1
|
Chan SM, Tang FK, Lam CY, Kwan CS, Hau SCK, Leung KCF. π-Stacking Stopper-Macrocycle Stabilized Dynamically Interlocked [2]Rotaxanes. Molecules 2021; 26:4704. [PMID: 34361858 PMCID: PMC8347712 DOI: 10.3390/molecules26154704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
The synthesis of mechanically interlocked molecules is valuable due to their unique topologies. With π-stacking intercomponent interaction, e.g., phenanthroline and anthracene, novel [2]rotaxanes have been synthesized by dynamic imine clipping reaction. Their X-ray crystal structures indicate the π-stackings between the anthracene moiety (stopper) on the thread and the (hetero)aromatic rings at the macrocycle of the rotaxanes. Moreover, the length of glycol chains affects the extra π-stacking intercomponent interactions between the phenyl groups and the dimethoxy phenyl groups on the thread. Dynamic combinatorial library has shown at best 84% distribution of anthracene-threaded phenanthroline-based rotaxane, coinciding with the crystallography in that the additional π-stacking intercomponent interactions could increase the thermodynamic stability and selectivity of the rotaxanes.
Collapse
Affiliation(s)
- Sing-Ming Chan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (S.-M.C.); (F.-K.T.); (C.-Y.L.); (C.-S.K.)
| | - Fung-Kit Tang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (S.-M.C.); (F.-K.T.); (C.-Y.L.); (C.-S.K.)
| | - Ching-Yau Lam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (S.-M.C.); (F.-K.T.); (C.-Y.L.); (C.-S.K.)
| | - Chak-Shing Kwan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (S.-M.C.); (F.-K.T.); (C.-Y.L.); (C.-S.K.)
| | - Sam C. K. Hau
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (S.-M.C.); (F.-K.T.); (C.-Y.L.); (C.-S.K.)
| |
Collapse
|
2
|
Hari N, Jana A, Mohanta S. Syntheses, crystal structures and ESI-MS of mononuclear–dinuclear, trinuclear and dinuclear based one-dimensional copper(II)–s block metal ion complexes derived from a 3-ethoxysalicylaldehyde–diamine ligand. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Xiong H, Li L, Liu E, Cheng J, Zhang G. A chiral multidentate salan-supported heterobimetallic catalyst for asymmetric Friedel-Crafts reaction. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Assembling chiral salan–copper(II) complexes into a 2D-network with carboxylic acid functionalization. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Saha ML, De S, Pramanik S, Schmittel M. Orthogonality in discrete self-assembly – survey of current concepts. Chem Soc Rev 2013; 42:6860-909. [DOI: 10.1039/c3cs60098j] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Li Z, Liu W, Wu J, Liu SH, Yin J. Synthesis of [2]Catenanes by Template-Directed Clipping Approach. J Org Chem 2012; 77:7129-35. [DOI: 10.1021/jo3012804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ziyong Li
- Key Laboratory of Pesticide and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wenju Liu
- Key Laboratory of Pesticide and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore, 117543
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
7
|
Achard TR, Clegg W, Harrington RW, North M. Chiral salen ligands designed to form polymetallic complexes. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT. Strategien und Taktiken für die metallgesteuerte Synthese von Rotaxanen, Knoten, Catenanen und Verschlingungen höherer Ordnung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007963] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew Chem Int Ed Engl 2011; 50:9260-327. [PMID: 21928462 DOI: 10.1002/anie.201007963] [Citation(s) in RCA: 577] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Indexed: 11/06/2022]
Abstract
More than a quarter of a century after the first metal template synthesis of a [2]catenane in Strasbourg, there now exists a plethora of strategies available for the construction of mechanically bonded and entwined molecular level structures. Catenanes, rotaxanes, knots and Borromean rings have all been successfully accessed by methods in which metal ions play a pivotal role. Originally metal ions were used solely for their coordination chemistry; acting either to gather and position the building blocks such that subsequent reactions generated the interlocked products or by being an integral part of the rings or "stoppers" of the interlocked assembly. Recently the role of the metal has evolved to encompass catalysis: the metal ions not only organize the building blocks in an entwined or threaded arrangement but also actively promote the reaction that covalently captures the interlocked structure. This Review outlines the diverse strategies that currently exist for forming mechanically bonded molecular structures with metal ions and details the tactics that the chemist can utilize for creating cross-over points, maximizing the yield of interlocked over non-interlocked products, and the reactions-of-choice for the covalent capture of threaded and entwined intermediates.
Collapse
Affiliation(s)
- Jonathon E Beves
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Thibeault D, Morin JF. Recent advances in the synthesis of ammonium-based rotaxanes. Molecules 2010; 15:3709-30. [PMID: 20657509 PMCID: PMC6263328 DOI: 10.3390/molecules15053709] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 11/17/2022] Open
Abstract
The number of synthetic methods enabling the preparation of ammonium-based rotaxanes has increased very rapidly in the past ten years. The challenge in the synthesis of rotaxanes results from the rather weak interactions between the ammonium-containing rod and the crown ether macrocycle in the pseudorotaxane structure that rely mostly on O*H hydrogen bonds. Indeed, no strong base or polar solvent that could break up H-bonding can be used during the formation of rotaxanes because the two components will separate as two distinct entities. Moreover, most of the reactions have to be performed at room temperature to favor the formation of pseudorotaxane in solution. These non-trivial prerequisites have been taken into account to develop efficient reaction conditions for the preparation of rotaxanes and those are described in detail along this review.
Collapse
Affiliation(s)
| | - Jean-François Morin
- Département de Chimie, Centre de Recherche sur les Matériaux Avancés (CERMA), 1045 Ave. de la Médecine, Université Laval, Québec, G1V 0A6, Canada; E-Mail: (D.T.)
| |
Collapse
|
12
|
Yin J, Dasgupta S, Wu J. Synthesis of [n]Rotaxanes by Template-Directed Clipping: The Role of the Dialkylammonium Recognition Sites. Org Lett 2010; 12:1712-5. [DOI: 10.1021/ol100256w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Yin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Suvankar Dasgupta
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
| |
Collapse
|
13
|
Constable EC, Zhang G, Housecroft CE, Neuburger M, Zampese JA. Host–guest chemistry of a chiral Schiff base copper(ii) complex: can chiral information be transferred to the guest cation? CrystEngComm 2010. [DOI: 10.1039/b922929a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Akine S, Nabeshima T. Cyclic and acyclic oligo(N2O2) ligands for cooperative multi-metal complexation. Dalton Trans 2009:10395-408. [DOI: 10.1039/b910989g] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Hirose K, Ishibashi K, Shiba Y, Doi Y, Tobe Y. Highly Effective and Reversible Control of the Rocking Rates of Rotaxanes by Changes to the Size of Stimulus‐Responsive Ring Components. Chemistry 2008; 14:5803-11. [DOI: 10.1002/chem.200800257] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
|
17
|
|
18
|
Suzaki Y, Taira T, Osakada K, Horie M. Rotaxanes and pseudorotaxanes with Fe-, Pd- and Pt-containing axles. Molecular motion in the solid state and aggregation in solution. Dalton Trans 2008:4823-33. [DOI: 10.1039/b804125c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Narita M, Yoon I, Aoyagi M, Goto M, Shimizu T, Asakawa M. Transition Metal(II)–Salen and –Salophen Macrocyclic Complexes for Rotaxane Formation: Syntheses and Crystal Structures. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200700208] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|