1
|
Yang X, Chen P, Liu G. Asymmetric Palladium-Catalyzed Aza-Wacker Reaction of Alkenes: Efficient Synthesis of Chiral 1,3-Oxazinan-2-ones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Hermane J, Eichner S, Mancuso L, Schröder B, Sasse F, Zeilinger C, Kirschning A. New geldanamycin derivatives with anti Hsp properties by mutasynthesis. Org Biomol Chem 2019; 17:5269-5278. [PMID: 31089638 DOI: 10.1039/c9ob00892f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutasynthetic supplementation of the AHBA blocked mutant strain of S. hygroscopicus, the geldanamycin producer, with 21 aromatic and heteroaromatic amino acids provided new nonquinoid geldanamycin derivatives. Large scale (5 L) fermentation provided four new derivatives in sufficient quantity for full structural characterisation. Among these, the first thiophene derivative of reblastatin showed strong antiproliferative activity towards several human cancer cell lines. Additionally, inhibitory effects on human heat shock protein Hsp90α and bacterial heat shock protein from H. pylori HpHtpG were observed, revealing strong displacement properties for labelled ATP and demonstrating that the ATP-binding site of Hsps is the target site for the new geldanamycin derivatives.
Collapse
Affiliation(s)
- Jekaterina Hermane
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
3
|
Rossi R, Angelici G, Casotti G, Manzini C, Lessi M. Catalytic Synthesis of 1,2,4,5‐Tetrasubstituted 1
H
‐Imidazole Derivatives: State of the Art. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801381] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Gaetano Angelici
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Gianluca Casotti
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Chiara Manzini
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Marco Lessi
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
4
|
Li F, Zhang X, Renata H. Enzymatic CH functionalizations for natural product synthesis. Curr Opin Chem Biol 2018; 49:25-32. [PMID: 30269011 DOI: 10.1016/j.cbpa.2018.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
Direct functionalization of CH bond is rapidly becoming an indispensible tool in chemical synthesis. However, due to the ubiquity of CH bonds, achieving site-selective functionalization remains an arduous task, especially on advanced synthetic intermediates or natural products. In contrast, Nature has evolved a multitude of enzymes capable of performing this task with extraordinary selectivity, and the use of these enzymes in organic synthesis may provide a viable solution to contemporary challenges in site-selective functionalization of complex molecules. This review covers recent applications of enzymatic CH functionalization strategies in natural product synthesis, both in the context of key building block preparation and late-stage functionalization of advanced synthetic intermediates.
Collapse
Affiliation(s)
- Fuzhuo Li
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xiao Zhang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
5
|
Wang J, Li W, Wang H, Lu C. Pentaketide Ansamycin Microansamycins A-I from Micromonospora sp. Reveal Diverse Post-PKS Modifications. Org Lett 2018; 20:1058-1061. [PMID: 29412682 DOI: 10.1021/acs.orglett.7b04018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overexpression of the pathway-specific positive regulator gene mas13 activated the cryptic gene cluster mas, resulting in the isolation of nine novel pentaketide ansamycins, namely, microansamycins A-I (1-9). These results not only revealed a biosynthetic gene cluster of pentaketide ansamycins for the first time but also presented an unprecedented scenario of diverse post-PKS modifications in ansamycin biosynthesis.
Collapse
Affiliation(s)
- Jianxiong Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| | - Wen Li
- State Key Laboratory of Microbial Technology, Shandong University , Jinan, Shandong 250100, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University , Jinan, Shandong 250100, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Zhao K, Shen L, Shen ZL, Loh TP. Transition metal-catalyzed cross-coupling reactions using organoindium reagents. Chem Soc Rev 2017; 46:586-602. [DOI: 10.1039/c6cs00465b] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights the versatility and significance of transition metal-catalyzed cross-coupling reactions employing mild and unique organoindium reagents with exceptional functional group compatibility and sometimes remarkable chemo- and stereoselectivities.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Advanced Synthesis
- College of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 210009
| | - Liang Shen
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis
- College of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 210009
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- College of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 210009
| |
Collapse
|
7
|
Mancuso L, Knobloch T, Buchholz J, Hartwig J, Möller L, Seidel K, Collisi W, Sasse F, Kirschning A. Preparation of Thermocleavable Conjugates Based on Ansamitocin and Superparamagnetic Nanostructured Particles by a Chemobiosynthetic Approach. Chemistry 2014; 20:17541-51. [DOI: 10.1002/chem.201404502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/08/2022]
|
8
|
Harmrolfs K, Mancuso L, Drung B, Sasse F, Kirschning A. Preparation of new alkyne-modified ansamitocins by mutasynthesis. Beilstein J Org Chem 2014; 10:535-43. [PMID: 24605171 PMCID: PMC3943755 DOI: 10.3762/bjoc.10.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
The preparation of alkyne-modified ansamitocins by mutasynthetic supplementation of Actinosynnema pretiosum mutants with alkyne-substituted aminobenzoic acids is described. This modification paved the way to introduce a thiol linker by Huisgen-type cycloaddition which can principally be utilized to create tumor targeting conjugates. In bioactivity tests, only those new ansamitocin derivatives showed strong antiproliferative activity that bear an ester side chain at C-3.
Collapse
Affiliation(s)
- Kirsten Harmrolfs
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Lena Mancuso
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Binia Drung
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Center for Infectious Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| |
Collapse
|
9
|
Shen ZL, Wang SY, Chok YK, Xu YH, Loh TP. Organoindium Reagents: The Preparation and Application in Organic Synthesis. Chem Rev 2012; 113:271-401. [DOI: 10.1021/cr300051y] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhi-Liang Shen
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371
| | - Shun-Yi Wang
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371
| | - Yew-Keong Chok
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371
| | - Yun-He Xu
- Department
of Chemistry, University
of Science and Technology of China, Hefei 230026, P. R. China
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371
| | - Teck-Peng Loh
- Department
of Chemistry, University
of Science and Technology of China, Hefei 230026, P. R. China
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371
| |
Collapse
|
10
|
Knobloch T, Dräger G, Collisi W, Sasse F, Kirschning A. Unprecedented deoxygenation at C-7 of the ansamitocin core during mutasynthetic biotransformations. Beilstein J Org Chem 2012; 8:861-9. [PMID: 23015834 PMCID: PMC3388874 DOI: 10.3762/bjoc.8.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022] Open
Abstract
We describe the unprecedented formation of six ansamitocin derivatives that are deoxygenated at C-7 of the ansamitocin core, obtained during fermentation experiments by employing a variety of Actinosynnema pretiosum mutants and mutasynthetic approaches. We suggest that the formation of these derivatives is based on elimination at C-7/C-8 followed by reduction(s) of the intermediate enone. In bioactivity tests, only ansamitocin derivatives bearing an ester side chain at C-3 showed strong antiproliferative activity.
Collapse
Affiliation(s)
- Tobias Knobloch
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Wera Collisi
- Department of Chemical Biology, Helmholtz Center for Infectious Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Center for Infectious Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| |
Collapse
|
11
|
Riveiros R, Tato R, Pérez Sestelo J, Sarandeses LA. Rhodium-Catalyzed Allylic Substitution Reactions with Indium(III) Organometallics. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
|
13
|
Martínez MM, Pérez-Caaveiro C, Peña-López M, Sarandeses LA, Pérez Sestelo J. Synthesis of 4,6-disubstituted 2-(4-morpholinyl)pyrimidines by cross-coupling reactions using triorganoindium compounds. Org Biomol Chem 2012; 10:9045-51. [DOI: 10.1039/c2ob26398j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Eichner S, Knobloch T, Floss HG, Fohrer J, Harmrolfs K, Hermane J, Schulz A, Sasse F, Spiteller P, Taft F, Kirschning A. The interplay between mutasynthesis and semisynthesis: generation and evaluation of an ansamitocin library. Angew Chem Int Ed Engl 2011; 51:752-7. [PMID: 22135226 DOI: 10.1002/anie.201106249] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Simone Eichner
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Eichner S, Knobloch T, Floss HG, Fohrer J, Harmrolfs K, Hermane J, Schulz A, Sasse F, Spiteller P, Taft F, Kirschning A. The Interplay between Mutasynthesis and Semisynthesis: Generation and Evaluation of an Ansamitocin Library. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Harmrolfs K, Brünjes M, Dräger G, Floss HG, Sasse F, Taft F, Kirschning A. Cyclization of synthetic seco-proansamitocins to ansamitocin macrolactams by Actinosynnema pretiosum as biocatalyst. Chembiochem 2011; 11:2517-20. [PMID: 21077088 DOI: 10.1002/cbic.201000422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kirsten Harmrolfs
- Institut für Organische Chemie und Biomolekulares, Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Knobloch T, Harmrolfs K, Taft F, Thomaszewski B, Sasse F, Kirschning A. Mutational Biosynthesis of Ansamitocin Antibiotics: A Diversity-Oriented Approach to Exploit Biosynthetic Flexibility. Chembiochem 2011; 12:540-7. [DOI: 10.1002/cbic.201000608] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 12/15/2022]
|
18
|
|
19
|
Hassan HMA. Recent applications of ring-closing metathesis in the synthesis of lactams and macrolactams. Chem Commun (Camb) 2010; 46:9100-6. [DOI: 10.1039/c0cc03122d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Eichner S, Floss HG, Sasse F, Kirschning A. New, Highly Active Nonbenzoquinone Geldanamycin Derivatives by Using Mutasynthesis. Chembiochem 2009; 10:1801-5. [DOI: 10.1002/cbic.200900246] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the Year 2007. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2008.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Wang L, Gong J, Deng L, Xiang Z, Chen Z, Wang Y, Chen J, Yang Z. Formal Total Synthesis of N-Methylmaysenine. Org Lett 2009; 11:1809-12. [DOI: 10.1021/ol900384u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Wang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Jianxian Gong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Lujiang Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Zheng Xiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Zhixing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Yuefan Wang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Jiahua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
|
24
|
Werneburg M, Hertweck C. Chemoenzymatic Total Synthesis of the Antiproliferative Polyketide (+)-(R)-Aureothin. Chembiochem 2008; 9:2064-6. [DOI: 10.1002/cbic.200800301] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Mosquera Á, Riveiros R, Sestelo JP, Sarandeses LA. Cross-Coupling Reactions of Indium Organometallics with 2,5-Dihalopyrimidines: Synthesis of Hyrtinadine A. Org Lett 2008; 10:3745-8. [DOI: 10.1021/ol801393n] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ángeles Mosquera
- Departamento de Química Fundamental, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Ricardo Riveiros
- Departamento de Química Fundamental, Universidade da Coruña, E-15071 A Coruña, Spain
| | - José Pérez Sestelo
- Departamento de Química Fundamental, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Luis A. Sarandeses
- Departamento de Química Fundamental, Universidade da Coruña, E-15071 A Coruña, Spain
| |
Collapse
|
26
|
Taft F, Brünjes M, Floss HG, Czempinski N, Grond S, Sasse F, Kirschning A. Highly active ansamitocin derivatives: mutasynthesis using an AHBA-blocked mutant. Chembiochem 2008; 9:1057-60. [PMID: 18381586 DOI: 10.1002/cbic.200700742] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Taft
- Zentrum für Biomolekulare Wirkstoffe (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Riveiros R, Saya L, Pérez Sestelo J, Sarandeses LA. Palladium-Catalysed Cross-Coupling Reactions of Triorganoindium Reagents with Alkenyl Halides. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701216] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Caeiro J, Pérez Sestelo J, Sarandeses LA. Enantioselective nickel-catalyzed cross-coupling reactions of trialkynylindium reagents with racemic secondary benzyl bromides. Chemistry 2008; 14:741-6. [PMID: 17929335 DOI: 10.1002/chem.200701035] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The first enantioselective sp-sp3 cross-coupling reaction between alkynyl organometals and racemic benzyl bromides is reported. The coupling is performed at room temperature by using NiBr2diglyme and (S)-(iPr)-Pybox as the catalytic system and trialkynylindium reagents as nucleophiles. The reaction is stereoconvergent, both enantiomers of the racemic benzyl bromide are converted into one enantiomer of the product, and stereospecific. The reaction takes place efficiently in good yields and with high atom economy, as the triorganoindium reagents transfer the three organic groups attached to indium (only 40 mol % of R3In is used).
Collapse
Affiliation(s)
- Jorge Caeiro
- Departamento de Química Fundamental, Universidade da Coruña, 15071 A Coruña, Spain
| | | | | |
Collapse
|
29
|
Kirschning A, Taft F, Knobloch T. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering. Org Biomol Chem 2007; 5:3245-59. [PMID: 17912378 DOI: 10.1039/b709549j] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary metabolites are an extremely diverse and important group of natural products with industrial and biomedical implications. Advances in metabolic engineering of both native and heterologous secondary metabolite producing organisms have allowed the directed synthesis of desired novel products by exploiting their biosynthetic potentials. Metabolic engineering utilises knowledge of cellular metabolism to alter biosynthetic pathways. An important technique that combines chemical synthesis with metabolic engineering is mutasynthesis (mutational biosynthesis; MBS), which advanced from precursor-directed biosynthesis (PDB). Both techniques are based on the cellular uptake of modified biosynthetic intermediates and their incorporation into complex secondary metabolites. Mutasynthesis utilises genetically engineered organisms in conjunction with feeding of chemically modified intermediates. From a synthetic chemist's point of view the concept of mutasynthesis is highly attractive, as the method combines chemical expertise with Nature's synthetic machinery and thus can be exploited to rapidly create small libraries of secondary metabolites. However, in each case, the method has to be critically compared with semi- and total synthesis in terms of practicability and efficiency. Recent developments in metabolic engineering promise to further broaden the scope of outsourcing chemically demanding steps to biological systems.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, and Center of Biomolecular Drug Research (BMWZ), Schneiderberg 1b, 30167 Hannover, Germany.
| | | | | |
Collapse
|