cross section of 1100 GM at 700 nm, corresponding to a two-photon uncaging cross section of 10 ± 3 GM.
Collapse
Affiliation(s)
- Karolina A Korzycka
- Oxford University , Department of Chemistry , Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK . ; ; Tel: +44 (0)1865 275704
| | - Philip M Bennett
- Oxford University , Department of Chemistry , Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK . ; ; Tel: +44 (0)1865 275704
| | - Eduardo Jose Cueto-Diaz
- Université de Bordeaux , Institut des Sciences Moléculaires , CNRS UMR 5255 , 33400 Bordeaux , France
| | - Geoffrey Wicks
- Department of Physics , Montana State University , Bozeman , MT 59717 , USA
| | - Mikhail Drobizhev
- Department of Physics , Montana State University , Bozeman , MT 59717 , USA
| | - Mireille Blanchard-Desce
- Université de Bordeaux , Institut des Sciences Moléculaires , CNRS UMR 5255 , 33400 Bordeaux , France
| | - Aleksander Rebane
- Department of Physics , Montana State University , Bozeman , MT 59717 , USA
- National Institute of Chemical Physics and Biophysics , Tallinn 12618 , Estonia
| | - Harry L Anderson
- Oxford University , Department of Chemistry , Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK . ; ; Tel: +44 (0)1865 275704
| |
Collapse
|
13
|
Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 2013; 113:119-91. [PMID: 23256727 PMCID: PMC3557858 DOI: 10.1021/cr300177k] [Citation(s) in RCA: 1253] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
|
16
|
Edson JB, Spencer LP, Boncella JM. Photorelease of Primary Aliphatic and Aromatic Amines by Visible-Light-Induced Electron Transfer. Org Lett 2011; 13:6156-9. [DOI: 10.1021/ol202456d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph B. Edson
- Materials, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Liam P. Spencer
- Materials, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - James M. Boncella
- Materials, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
17
|
Liu Z, Lin Q, Huang Q, Liu H, Bao C, Zhang W, Zhong X, Zhu L. Semiconductor quantum dots photosensitizing release of anticancer drug. Chem Commun (Camb) 2011; 47:1482-4. [DOI: 10.1039/c0cc04676k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Borak JB, Falvey DE. Ketocoumarin dyes as electron mediators for visible light induced carboxylate photorelease. Photochem Photobiol Sci 2010; 9:854-60. [DOI: 10.1039/c0pp00072h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Borak JB, Falvey DE. A new photolabile protecting group for release of carboxylic acids by visible-light-induced direct and mediated electron transfer. J Org Chem 2009; 74:3894-9. [PMID: 19361187 DOI: 10.1021/jo900182x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new aqueous-compatible photoinduced electron transfer based photolabile protecting group has been developed for the release of carboxylic acids. The reduction potential of this group is more positive than previous systems, thereby allowing the use of sensitizers with modest oxidation potentials. Release of several carboxylic acids has been demonstrated using tris(bipyridyl)ruthenium(II) as both a direct sensitizer and a mediator for electron transfer between a good donor and the protecting group.
Collapse
Affiliation(s)
- J Brian Borak
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
20
|
Hasegawa E, Hirose H, Sasaki K, Takizawa S, Seida T, Chiba N. Benzimidazoline-Dimethoxypyrene. An Effective Promoter System for Photoinduced Electron Transfer Promoted Reductive Transformations of Organic Compounds. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(f)94] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Photoremovable protecting groups based on photoenolization. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0065-3160(08)00002-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Houmam A. Electron Transfer Initiated Reactions: Bond Formation and Bond Dissociation. Chem Rev 2008; 108:2180-237. [PMID: 18620366 DOI: 10.1021/cr068070x] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wöll D, Smirnova J, Pfleiderer W, Steiner UE. Highly Efficient Photolabile Protecting Groups with Intramolecular Energy Transfer. Angew Chem Int Ed Engl 2006; 45:2975-8. [PMID: 16555354 DOI: 10.1002/anie.200504091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dominik Wöll
- Fachbereich Chemie, Universität Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| | | | | | | |
Collapse
|
24
|
Wöll D, Smirnova J, Pfleiderer W, Steiner UE. Hocheffiziente photolabile Schutzgruppen mit intramolekularem Energietransfer. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Sundararajan C, Falvey DE. Photorelease of carboxylic and amino acids from N-methyl-4-picolinium esters by mediated electron transfer. Photochem Photobiol Sci 2006; 5:116-21. [PMID: 16395436 DOI: 10.1039/b511269a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One electron reduction of N-alkyl-4-picolinium (NAP) esters initiates C-O bond scission releasing a carboxylate anion. Previous experiments have demonstrated that this process can be initiated by photoinduced electron transfer from an electron-donating sensitizer. In the present study it is demonstrated that a comparable photorelease process can be initiated by photolysis of an electron acceptor (mediator), which in turn abstracts an electron from a ground state electron donor. The resulting mediator anion radicals donate an electron to the NAP ester, triggering release of the carboxylate anion. It is demonstrated that when benzophenone is used as a mediator, higher quantum yields for ester decomposition can be achieved compared with sensitizers that do direct photoinduced electron transfer.
Collapse
Affiliation(s)
- Chitra Sundararajan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA.
| | | |
Collapse
|
26
|
Tanko JM. Reaction mechanisms : Part (i) Radical and radical ion reactions. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b518094p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|