1
|
Choi SM, Nam YE, An YJ, Choi ER, Park H, Schinazi RF, Cho JH. Direct Synthesis of Aryloxy Phosphonamidate Nucleotide Prodrugs Using the Cross Metathesis Assisted by Ultrasonic Irradiation. Org Lett 2024; 26:4841-4846. [PMID: 38381649 DOI: 10.1021/acs.orglett.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A direct synthetic strategy of aryloxy phosphonamidate nucleotide prodrugs (A, G, C, and U) was developed with the CM reaction assisted by ultrasonic irradiation and partitioned addition of 12 mol % of Hoveyda-Grubbs (H-G) II catalyst in 61-82% yields as a mixture of E-/Z-isomers (∼2:1) from aryloxy vinylphosponamidate and 5'-vinyl nucleoside moieties.
Collapse
Affiliation(s)
- Se Myeong Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Ye Eun Nam
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Yeon Jin An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Eun Rang Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Hyejin Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| |
Collapse
|
2
|
Lin LZ, Yang S, Liu WH, Shie JJ. Dichotomous Selectivity in Indium-Mediated Aza-Barbier-Type Allylation of 2- N-Acetyl Glycosyl Sulfinylimines in Brine: Convenient Access to Potent Anti-Influenza Agents. J Org Chem 2022; 87:2324-2335. [PMID: 35075895 DOI: 10.1021/acs.joc.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly diastereoselective indium-mediated allylation of 2-N-acetyl glycosyl sulfinylimines in brine under mild reaction conditions is reported. The method allows the achievement of a highly remarkable dichotomous selectivity for substrates, providing a single diastereoisomer of the product in 80-98% yield. With chiral (S)-homoallylic sulfinamide (RS)-5 and (RS)-8 formed as key intermediates, two potent anti-influenza agents, zanamivir and zanaphosphor, were synthesized in 50% and 41% overall yields, respectively.
Collapse
Affiliation(s)
- Long-Zhi Lin
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng Yang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Hsuan Liu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Ortiz CLD, Completo GC, Nacario RC, Nellas RB. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In Silico ADMETox Studies. Sci Rep 2019; 9:17096. [PMID: 31745103 PMCID: PMC6863818 DOI: 10.1038/s41598-019-52764-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
Abstract
A strategy in the discovery of anti-tuberculosis (anti-TB) drug involves targeting the enzymes involved in the biosynthesis of Mycobacterium tuberculosis' (Mtb) cell wall. One of these enzymes is Galactofuranosyltransferase 2 (GlfT2) that catalyzes the elongation of the galactan chain of Mtb cell wall. Studies targeting GlfT2 have so far produced compounds showing minimal inhibitory activity. With the current challenge of designing potential GlfT2 inhibitors with high inhibition activity, computational methods such as molecular docking, receptor-ligand mapping, molecular dynamics, and Three-Dimensional-Quantitative Structure-Activity Relationship (3D-QSAR) were utilized to deduce the interactions of the reported compounds with the target enzyme and enabling the design of more potent GlfT2 inhibitors. Molecular docking studies showed that the synthesized compounds have binding energy values between -3.00 to -6.00 kcal mol-1. Two compounds, #27 and #31, have registered binding energy values of -8.32 ± 0.01, and -8.08 ± 0.01 kcal mol-1, respectively. These compounds were synthesized as UDP-Galactopyranose mutase (UGM) inhibitors and could possibly inhibit GlfT2. Interestingly, the analogs of the known disaccharide substrate, compounds #1-4, have binding energy range of -10.00 to -19.00 kcal mol-1. The synthesized and newly designed compounds were subjected to 3D-QSAR to further design compounds with effective interaction within the active site. Results showed improved binding energy from -6.00 to -8.00 kcal mol-1. A significant increase on the binding affinity was observed when modifying the aglycon part instead of the sugar moiety. Furthermore, these top hit compounds were subjected to in silico ADMETox evaluation. Compounds #31, #70, #71, #72, and #73 were found to pass the ADME evaluation and throughout the screening, only compound #31 passed the predicted toxicity evaluation. This work could pave the way in the design and synthesis of GlfT2 inhibitors through computer-aided drug design and can be used as an initial approach in identifying potential novel GlfT2 inhibitors with promising activity and low toxicity.
Collapse
Affiliation(s)
- Christopher Llynard D Ortiz
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Diliman, Quezon City, 1101, Philippines
| | - Gladys C Completo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
| | - Ruel C Nacario
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
4
|
Lewis acid-catalysed nucleophilic opening of a bicyclic hemiaminal followed by ring contraction: Access to functionalized L-idonojirimycin derivatives. Carbohydr Res 2019; 472:65-71. [PMID: 30496874 DOI: 10.1016/j.carres.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
The Lewis acid-catalyzed nucleophilic opening of a D-gluco-configured bicyclic hemiaminal has been examined. Several Lewis acids and silylated nucleophiles have been screened allowing the introduction of acetophenone, phosphonate or nitrile at the pseudoanomeric position in satisfactory yields and high 1,2 trans stereoselectivities. Their skeletal rearrangement triggered by the N-benzyl anchimeric assistance provided the corresponding L-ido-configured piperidines displaying various functional groups at C-6 position in good yield.
Collapse
|
5
|
Nicolas C, Martin OR. Glycoside Mimics from Glycosylamines: Recent Progress. Molecules 2018; 23:molecules23071612. [PMID: 30004451 PMCID: PMC6100084 DOI: 10.3390/molecules23071612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/08/2023] Open
Abstract
Glycosylamines are valuable sugar derivatives that have attracted much attention as synthetic intermediates en route to iminosugar-C-glycosyl compounds. Iminosugars are among the most important glycomimetics reported to date due to their powerful activities as inhibitors of a wide variety of glycosidases and glycosyltransferases, as well as for their use as pharmacological chaperones. As they provide ready access to these important glycoside mimics, we have reviewed the most significant glycosylamine-based methodologies developed to date, with a special emphasis on the literature reported after 2006. The groups of substrates covered include N-alkyl- and N-benzyl-glycosylamines, N-glycosylhydroxylamines, N-(alkoxycarbonyl)-, and N-tert-butanesulfinyl-glycosylamines.
Collapse
Affiliation(s)
- Cyril Nicolas
- Institute of Organic and Analytical Chemistry, UMR 7311, University of Orleans and CNRS, Rue de Chartres, BP 6759, 45067 Orleans CEDEX 2, France.
| | - Olivier R Martin
- Institute of Organic and Analytical Chemistry, UMR 7311, University of Orleans and CNRS, Rue de Chartres, BP 6759, 45067 Orleans CEDEX 2, France.
| |
Collapse
|
6
|
Winton VJ, Aldrich C, Kiessling LL. Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes. ACS Infect Dis 2016; 2:538-43. [PMID: 27626294 DOI: 10.1021/acsinfecdis.6b00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Uridine diphosphate galactopyranose mutase (UGM also known as Glf) is a biosynthetic enzyme required for construction of the galactan, an essential mycobacterial cell envelope polysaccharide. Our group previously identified two distinct classes of UGM inhibitors; each possesses a carboxylate moiety that is crucial for potency yet likely detrimental for cell permeability. To enhance the antimycobacterial potency, we sought to replace the carboxylate with a functional group mimic-an N-acylsulfonamide group. We therefore synthesized a series of N-acylsulfonamide analogs and tested their ability to inhibit UGM. For each inhibitor scaffold tested, the N-acylsulfonamide group functions as an effective carboxylate surrogate. Although the carboxylates and their surrogates show similar activity against UGM in a test tube, several N-acylsulfonamide derivatives more effectively block the growth of Mycobacterium smegmatis. These data suggest that the replacement of a carboxylate with an N-acylsulfonamide group could serve as a general strategy to augment antimycobacterial activity.
Collapse
Affiliation(s)
- Valerie J. Winton
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Claudia Aldrich
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| |
Collapse
|
7
|
Synthesis and Evaluation of Bicyclo[3.1.0]hexane-Based UDP-Galf Analogues as Inhibitors of the Mycobacterial Galactofuranosyltransferase GlfT2. Molecules 2016; 21:molecules21081053. [PMID: 27529206 PMCID: PMC6272867 DOI: 10.3390/molecules21081053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/17/2022] Open
Abstract
UDP-galactofuranose (UDP-Galf) is the donor substrate for both bifunctional galactofuranosyltransferases, GlfT1 and GlfT2, which are involved in the biosynthesis of mycobacterial galactan. In this paper, a group of UDP-Galf mimics were synthesized via reductive amination of a bicyclo[3.1.0]hexane-based amine by reacting with aromatic, linear, or uridine-containing aldehydes. These compounds were evaluated against GlfT2 using a coupled spectrophotometric assay, and were shown to be weak inhibitors of the enzyme.
Collapse
|
8
|
Tikad A, Delbrouck JA, Vincent SP. Debenzylative Cycloetherification: An Overlooked Key Strategy for Complex Tetrahydrofuran Synthesis. Chemistry 2016; 22:9456-76. [DOI: 10.1002/chem.201600655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Abdellatif Tikad
- University of Namur (UNamur); Département de Chimie; Laboratoire de Chimie Bio-Organique; rue de Bruxelles 61 5000 Namur Belgium
| | - Julien A. Delbrouck
- University of Namur (UNamur); Département de Chimie; Laboratoire de Chimie Bio-Organique; rue de Bruxelles 61 5000 Namur Belgium
| | - Stéphane P. Vincent
- University of Namur (UNamur); Département de Chimie; Laboratoire de Chimie Bio-Organique; rue de Bruxelles 61 5000 Namur Belgium
| |
Collapse
|
9
|
Mulla K, Aleshire KL, Forster PM, Kang JY. Utility of Bifunctional N-Heterocyclic Phosphine (NHP)-Thioureas for Metal-Free Carbon–Phosphorus Bond Construction toward Regio- and Stereoselective Formation of Vinylphosphonates. J Org Chem 2015; 81:77-88. [DOI: 10.1021/acs.joc.5b02184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karimulla Mulla
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Kyle L. Aleshire
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Paul M. Forster
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Jun Yong Kang
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| |
Collapse
|
10
|
Cocaud C, Nicolas C, Bayle A, Poisson T, Pannecoucke X, Martin OR. Synthesis and Reactivity ofN-tert-Butanesulfinyl Glycosylamines. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
El Bkassiny S, N'Go I, Sevrain CM, Tikad A, Vincent SP. Synthesis of a novel UDP-carbasugar as UDP-galactopyranose mutase inhibitor. Org Lett 2014; 16:2462-5. [PMID: 24746099 DOI: 10.1021/ol500848q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The multistep synthesis of a novel UDP-C-cyclohexene, designed as a high energy intermediate analogue of the UDP-galactopyranose mutase (UGM) catalyzed isomerization reaction, is reported. The synthesis of the central carbasugar involved the preparation of a galactitol derivative bearing two olefins necessary for the construction of the cyclohexene ring by a ring-closing metathesis as a key step. Further successive phosphonylation, deprotection, and UMP coupling provided the target molecule. The final molecule was assayed against UGM and compared with UDP-C-Galf, the C-glycosidic UGM substrate analogue.
Collapse
Affiliation(s)
- Sandy El Bkassiny
- University of Namur , Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
12
|
Chronowska A, Gallienne E, Nicolas C, Kato A, Adachi I, Martin OR. An expeditious synthesis of an analogue of (−)-steviamine by way of the 1,3-dipolar cycloaddition of a nitrile oxide with a 1-C-allyl iminosugar. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Frigell J, Eriksson L, Cumpstey I. Carbasugar analogues of galactofuranosides: β-O-linked derivatives and towards β-S-linked derivatives. Carbohydr Res 2011; 346:1277-90. [DOI: 10.1016/j.carres.2011.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/16/2011] [Accepted: 04/25/2011] [Indexed: 11/28/2022]
|
14
|
Yamaguchi Y, Hashimoto M, Tohyama K, Kimura M. Nucleophilic allylation of N,O-acetals with allylic alcohols promoted by Pd/Et3B and Pd/Et2Zn systems. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.12.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Stocker BL, Dangerfield EM, Win‐Mason AL, Haslett GW, Timmer MSM. Recent Developments in the Synthesis of Pyrrolidine‐Containing Iminosugars. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901320] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bridget L. Stocker
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
| | - Emma M. Dangerfield
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| | - Anna L. Win‐Mason
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| | - Gregory W. Haslett
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| |
Collapse
|
16
|
Richards MR, Lowary TL. Chemistry and biology of galactofuranose-containing polysaccharides. Chembiochem 2009; 10:1920-38. [PMID: 19591187 DOI: 10.1002/cbic.200900208] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The thermodynamically less stable form of galactose-galactofuranose (Galf)-is essential for the viability of several pathogenic species of bacteria and protozoa but absent in this form in mammals, so the biochemical pathways by which Galf-containing glycans are assembled and catabolysed are attractive sites for drug action. This potential has led to increasing interest in the synthesis of molecules containing Galf residues, their subsequent use in studies directed towards understanding the enzymes that process these residues and the identification of potential inhibitors of these pathways. Major achievements of the past several years have included an in-depth understanding of the mechanism of UDP-galactopyranose mutase (UGM), the enzyme that produces UDP-Galf, which is the donor species for galactofuranosyltransferases. A number of methods for the synthesis of galactofuranosides have also been developed, and practitioners in the field now have many options for the initiation of a synthesis of glycoconjugates containing either alpha- or beta-Galf residues. UDP-Galf has also been prepared by a number of approaches, and it appears that a chemoenzymatic approach is currently the most viable method for producing multi-milligram amounts of this important intermediate. Recent advances both in the understanding of the mechanism of UGM and in the synthesis of galactofuranose and its derivatives are highlighted in this review.
Collapse
Affiliation(s)
- Michele R Richards
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2 (Canada)
| | | |
Collapse
|
17
|
Novel Galf-disaccharide mimics: synthesis by way of 1,3-dipolar cycloaddition reactions in water. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Liautard V, Pillard C, Desvergnes V, Martin OR. One-step synthesis of N-protected glycosylamines from sugar hemiacetals. Carbohydr Res 2008; 343:2111-7. [DOI: 10.1016/j.carres.2007.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/15/2007] [Accepted: 11/20/2007] [Indexed: 11/25/2022]
|
19
|
Peltier P, Euzen R, Daniellou R, Nugier-Chauvin C, Ferrières V. Recent knowledge and innovations related to hexofuranosides: structure, synthesis and applications. Carbohydr Res 2008; 343:1897-923. [DOI: 10.1016/j.carres.2008.02.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|
20
|
Dykhuizen EC, May JF, Tongpenyai A, Kiessling LL. Inhibitors of UDP-Galactopyranose Mutase Thwart Mycobacterial Growth. J Am Chem Soc 2008; 130:6706-7. [DOI: 10.1021/ja8018687] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
|
22
|
Rawal GK, Kumar A, Tawar U, Vankar YD. New Method for Chloroamidation of Olefins. Application in the Synthesis of N-Glycopeptides and Anticancer Agents. Org Lett 2007; 9:5171-4. [DOI: 10.1021/ol702097q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Girish K. Rawal
- Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India and Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India and Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Urmila Tawar
- Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India and Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Yashwant D. Vankar
- Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India and Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
23
|
Desvergnes S, Desvergnes V, Martin OR, Itoh K, Liu HW, Py S. Stereoselective synthesis of β-1-C-substituted 1,4-dideoxy-1,4-imino-d-galactitols and evaluation as UDP-galactopyranose mutase inhibitors. Bioorg Med Chem 2007; 15:6443-9. [PMID: 17662609 DOI: 10.1016/j.bmc.2007.06.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/19/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
The synthesis of 1-C-substituted 1,4-dideoxy-1,4-imino-D-galactitols involving nitrone umpolung is described. The SmI(2)-induced key coupling proved highly stereoselective in favor of the beta-C-substituted products bearing a three-carbon chain at the pseudoanomeric position. Pyrrolidines 9 and 10, as well as the bicyclic compounds 8 and 11, exhibit weak inhibition of the activity of the UDP-galactopyranose mutase from Escherichia coli.
Collapse
Affiliation(s)
- Stéphanie Desvergnes
- Département de Chimie Moléculaire (SERCO) UMR-5250, ICMG FR-2607, CNRS--Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
24
|
Liautard V, Christina AE, Desvergnes V, Martin OR. Diastereoselective synthesis of novel iminosugar-containing UDP-Galf mimics: potential inhibitors of UDP-Gal mutase and UDP-Galf transferases. J Org Chem 2007; 71:7337-45. [PMID: 16958528 DOI: 10.1021/jo061130e] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tetra-O-benzyl-D-glucofuranose was converted into uridine diphosphono-beta-Galf mimics based on an iminosugar skeleton linked to UMP by a 2-hydroxypropyl tether. The synthesis is based on the highly regio- and stereoselective cycloaddition of an original uridin-5'-yl allylphosphonate with a 1,4-dideoxy-1,4-iminogalactitol-derived cyclic nitrone, followed by the reductive elaboration of the cycloaddition product. The resulting iminogalactose-UMP conjugates are novel sugar nucleotide mimics which could be useful as inhibitors of UDP-Gal mutase and UDP-Galf transferases.
Collapse
Affiliation(s)
- Virginie Liautard
- Institut de Chimie Organique et Analytique, CNRS and Université d'Orléans, BP 6759, 45067 Orléans, France
| | | | | | | |
Collapse
|
25
|
Synthesis of acyclic galactitol- and lyxitol-aminophosphonates as inhibitors of UDP-galactopyranose mutase. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.04.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Sugiura M. [Development of efficient methods for synthesis of nitrogen-containing compounds using carbamates, acylhydrazines, and ammonia]. YAKUGAKU ZASSHI 2007; 126:1319-40. [PMID: 17139157 DOI: 10.1248/yakushi.126.1319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the efficient synthesis of divergent nitrogen-containing compounds of pharmaceutical and agricultural importance, the development of efficient, complementary, and new synthetic methodologies is essential. One of the key subjects is how to introduce nitrogen atoms in to organic molecules. This review summaries our recent efforts on this issue, focusing on the use of carbamates, acylhydrazines, and ammonia as nitrogen sources.
Collapse
Affiliation(s)
- Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
27
|
Van de Weghe P, Bisseret P, Blanchard N, Eustache J. Metathesis of heteroatom-substituted olefins and alkynes: Current scope and limitations. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2006.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|