1
|
Gisemba SA, Ferracane MJ, Murray TF, Aldrich JV. A Bicyclic Analog of the Linear Peptide Arodyn Is a Potent and Selective Kappa Opioid Receptor Antagonist. Molecules 2024; 29:3109. [PMID: 38999061 PMCID: PMC11243530 DOI: 10.3390/molecules29133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.
Collapse
Affiliation(s)
- Solomon A Gisemba
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | | | - Thomas F Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68102, USA
| | - Jane V Aldrich
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Whisenant J, Burgess K. Synthetic helical peptide capping strategies. Chem Soc Rev 2022; 51:5795-5804. [PMID: 35786712 DOI: 10.1039/d1cs01175h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relatively small mimics of interface secondary structures can be used to disrupt protein-protein interactions (PPIs). This strategy is valuable because many PPIs are pivotal in cell biology and contemporary medicinal chemistry. Small peptides tend to have random coil conformations in solution, so the entropy costs are high for them to order into states binding protein receptors. Consequently, peptides constrained in conformations resembling interface secondary structures are favored for enhanced affinities to PPI components. Helices are commonly found at PPI interfaces. The two general strategies that have emerged for imposing helical constraints in probes, capping and stapling, are often confused because both involve formation of macrocyclic rings. This review considers parameters that distinguish capping from stapling. Capping motifs terminate helices and project the adjacent peptide units in non-helical orientations, but stapling enforces helical motifs in ways that enable adjacent peptide fragments to extend helices. There is no evidence that stapling is more effective than capping for helix mimicry, but stapling is used more frequently. This imbalance may be because no strategies have emerged for synthetic C-capping with compact unit; if convenient and effective C-capping strategies were available then capping strategies should be more widely used.
Collapse
Affiliation(s)
- Jonathan Whisenant
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| |
Collapse
|
3
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 527] [Impact Index Per Article: 263.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
4
|
Jedhe GS, Arora PS. Hydrogen bond surrogate helices as minimal mimics of protein α-helices. Methods Enzymol 2021; 656:1-25. [PMID: 34325784 DOI: 10.1016/bs.mie.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Examination of complexes of proteins with biomolecular ligands reveals that proteins tend to interact with partners via folded sub-domains, in which the backbone possesses secondary structure. α-Helices comprising the largest class of protein secondary structures, play fundamental roles in a multitude of highly specific protein-protein and protein-nucleic acid interactions. We have demonstrated a unique strategy for stabilization of the α-helical conformation that involves replacement of one of the main chain i and i+4 hydrogen bonds in the target α-helix with a covalent bond. We termed this synthetic strategy a hydrogen bond surrogate (HBS) approach. Two salient features of this approach are: (1) the internal placement of the crosslink allows development of helices such that none of the solvent-exposed surfaces are blocked by the constraining element, i.e., all side chains of the constrained helices remain available for molecular recognition. (2) This approach can be deployed to constrain very short peptides (<10 amino acid residues) into highly stable α-helices. This chapter presents the biophysical basis for the development of the hydrogen bond surrogate approach, as well as methods for the synthesis and conformational analysis of the artificial helices.
Collapse
Affiliation(s)
- Ganesh S Jedhe
- Department of Chemistry, New York University, New York, NY, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY, United States.
| |
Collapse
|
5
|
Bai X, Sun B, Wang C, Wang X, Jia T, Hao D, Zhang J. Microwave-initiated recombination of hydrogen bonds of a perylene diimide supramolecule for PPCP photodegradation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00538c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rec-PDI-HCl with “recombinant holes” shows the capability to form an intermolecular polarized electric field to enhance its photocatalytic properties.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Boxuan Sun
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Cong Wang
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Xuyu Wang
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| | - Junying Zhang
- School of Physics
- Beihang University
- Beijing 100191
- China
| |
Collapse
|
6
|
Pal S, Banerjee S, Kumar A, Prabhakaran EN. H-Bond Surrogate-Stabilized Shortest Single-Turn α-Helices: sp 2 Constraints and Residue Preferences for the Highest α-Helicities. ACS OMEGA 2020; 5:13902-13912. [PMID: 32566857 PMCID: PMC7301546 DOI: 10.1021/acsomega.0c01277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Short α-helical sequences of proteins fail to maintain their native conformation when taken out of their protein context. Several covalent constraints have been designed, including the covalent H-bond surrogate (HBS)-where a peptide backbone i + 4 → i H-bond is replaced by a covalent surrogate-to nucleate α-helix in short sequences (>7 < 15 amino acids). But constraining the shortest sequences (four amino acids) into a single α-helical turn is still a significant challenge. Here, we introduce an HBS model that can be placed in unstructured tetrapeptides without excising any of its residues, and that biases them predominantly into remarkably stable single α-helical turns in varying solvents, pH values, and temperatures. Circular dichroism (CD), Fourier transform infrared (FT-IR) absorption, one-dimensional (1D)-NMR, two-dimensional (2D)-NMR spectral and computational analyses of the HBS-constrained tetrapeptide analogues reveal that (a) the number of sp2 atoms in the HBS-constrained backbone influences their predominance and rigidity in the α-helical conformation; and (b) residue preferences at the unnatural HBS-constrained positions influence their α-helicities, with Moc[GFA]G-OMe (1a) showing the highest known α-helicity (θn→π*MRE ∼-25.3 × 103 deg cm2 dmol-1 at 228 nm) for a single α-helical turn. Current findings benefit chemical biological applications desiring predictable access to single α-helical turns in tetrapeptides.
Collapse
|
7
|
Yang J, Talibov VO, Peintner S, Rhee C, Poongavanam V, Geitmann M, Sebastiano MR, Simon B, Hennig J, Dobritzsch D, Danielson UH, Kihlberg J. Macrocyclic Peptides Uncover a Novel Binding Mode for Reversible Inhibitors of LSD1. ACS OMEGA 2020; 5:3979-3995. [PMID: 32149225 PMCID: PMC7057333 DOI: 10.1021/acsomega.9b03493] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme which regulates the methylation of Lys4 of histone 3 (H3) and is overexpressed in certain cancers. We used structures of H3 substrate analogues bound to LSD1 to design macrocyclic peptide inhibitors of LSD1. A linear, Lys4 to Met-substituted, 11-mer (4) was identified as the shortest peptide distinctly interacting with LSD1. It was evolved into macrocycle 31, which was >40 fold more potent (K i = 2.3 μM) than 4. Linear and macrocyclic peptides exhibited unexpected differences in structure-activity relationships for interactions with LSD1, indicating that they bind LSD1 differently. This was confirmed by the crystal structure of 31 in complex with LSD1-CoREST1, which revealed a novel binding mode at the outer rim of the LSD1 active site and without a direct interaction with FAD. NMR spectroscopy of 31 suggests that macrocyclization restricts its solution ensemble to conformations that include the one in the crystalline complex. Our results provide a solid basis for the design of optimized reversible LSD1 inhibitors.
Collapse
Affiliation(s)
- Jie Yang
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - Vladimir O. Talibov
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - Stefan Peintner
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - Claire Rhee
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | | | - Matthis Geitmann
- Beactica
AB, Uppsala Business Park, Virdings allé 2, SE-75450 Uppsala, Sweden
| | | | - Bernd Simon
- Structural
and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural
and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Doreen Dobritzsch
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - U. Helena Danielson
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
- Science
for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jan Kihlberg
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| |
Collapse
|
8
|
Merritt HI, Sawyer N, Arora PS. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Pept Sci (Hoboken) 2020; 112:e24145. [PMID: 33575525 PMCID: PMC7875438 DOI: 10.1002/pep2.24145] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Protein secondary and tertiary structure mimics have served as model systems to probe biophysical parameters that guide protein folding and as attractive reagents to modulate protein interactions. Here we review contemporary methods to reproduce loop, helix, sheet and coiled-coil conformations in short peptides.
Collapse
Affiliation(s)
| | | | - Paramjit S. Arora
- Department of Chemistry New York University, New York, New York 10003, United States
| |
Collapse
|
9
|
‘T Hart P, Openy J, Krzyzanowski A, Adihou H, Waldmann H. Hot-spot guided design of macrocyclic inhibitors of the LSD1-CoREST1 interaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Abstract
Peptide secondary and tertiary structure motifs frequently serve as inspiration for the development of protein-protein interaction (PPI) inhibitors. While a wide variety of strategies have been used to stabilize or imitate α-helices, similar strategies for β-sheet stabilization are more limited. Synthetic scaffolds that stabilize reverse turns and cross-strand interactions have provided important insights into β-sheet stability and folding. However, these templates occupy regions of the β-sheet that might impact the β-sheet's ability to bind at a PPI interface. Here, we present the hydrogen bond surrogate (HBS) approach for stabilization of β-hairpin peptides. The HBS linkage replaces a cross-strand hydrogen bond with a covalent linkage, conferring significant conformational and proteolytic resistance. Importantly, this approach introduces the stabilizing linkage in the buried β-sheet interior, retains all side chains for further functionalization, and allows efficient solid-phase macrocyclization. We anticipate that HBS stabilization of PPI β-sheets will enhance the development of β-sheet PPI inhibitors and expand the repertoire of druggable PPIs.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
11
|
Sawyer N, Watkins AM, Arora PS. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Acc Chem Res 2017; 50:1313-1322. [PMID: 28561588 DOI: 10.1021/acs.accounts.7b00130] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biological systems and often misregulated in disease. As such, specific PPI modulators are desirable to unravel complex PPI pathways and expand the number of druggable targets available for therapeutic intervention. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets. This Account describes our systematic approach using secondary and tertiary protein domain mimics (PDMs) to specifically modulate PPIs. Our strategy focuses on mimicry of regular secondary and tertiary structure elements from one of the PPI partners to inspire rational PDM design. We have compiled three databases (HIPPDB, SIPPDB, and DIPPDB) of secondary and tertiary structures at PPI interfaces to guide our designs and better understand the energetics of PPI secondary and tertiary structures. Our efforts have focused on three of the most common secondary and tertiary structures: α-helices, β-strands, and helix dimers (e.g., coiled coils). To mimic α-helices, we designed the hydrogen bond surrogate (HBS) as an isosteric PDM and the oligooxopiperazine helix mimetic (OHM) as a topographical PDM. The nucleus of the HBS approach is a peptide macrocycle in which the N-terminal i, i + 4 main-chain hydrogen bond is replaced with a covalent carbon-carbon bond. In mimicking a main-chain hydrogen bond, the HBS approach stabilizes the α-helical conformation while leaving all helical faces available for functionalization to tune binding affinity and specificity. The OHM approach, in contrast, envisions a tetrapeptide to mimic one face of a two-turn helix. We anticipated that placement of ethylene bridges between adjacent amides constrains the tetrapeptide backbone to mimic the i, i + 4, and i + 7 side chains on one face of an α-helix. For β-strands, we developed triazolamers, a topographical PDM where the peptide bonds are replaced by triazoles. The triazoles simultaneously stabilize the extended, zigzag conformation of β-strands and transform an otherwise ideal protease substrate into a stable molecule by replacement of the peptide bonds. We turned to a salt bridge surrogate (SBS) approach as a means for stabilizing very short helix dimers. As with the HBS approach, the SBS strategy replaces a noncovalent interaction with a covalent bond. Specifically, we used a bis-triazole linkage that mimics a salt bridge interaction to drive helix association and folding. Using this approach, we were able to stabilize helix dimers that are less than half of the length required to form a coiled coil from two independent strands. In addition to demonstrating the stabilization of desired structures, we have also shown that our designed PDMs specifically modulate target PPIs in vitro and in vivo. Examples of PPIs successfully targeted include HIF1α/p300, p53/MDM2, Bcl-xL/Bak, Ras/Sos, and HIV gp41. The PPI databases and designed PDMs created in these studies will aid development of a versatile set of molecules to probe complex PPI functions and, potentially, PPI-based therapeutics.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Andrew M. Watkins
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
12
|
Bruno PA, Morriss-Andrews A, Henderson AR, Brooks CL, Mapp AK. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling. Angew Chem Int Ed Engl 2016; 55:14997-15001. [PMID: 27791341 PMCID: PMC5587901 DOI: 10.1002/anie.201607990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 11/06/2022]
Abstract
Aberrant canonical NF-κB signaling is implicated in diseases from autoimmune disorders to cancer. A major therapeutic challenge is the need for selective inhibition of the canonical pathway without impacting the many non-canonical NF-κB functions. Here we show that a selective peptide-based inhibitor of canonical NF-κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a non-labile bond, shows an about 10-fold increased potency relative to the original inhibitor. Not only is this molecule, NBD2, a powerful tool for dissection of canonical NF-κB signaling in disease models and healthy tissues, the success of the synthetic loop replacement suggests that the general strategy could be useful for discovering modulators of the many protein-protein interactions mediated by such structures.
Collapse
Affiliation(s)
- Paul A Bruno
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | | | - Andrew R Henderson
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | | | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
13
|
Qian WJ, Park JE, Grant R, Lai CC, Kelley JA, Yaffe MB, Lee KS, Burke TR. Neighbor-directed histidine N (τ)-alkylation: A route to imidazolium-containing phosphopeptide macrocycles. Biopolymers 2016; 104:663-73. [PMID: 26152807 DOI: 10.1002/bip.22698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/15/2015] [Accepted: 07/04/2015] [Indexed: 12/24/2022]
Abstract
Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.
Collapse
Affiliation(s)
- Wen-Jian Qian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Robert Grant
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Christopher C Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| | - James A Kelley
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| | - Michael B Yaffe
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| |
Collapse
|
14
|
Bruno PA, Morriss-Andrews A, Henderson AR, Brooks CL, Mapp AK. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paul A. Bruno
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| | | | - Andrew R. Henderson
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| | | | - Anna K. Mapp
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| |
Collapse
|
15
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016; 55:12088-93. [DOI: 10.1002/anie.201606833] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
16
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
17
|
Driowya M, Saber A, Marzag H, Demange L, Bougrin K, Benhida R. Microwave-Assisted Syntheses of Bioactive Seven-Membered, Macro-Sized Heterocycles and Their Fused Derivatives. Molecules 2016; 21:E1032. [PMID: 27517892 PMCID: PMC6273266 DOI: 10.3390/molecules21081032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022] Open
Abstract
This review describes the recent advances in the microwave-assisted synthesis of 7-membered and larger heterocyclic compounds. Several types of reaction for the cyclization step are discussed: Ring Closing Metathesis (RCM), Heck and Sonogashira reactions, Suzuki-Miyaura cross-coupling, dipolar cycloadditions, multi-component reactions (Ugi, Passerini), etc. Green syntheses and solvent-free procedures have been introduced whenever possible. The syntheses discussed herein have been selected to illustrate the huge potential of microwave in the synthesis of highly functionalized molecules with potential therapeutic applications, in high yields, enhanced reaction rates and increased chemoselectivity, compared to conventional methods. More than 100 references from the recent literature are listed in this review.
Collapse
Affiliation(s)
- Mohsine Driowya
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Aziza Saber
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Hamid Marzag
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Luc Demange
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
- Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, Paris Fr-75006, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Rachid Benhida
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
18
|
Tian Y, Wang D, Li J, Shi C, Zhao H, Niu X, Li Z. A proline-derived transannular N-cap for nucleation of short α-helical peptides. Chem Commun (Camb) 2016; 52:9275-8. [DOI: 10.1039/c6cc04672j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a simple and practical proline-derived transannular N-cap as a helix nucleating template in diverse bio-related peptide sequences via macrolactamization on resin.
Collapse
Affiliation(s)
- Yuan Tian
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Dongyuan Wang
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Jingxu Li
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Chuan Shi
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Hui Zhao
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering
- Beijing Nuclear Magnetic Resonance Center
- Peking University
- Beijing
- China
| | - Zigang Li
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| |
Collapse
|
19
|
Mangold SL, Grubbs RH. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach. Chem Sci 2015; 6:4561-4569. [PMID: 26509000 PMCID: PMC4618480 DOI: 10.1039/c5sc01507c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM.
Collapse
Affiliation(s)
- Shane L. Mangold
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA . ; Fax: +1-626-564-9297
| | - Robert H. Grubbs
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA . ; Fax: +1-626-564-9297
| |
Collapse
|
20
|
Fahs S, Patil-Sen Y, Snape TJ. Foldamers as Anticancer Therapeutics: Targeting Protein-Protein Interactions and the Cell Membrane. Chembiochem 2015; 16:1840-1853. [DOI: 10.1002/cbic.201500188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 01/10/2023]
|
21
|
Aihara K, Komiya C, Shigenaga A, Inokuma T, Takahashi D, Otaka A. Liquid-Phase Synthesis of Bridged Peptides Using Olefin Metathesis of a Protected Peptide with a Long Aliphatic Chain Anchor. Org Lett 2015; 17:696-9. [DOI: 10.1021/ol503718j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Keisuke Aihara
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Chiaki Komiya
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Akira Shigenaga
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Tsubasa Inokuma
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Daisuke Takahashi
- Institute
for Bioscience Products and Fine Chemicals, AJINOMOTO Co., Inc., 1730 Hinaga, Yokkaichi Mie 510-0885, Japan
| | - Akira Otaka
- Institute
of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
22
|
Zhao DS, Chen YX, Li YM. Rational design of an orthosteric regulator of hIAPP aggregation. Chem Commun (Camb) 2015; 51:2095-8. [DOI: 10.1039/c4cc06739h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Compounds that can block hIAPP toxic oligomer but not fibril formation have been rationally designed based on the helix aggregation mechanism.
Collapse
Affiliation(s)
- De-Sheng Zhao
- Department of Chemistry
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 10084
- P. R. China
| | - Yong-Xiang Chen
- Department of Chemistry
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 10084
- P. R. China
| | - Yan-Mei Li
- Department of Chemistry
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 10084
- P. R. China
| |
Collapse
|
23
|
Rodríguez AM, Prieto P, de la Hoz A, Díaz-Ortiz A, García JI. The issue of 'molecular radiators' in microwave-assisted reactions. Computational calculations on ring closing metathesis (RCM). Org Biomol Chem 2014; 12:2436-45. [PMID: 24599220 DOI: 10.1039/c3ob42536c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DFT computational mechanistic study of the ring closing metathesis (RCM) reaction of diallyl ether or N,N-diallyl-p-toluenesulfonamide catalyzed by a second generation Grubbs-type ruthenium carbene complex has been carried out. This study was performed at the PCM(CH2Cl2)-B3LYP/6-311+G(2d,p)//B3LYP/SDD theory level. The aim of this work was to shed light on the influence that microwave irradiation has on these reactions and to gain insight into the so-called 'molecular radiator' effect. The outcomes obtained indicate that thermal effects induced by microwave irradiation decrease the catalytic induction period. The presence of a polar reagent and/or polar species in the reaction that increases the polarity of the medium may enhance this thermal effect.
Collapse
Affiliation(s)
- A M Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | | | | | | | | |
Collapse
|
24
|
Miller SE, Thomson PF, Arora PS. Synthesis of hydrogen-bond surrogate α-helices as inhibitors of protein-protein interactions. ACTA ACUST UNITED AC 2014; 6:101-116. [PMID: 24903885 DOI: 10.1002/9780470559277.ch130202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The α-helix is a prevalent secondary structure in proteins and is critical in mediating protein-protein interactions (PPIs). Peptide mimetics that adopt stable helices have become powerful tools for the modulation of PPIs in vitro and in vivo. Hydrogen-bond surrogate (HBS) α-helices utilize a covalent bond in place of an N-terminal i to i+4 hydrogen bond and have been used to target and disrupt PPIs that become dysregulated in disease states. These compounds have improved conformational stability and cellular uptake as compared to their linear peptide counterparts. The protocol presented here describes current methodology for the synthesis of HBS α-helical mimetics. The solid-phase synthesis of HBS helices involves solid-phase peptide synthesis with three key steps involving incorporation of N-allyl functionality within the backbone of the peptide, coupling of a secondary amine, and a ring-closing metathesis step.
Collapse
Affiliation(s)
- Stephen E Miller
- Department of Chemistry, New York University, New York, New York
| | - Paul F Thomson
- Department of Chemistry, New York University, New York, New York
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, New York
| |
Collapse
|
25
|
How to blast osteoblasts? Novel dicarba analogues of amylin-(1–8) to treat osteoporosis. Bioorg Med Chem 2012; 20:6011-8. [DOI: 10.1016/j.bmc.2012.08.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/16/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022]
|
26
|
Shen L, Simmons CJ, Sun D. Microwave-assisted synthesis of macrocycles via intramolecular and/or bimolecular Ullmann coupling. Tetrahedron Lett 2012; 53:4173-4178. [PMID: 23049146 PMCID: PMC3462461 DOI: 10.1016/j.tetlet.2012.05.142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microwave-assisted synthesis of macrocyclic diaryl ethers via intramolecular and/or bimolecular Ullmann coupling is described. Using the optimized conditions, a panel of macrocycles, with different substitution patterns, ring sizes, and linkers, has been successfully synthesized using microwave irradiation. To the best of our knowledge, this work represents the first examples of the microwave-assisted synthesis of macrocyclic diaryl ethers via intramolecular and/or bimolecular Ullmann coupling.
Collapse
Affiliation(s)
- Li Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA
| | - Charles J. Simmons
- Department of Chemistry, University of Hawai’i at Hilo, Hilo, HI 96720, USA
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA
| |
Collapse
|
27
|
Abstract
Oligomers composed of β(3)-amino acid residues and a mixture of α- and β(3)-residues have emerged as proteolytically stable structural mimics of α-helices. An attractive feature of these oligomers is that they adopt defined conformations in short sequences. In this manuscript, we evaluate the impact of β(3)-residues as compared to their α-amino acid analogs in prenucleated helices. Our hydrogen-deuterium exchange results suggest that heterogeneous sequences composed of "αααβ" repeats are conformationally more rigid than the corresponding homogeneous α-peptide helices, with the macrocycle templating the helical conformation having a significant influence.
Collapse
Affiliation(s)
- Anupam Patgiri
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
28
|
Literature Survey Part A: Transition Metal-Catalyzed Reactions. MICROWAVES IN ORGANIC AND MEDICINAL CHEMISTRY 2012. [DOI: 10.1002/9783527647828.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Mahon AB, Arora PS. Design, synthesis and protein-targeting properties of thioether-linked hydrogen bond surrogate helices. Chem Commun (Camb) 2012; 48:1416-8. [PMID: 21952530 PMCID: PMC3412876 DOI: 10.1039/c1cc14730g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Appropriately-placed hydrogen bond surrogates have been demonstrated to efficiently nucleate helical conformations. Herein we describe an efficient method for the synthesis of thioether-based hydrogen bond surrogate (teHBS) helices. A teHBS helix is shown to adopt a stable conformation and target its cognate protein receptor with high affinity.
Collapse
Affiliation(s)
- Andrew B Mahon
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | |
Collapse
|
30
|
Heapy AM, Williams GM, Fraser JD, Brimble MA. Synthesis of a dicarba analogue of human β-defensin-1 using a combined ring closing metathesis--native chemical ligation strategy. Org Lett 2012; 14:878-81. [PMID: 22239540 DOI: 10.1021/ol203407z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein describe the first synthesis of the native antimicrobial protein HBD-1 making use of an orthogonal thiol protection strategy and a novel dicarba analogue thereof. The robust hydrocarbon linkage was installed by replacement of one disulfide bond using on-resin ring closing metathesis. The unprecedented 59-membered C-terminal cysteine macrocyclic fragment thus formed then engages in native chemical ligation allowing convergent access to this unique synthetic protein analogue.
Collapse
Affiliation(s)
- Amanda M Heapy
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
31
|
Estieu-Gionnet K, Guichard G. Stabilized helical peptides: overview of the technologies and therapeutic promises. Expert Opin Drug Discov 2011; 6:937-63. [PMID: 22646216 DOI: 10.1517/17460441.2011.603723] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Helical structures in proteins and naturally occurring peptides play a major role in a variety of biological processes by mediating interactions with proteins and other macromolecules such as nucleic acids and lipid membranes. The use of short synthetic peptides encompassing helical segments to modulate or disrupt such interactions, when associated with human diseases, represents great pharmacological interest. AREAS COVERED Multiple chemical approaches have been developed to increase the conformational and metabolic stabilities of helical peptides and to improve their biomedical potential. After a brief overview of these technologies and the most recent developments, this review will focus on the main therapeutic areas and targets and will discuss their promise. EXPERT OPINION Potential benefits associated with increased helix stability extend beyond simple affinity enhancement. Some peptidomimetic helices are being endowed with features desirable for cellular activity such as increased resistance to proteolysis and/or cell permeability. Recent advances in the field of peptide and related peptidomimetic helices are not just conceptual, but are likely to be of practical utility in the process of optimizing peptides as clinical candidates, and developing medium-size therapeutics.
Collapse
Affiliation(s)
- Karine Estieu-Gionnet
- Institut Européen de Chimie et Biologie , Université de Bordeaux, CNRS UMR 5248, CBMN, 2 rue R. Escarpit, 33607 Pessac , France
| | | |
Collapse
|
32
|
Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmink J. Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. Chembiochem 2011; 12:1626-53. [PMID: 21751324 DOI: 10.1002/cbic.201000717] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 12/17/2022]
Abstract
Despite their enormous diversity in biological function and structure, peptides and proteins are endowed with properties that have induced and stimulated the development of peptidomimetics. Clearly, peptides can be considered as the "stem" of a phylogenetic molecular development tree from which branches of oligomeric peptidomimetics such as peptoids, peptidosulfonamides, urea peptidomimetics, as well as β-peptides have sprouted. It is still a challenge to efficiently synthesize these oligomeric species, and study their structural and biological properties. Combining peptides and peptidomimetics led to the emergence of peptide-peptidomimetic hybrids in which one or more (proteinogenic) amino acid residues have been replaced with these mimetic residues. In scan-like approaches, the influence of these replacements on biological activity can then be studied, to evaluate to what extent a peptide can be transformed into a peptidomimetic structure while maintaining, or even improving, its biological properties. A central issue, especially with the smaller peptides, is the lack of secondary structure. Important approaches to control secondary structure include the introduction of α,α-disubstituted amino acids, or (di)peptidomimetic structures such as the Freidinger lactam. Apart from intra-amino acid constraints, inter-amino acid constraints for formation of a diversity of cyclic peptides have shaped a thick branch. Apart from the classical disulfide bridges, the repertoire has been extended to include sulfide and triazole bridges as well as the single-, double- and even triple-bond replacements, accessible by the extremely versatile ring-closing alkene/alkyne metathesis approaches. The latter approach is now the method of choice for the secondary structure that presents the greatest challenge for structural stabilization: the α-helix.
Collapse
Affiliation(s)
- Rob M J Liskamp
- Medicinal Chemistry and Chemical Biology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Pinsker A, Einsiedel J, Härterich S, Waibel R, Gmeiner P. A Highly Efficient Type I β-Turn Mimetic Simulating an Asx-Pro-Turn-Like Structure. Org Lett 2011; 13:3502-5. [DOI: 10.1021/ol201313q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Andrea Pinsker
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Steffen Härterich
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Reiner Waibel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|
34
|
Kim YW, Grossmann TN, Verdine GL. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 2011; 6:761-71. [PMID: 21637196 DOI: 10.1038/nprot.2011.324] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol provides a detailed procedure for the preparation of stapled α-helical peptides, which have proven their potential as useful molecular probes and as next-generation therapeutics. Two crucial features of this protocol are (i) the construction of peptide substrates containing hindered α-methyl, α-alkenyl amino acids and (ii) the ring-closing olefin metathesis (RCM) of the resulting resin-bound peptide substrates. The stapling systems described in this protocol, namely bridging one or two turns of an α-helix, are highly adaptable to most peptide sequences, resulting in favorable RCM kinetics, helix stabilization and promotion of cellular uptake.
Collapse
Affiliation(s)
- Young-Woo Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Andersson H, Demaegdt H, Johnsson A, Vauquelin G, Lindeberg G, Hallberg M, Erdélyi M, Karlén A, Hallberg A. Potent Macrocyclic Inhibitors of Insulin-Regulated Aminopeptidase (IRAP) by Olefin Ring-Closing Metathesis. J Med Chem 2011; 54:3779-92. [DOI: 10.1021/jm200036n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanna Andersson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Heidi Demaegdt
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Anders Johnsson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gunnar Lindeberg
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Swedish NMR Centre, University of Gothenburg, Box 465, SE-405 30 Gothenburg, Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
36
|
Khan SN, Kim A, Grubbs RH, Kwon YU. Ring-closing metathesis approaches for the solid-phase synthesis of cyclic peptoids. Org Lett 2011; 13:1582-5. [PMID: 21384884 DOI: 10.1021/ol200226z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic peptoids were efficiently synthesized on a solid phase in high yields utilizing ring-closing metathesis (RCM). This method should be a valuable tool for easy access to cyclic peptoid libraries and various cyclic compounds.
Collapse
Affiliation(s)
- Sharaf Nawaz Khan
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, South Korea
| | | | | | | |
Collapse
|
37
|
Henchey LK, Porter JR, Ghosh I, Arora PS. High specificity in protein recognition by hydrogen-bond-surrogate α-helices: selective inhibition of the p53/MDM2 complex. Chembiochem 2011; 11:2104-7. [PMID: 20821791 DOI: 10.1002/cbic.201000378] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura K Henchey
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
38
|
Patgiri A, Menzenski MZ, Mahon AB, Arora PS. Solid-phase synthesis of short α-helices stabilized by the hydrogen bond surrogate approach. Nat Protoc 2010; 5:1857-65. [PMID: 21030960 DOI: 10.1038/nprot.2010.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stabilized α-helices and nonpeptidic helix mimetics have emerged as powerful molecular scaffolds for the discovery of protein-protein interaction inhibitors. Protein-protein interactions often involve large contact areas, which are often difficult for small molecules to target with high specificity. The hypothesis behind the design of stabilized helices and helix mimetics is that these medium-sized molecules may pursue their targets with higher specificity because of a larger number of contacts. This protocol describes an optimized synthetic strategy for the preparation of stabilized α-helices that feature a carbon-carbon linkage in place of the characteristic N-terminal main-chain hydrogen bond of canonical helices. Formation of the carbon-carbon bond is enabled by a microwave-assisted ring-closing metathesis reaction between two terminal olefins on the peptide chain. The outlined strategy allows the synthesis and purification of a hydrogen bond surrogate (HBS) α-helix in ∼ 1 week.
Collapse
Affiliation(s)
- Anupam Patgiri
- Department of Chemistry, New York University, New York, USA
| | | | | | | |
Collapse
|
39
|
Jacobsen Ø, Klaveness J, Rongved P. Structural and pharmacological effects of ring-closing metathesis in peptides. Molecules 2010; 15:6638-77. [PMID: 20877250 PMCID: PMC6257744 DOI: 10.3390/molecules15096638] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022] Open
Abstract
Applications of ring-closing alkene metathesis (RCM) in acyclic α- and β-peptides and closely related systems are reviewed, with a special emphasis on the structural and pharmacological effects of cyclization by RCM.
Collapse
|
40
|
Patgiri A, Witten MR, Arora PS. Solid phase synthesis of hydrogen bond surrogate derived alpha-helices: resolving the case of a difficult amide coupling. Org Biomol Chem 2010; 8:1773-6. [PMID: 20449477 DOI: 10.1039/c000905a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solid phase synthesis of HBS helices involving the Fukuyama-Mitsunobu reaction and triphosgene coupling is described.
Collapse
Affiliation(s)
- Anupam Patgiri
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
41
|
Dallinger D, Irfan M, Suljanovic A, Kappe CO. An Investigation of Wall Effects in Microwave-Assisted Ring-Closing Metathesis and Cyclotrimerization Reactions. J Org Chem 2010; 75:5278-88. [DOI: 10.1021/jo1011703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Doris Dallinger
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Muhammed Irfan
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Amra Suljanovic
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - C. Oliver Kappe
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
42
|
Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS. Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate alpha-helix. J Am Chem Soc 2010; 132:941-3. [PMID: 20041650 DOI: 10.1021/ja9082864] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Designed ligands that inhibit hypoxia-inducible gene expression could offer new tools for genomic research and, potentially, drug discovery efforts for the treatment of neovascularization in cancers. We report a stabilized alpha-helix designed to target the binding interface between the C-terminal transactivation domain (C-TAD) of hypoxia-inducible factor 1alpha (HIF-1alpha) and cysteine-histidine rich region (CH1) of transcriptional coactivator CBP/p300. The synthetic helix disrupts the structure and function of this complex, resulting in a rapid downregulation of two hypoxia-inducible genes (VEGF and GLUT1) in cell culture.
Collapse
Affiliation(s)
- Laura K Henchey
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wallace D. Use of Commercially Available Ruthenium Fischer-Type Carbenes for Ring-Closing Metathesis Reactions: Scope and Limitations of anin situActivation Procedure. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Marinec PS, Evans CG, Gibbons GS, Tarnowski MA, Overbeek DL, Gestwicki JE. Synthesis of orthogonally reactive FK506 derivatives via olefin cross metathesis. Bioorg Med Chem 2009; 17:5763-8. [PMID: 19643614 PMCID: PMC2758530 DOI: 10.1016/j.bmc.2009.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 01/31/2023]
Abstract
Chemical inducers of dimerization (CIDs) are employed in a wide range of biological applications to control protein localization, modulate protein-protein interactions and improve drug lifetimes. These bifunctional chemical probes are assembled from two synthetic modules, which each provide affinity for a distinct protein target. FK506 and its derivatives are often employed as modules in the syntheses of these bifunctional constructs, owing to the abundance and favorable distribution of their target, FK506-binding protein (FKBP). However, the structural complexity of FK506 necessitates multi-step syntheses and/or multiple protection-deprotection schemes prior to installation into CIDs. In this work, we describe an efficient, one-step synthesis of FK506 derivatives through a selective, microwave-accelerated, cross metathesis diversification step of the C39 terminal alkene. Using this approach, FK506 is modified with an array of functional groups, including primary amines and carboxylic acids, which make the resulting derivatives suitable for the modular assembly of CIDs. To illustrate this idea, we report the synthesis of a heterobifunctional HIV protease inhibitor.
Collapse
Affiliation(s)
- Paul S. Marinec
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109
| | - Christopher G. Evans
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109
| | - Garrett S. Gibbons
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109
| | - Malloree A. Tarnowski
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109
| | - Daniel L. Overbeek
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109
| | - Jason E. Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109
| |
Collapse
|
45
|
Abell AD, Alexander NA, Aitken SG, Chen H, Coxon JM, Jones MA, McNabb SB, Muscroft-Taylor A. Synthesis of Macrocyclic β-Strand Templates by Ring Closing Metathesis. J Org Chem 2009; 74:4354-6. [DOI: 10.1021/jo802723w] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew D. Abell
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Nathan A. Alexander
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Steven G. Aitken
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Hongyuan Chen
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - James M. Coxon
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Jones
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Stephen B. McNabb
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Andrew Muscroft-Taylor
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
46
|
Kappe CO, Dallinger D. Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 2009; 13:71-193. [PMID: 19381851 DOI: 10.1007/s11030-009-9138-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/27/2009] [Indexed: 01/25/2023]
|
47
|
PATGIRI ANUPAM, JOCHIM ANDREAL, ARORA PARAMJITS. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 2008; 41:1289-300. [PMID: 18630933 PMCID: PMC7189275 DOI: 10.1021/ar700264k] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-helices constitute the largest class of protein secondary structures and play a major role in mediating protein-protein interactions. Development of stable mimics of short alpha-helices would be invaluable for inhibition of protein-protein interactions. This Account describes our efforts in developing a general approach for constraining short peptides in alpha-helical conformations by a main-chain hydrogen bond surrogate (HBS) strategy. The HBS alpha-helices feature a carbon-carbon bond derived from a ring-closing metathesis reaction in place of an N-terminal intramolecular hydrogen bond between the peptide i and i + 4 residues. Our approach is centered on the helix-coil transition theory in peptides, which suggests that the energetically demanding organization of three consecutive amino acids into the helical orientation inherently limits the stability of short alpha-helices. The HBS method affords preorganized alpha-turns to overcome this intrinsic nucleation barrier and initiate helix formation. The HBS approach is an attractive strategy for generation of ligands for protein receptors because placement of the cross-link on the inside of the helix does not block solvent-exposed molecular recognition surfaces of the molecule. Our metathesis-based synthetic strategy utilizes standard Fmoc solid phase peptide synthesis methodology, resins, and reagents and provides HBS helices in sufficient amounts for subsequent biophysical and biological analyses. Extensive conformational analysis of HBS alpha-helices with 2D NMR, circular dichroism spectroscopies and X-ray crystallography confirms the alpha-helical structure in these compounds. The crystal structure indicates that all i and i + 4 C=O and NH hydrogen-bonding partners fall within distances and angles expected for a fully hydrogen-bonded alpha-helix. The backbone conformation of HBS alpha-helix in the crystal structure superimposes with an rms difference of 0.75 A onto the backbone conformation of a model alpha-helix. Significantly, the backbone torsion angles for the HBS helix residues fall within the range expected for a canonical alpha-helix. Thermal and chemical denaturation studies suggest that the HBS approach provides exceptionally stable alpha-helices from a variety of short sequences, which retain their helical conformation in aqueous buffers at exceptionally high temperatures. The high degree of thermal stability observed for HBS helices is consistent with the theoretical predictions for a nucleated helix. The HBS approach was devised to afford internally constrained helices so that the molecular recognition surface of the helix and its protein binding properties are not compromised by the constraining moiety. Notably, our preliminary studies illustrate that HBS helices can target their expected protein receptors with high affinity.
Collapse
Affiliation(s)
- ANUPAM PATGIRI
- Department of Chemistry, New York University, New York, New York 10003
| | - ANDREA L. JOCHIM
- Department of Chemistry, New York University, New York, New York 10003
| | - PARAMJIT S. ARORA
- Department of Chemistry, New York University, New York, New York 10003
| |
Collapse
|
48
|
Bacsa B, Horváti K, Bõsze S, Andreae F, Kappe CO. Solid-Phase Synthesis of Difficult Peptide Sequences at Elevated Temperatures: A Critical Comparison of Microwave and Conventional Heating Technologies. J Org Chem 2008; 73:7532-42. [DOI: 10.1021/jo8013897] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bernadett Bacsa
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary, and piCHEM Forschungs und EntwicklungsgmbH, Kahngasse 20, A-8045 Graz, Austria
| | - Kata Horváti
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary, and piCHEM Forschungs und EntwicklungsgmbH, Kahngasse 20, A-8045 Graz, Austria
| | - Szilvia Bõsze
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary, and piCHEM Forschungs und EntwicklungsgmbH, Kahngasse 20, A-8045 Graz, Austria
| | - Fritz Andreae
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary, and piCHEM Forschungs und EntwicklungsgmbH, Kahngasse 20, A-8045 Graz, Austria
| | - C. Oliver Kappe
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary, and piCHEM Forschungs und EntwicklungsgmbH, Kahngasse 20, A-8045 Graz, Austria
| |
Collapse
|
49
|
|
50
|
Chapman R, Kulp JL, Patgiri A, Kallenbach NR, Bracken C, Arora PS. Trapping a folding intermediate of the alpha-helix: stabilization of the pi-helix. Biochemistry 2008; 47:4189-95. [PMID: 18335996 DOI: 10.1021/bi800136m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design, synthesis, and characterization of a short peptide trapped in a pi-helix configuration. This high-energy conformation was nucleated by a preorganized pi-turn, which was obtained by replacing an N-terminal intramolecular main chain i and i + 5 hydrogen bond with a carbon-carbon bond. Our studies highlight the nucleation parameter as a key factor contributing to the relative instability of the pi-helix and allow us to estimate fundamental helix-coil transition parameters for this conformation.
Collapse
Affiliation(s)
- Ross Chapman
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|