1
|
Kadota K, Mikami T, Kohata A, Morimoto J, Sando S, Aikawa K, Okazoe T. Synthesis of Short Peptides with Perfluoroalkyl Side Chains and Evaluation of Their Cellular Uptake Efficiency. Chembiochem 2023; 24:e202300374. [PMID: 37430341 DOI: 10.1002/cbic.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
With an increasing demand for macromolecular biotherapeutics, the issue of their poor cell-penetrating abilities requires viable and relevant solutions. Herein, we report tripeptides bearing an amino acid with a perfluoroalkyl (RF ) group adjacent to the α-carbon. RF -containing tripeptides were synthesized and evaluated for their ability to transport a conjugated hydrophilic dye (Alexa Fluor 647) into the cells. RF -containing tripeptides with the fluorophore showed high cellular uptake efficiency and none of them were cytotoxic. Interestingly, we demonstrated that the absolute configuration of perfluoroalkylated amino acids (RF -AAs) affects not only nanoparticle formation but also the cell permeability of the tripeptides. These novel RF -containing tripeptides are potentially useful as short and noncationic cell-penetrating peptides (CPPs).
Collapse
Affiliation(s)
- Koji Kadota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Toshiki Mikami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
2
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
3
|
Ono T, Aikawa K, Okazoe T, Morimoto J, Sando S. Methyl to trifluoromethyl substitution as a strategy to increase the membrane permeability of short peptides. Org Biomol Chem 2021; 19:9386-9389. [PMID: 34676842 DOI: 10.1039/d1ob01565f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we investigated the effect of CH3 to CF3 substitution on the membrane permeability of peptides. We synthesized a series of peptides with CF3 groups and corresponding nonfluorinated peptides and measured the membrane permeability of the peptides. As a result, we demonstrated that CH3 to CF3 substitution is useful for increasing the membrane permeability of di-/tri-peptides.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kohsuke Aikawa
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takashi Okazoe
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Material Integration Laboratories, Yokohama Technical Center, AGC Inc., Yokohama 230-0045, Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Approaches to Obtaining Fluorinated α-Amino Acids. Chem Rev 2019; 119:10718-10801. [PMID: 31436087 DOI: 10.1021/acs.chemrev.9b00024] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fluorine does not belong to the pool of chemical elements that nature uses to build organic matter. However, chemists have exploited the unique properties of fluorine and produced countless fluoro-organic compounds without which our everyday lives would be unimaginable. The incorporation of fluorine into amino acids established a completely new class of amino acids and their properties, and those of the biopolymers constructed from them are extremely interesting. Increasing interest in this class of amino acids caused the demand for robust and stereoselective synthetic protocols that enable straightforward access to these building blocks. Herein, we present a comprehensive account of the literature in this field going back to 1995. We place special emphasis on a particular fluorination strategy. The four main sections describe fluorinated versions of alkyl, cyclic, aromatic amino acids, and also nickel-complexes to access them. We progress by one carbon unit increments. Special cases of amino acids for which there is no natural counterpart are described at the end of each section. Synthetic access to each of the amino acids is summarized in form of a table at the end of this article with the aim to make the information easily accessible to the reader.
Collapse
Affiliation(s)
- Johann Moschner
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Valentina Stulberg
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Rita Fernandes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Susanne Huhmann
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Jakob Leppkes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Beate Koksch
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
5
|
Abstract
Alanine dehydrogenase (AlaDH) (E.C.1.4.1.1) is a microbial enzyme that catalyzes a reversible conversion of L-alanine to pyruvate. Inter-conversion of alanine and pyruvate by AlaDH is central to metabolism in microorganisms. Its oxidative deamination reaction produces pyruvate which plays a pivotal role in the generation of energy through the tricarboxylic acid cycle for sporulation in the microorganisms. Its reductive amination reaction provides a route for the incorporation of ammonia and produces L-alanine which is required for synthesis of the peptidoglycan layer, proteins, and other amino acids. Also, AlaDH helps in redox balancing as its deamination/amination reaction is linked to the reduction/oxidation of NAD+/NADH in microorganisms. AlaDH from a few microorganisms can also reduce glyoxylate into glycine (aminoacetate) in a nonreversible reaction. Both its oxidative and reductive reactions exhibit remarkable applications in the pharmaceutical, environmental, and food industries. The literature addressing the characteristics and applications of AlaDH from a wide range of microorganisms is summarized in the current review.
Collapse
Affiliation(s)
| | - Ravi-Kumar Kadeppagari
- b Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology Campus , Bengaluru , India
| |
Collapse
|
6
|
Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Synthesis of fluorinated amino acid derivatives through late-stage deoxyfluorinations. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
|
8
|
Rydzik AM, Leung IKH, Kochan GT, Thalhammer A, Oppermann U, Claridge TDW, Schofield CJ. Development and Application of a Fluoride-Detection-Based Fluorescence Assay for γ-Butyrobetaine Hydroxylase. Chembiochem 2012; 13:1559-63. [DOI: 10.1002/cbic.201200256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Indexed: 01/30/2023]
|
9
|
Humelnicu I, Würthwein EU, Haufe G. The conformers of 3-fluoroalanine. A theoretical study. Org Biomol Chem 2012; 10:2084-93. [PMID: 22286189 DOI: 10.1039/c2ob06492h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations (DFT, SCS-MP2) show that the relative energies of the four principal alanine conformations are only marginally altered by the introduction of a single fluorine substituent into the methyl group. The fluorine gauche effect and attractive interactions of fluorine to the O-H or N-H moieties (formation of hydrogen bridges) do stabilize particular conformers of 3-fluoroalanine. This is true for the neutral molecule both in the gas phase and in aqueous solution (CPCM-model), but also for the zwitterionic forms and the conformers of the related carboxylate ions and also for the respective ammonium ions in aqueous solution. In water (CPCM calculations), the zwitterion is almost equal in energy to the most stable conformer of the neutral 3-fluoroalanine. Compared to alanine the atomic charges of the amino group and the carboxyl function of 3-fluoroalanine are not significantly influenced by the fluorine at C3, which relates to the fact that both experimental pK(a) values are almost equal for alanine and 3-fluoroalanine.
Collapse
Affiliation(s)
- Ionel Humelnicu
- Organisch Chemisches Institut, Universität Münster, Corrensstr. 40, D-48149 Münster, Germany.
| | | | | |
Collapse
|
10
|
Salwiczek M, Nyakatura EK, Gerling UIM, Ye S, Koksch B. Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions. Chem Soc Rev 2011; 41:2135-71. [PMID: 22130572 DOI: 10.1039/c1cs15241f] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references).
Collapse
Affiliation(s)
- Mario Salwiczek
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
11
|
Kinetic resolution of 3-fluoroalanine using a fusion protein of D-amino acid oxidase with Vitroscilla hemoglobin. Biosci Biotechnol Biochem 2011; 75:820-2. [PMID: 21512218 DOI: 10.1271/bbb.110122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, a fusion protein (VHb-DAAO) of D-amino acid oxidase (DAAO) with Vitreoscilla hemoglobin (VHb) was functionally expressed in Escherichia coli and purified. The k(cat) value VHb-DAAO (47.1 s⁻¹) towards rac-3-flouroalanine was about 2-fold higher than that of DAAO (21.9 s⁻¹). rac-3-Flouroalanine (500 mM) was kinetically resolved into (R)-3-fluoroalanine with high enatiomeric excess (>99%) by VHb-DAAO with about 52% conversion.
Collapse
|
12
|
Bea HS, Lee SH, Yun H. Asymmetric synthesis of (R)-3-fluoroalanine from 3-fluoropyruvate using omega-transaminase. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0282-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Affiliation(s)
- Xiao‐Long Qiu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China, Fax: +86‐21‐64166128
- Wisdom Pharmaceutical Co., Ltd., 601 East, Xiu‐shan Road, Haimen, Jiangsu Province 226100, China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China, Fax: +86‐21‐64166128
- College of Chemistry and Chemistry Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
14
|
Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, Wise DR, Thompson CB, Kung HF. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc 2010; 133:1122-33. [PMID: 21190335 DOI: 10.1021/ja109203d] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A versatile synthetic route to prepare all four stereoisomeric 4-fluoro-glutamines was developed by exploiting a Passerini three-component reaction. The skeleton of 4-substituted glutamine derivatives was efficiently constructed. Subsequent four-step reactions, highlighted by a "neutralized" TASF fluorination, provided the desired products with high yields and excellent optical purity. The optically pure fluorine-18 labeled 4-fluoroglutamines were also successfully prepared using either a 18-crown-6/KHCO(3) or K[222]/K(2)CO(3) catalysis system. Preliminary cell uptake and inhibition studies using the 9L tumor cells and SF188(Bcl-xL) tumor cells (a glutamine addicted tumor derived from glioblastoma) provided strong evidence for their potential application in conjunction with positron emission tomography (PET) for in vivo imaging of tumors, which use glutamine as an alternative energy source.
Collapse
Affiliation(s)
- Wenchao Qu
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Simpson RD, Zhao W. Asymmetric syntheses of (1r,3R,4S)- and (1s,3R,4S)-(3,4-difluorocyclopentyl)-alanine derivatives. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Yanai H, Takahashi A, Taguchi T. Development of effective Lewis acids for the catalytic Diels–Alder reaction of α,β-unsaturated lactones with cyclopentadiene. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.02.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|