1
|
Zhang Y, Wang S, Zhang L, Peng T. Development of a urea-bond cleavage reaction induced by nitric oxide for fluorescence imaging. J Mater Chem B 2024; 12:10248-10257. [PMID: 39291486 DOI: 10.1039/d4tb01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule with indispensable roles in physiological processes, but its abnormal production is implicated in various disease conditions. Detecting NO is crucial for interrogating its biological roles. Although many o-phenylenediamine-based fluorescent probes have been developed, only a small fraction has been employed in vivo. Moreover, these probes largely require direct modifications of the fluorophore backbones to render NO responsiveness, which restricts the general applicability of o-phenylenediamine-based probe designs to other types of fluorophores. Here, we report the rational development, optimization, and application of a NO-induced urea-bond cleavage reaction for selective fluorescence detection and imaging of NO in living systems. Through rational design and extensive screening, we identified a 2-aminophenylurea-derived functionality that can react with NO through N-nitrosation, acyltriazole formation, and hydrolysis to induce the cleavage of the urea bond and release of the amino-containing coumarin fluorophore. By caging different amino-containing fluorophore scaffolds with the 2-aminophenylurea-derived functionality, we modularly developed a series of NO fluorescent probes with different excitation and emission profiles for the detection of NO in aqueous solutions and live cells. Among these probes, the near-infrared probe has been demonstrated to enable in vivo fluorescence visualization of elevated endogenous levels of NO in a murine inflammation model. Overall, this study provides a NO-induced urea-bond cleavage reaction and establishes the utility of this reaction for the general and modular development of NO fluorescent probes, thus opening new opportunities for studying and manipulating NO in biological systems.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Lina Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Modrzejewska J, Szala M, Grzelakowska A, Zakłos-Szyda M, Zielonka J, Podsiadły R. Novel Boronate Probe Based on 3-Benzothiazol-2-yl-7-hydroxy-chromen-2-one for the Detection of Peroxynitrite and Hypochlorite. Molecules 2021; 26:5940. [PMID: 34641484 PMCID: PMC8512868 DOI: 10.3390/molecules26195940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Derivatives of coumarin, containing oxidant-sensitive boronate group, were recently developed for fluorescent detection of inflammatory oxidants. Here, we report the synthesis and the characterization of 3-(2-benzothiazolyl)-7-coumarin boronic acid pinacol ester (BC-BE) as a fluorescent probe for the detection of peroxynitrite (ONOO-), with high stability and a fast response time. The BC-BE probe hydrolyzes in phosphate buffer to 3-(2-benzothiazolyl)-7-coumarin boronic acid (BC-BA) which is stable in the solution even after a prolonged incubation time (24 h). BC-BA is slowly oxidized by H2O2 to form the phenolic product, 3-benzothiazol-2-yl-7-hydroxy-chromen-2-one (BC-OH). On the other hand, the BC-BA probe reacts rapidly with ONOO-. The ability of the BC-BA probe to detect ONOO- was measured using both authentic ONOO- and the system co-generating steady-state fluxes of O2•- and •NO. BC-BA is oxidized by ONOO- to BC-OH. However, in this reaction 3-benzothiazol-2-yl-chromen-2-one (BC-H) is formed in the minor pathway, as a peroxynitrite-specific product. BC-OH is also formed in the reaction of BC-BA with HOCl, and subsequent reaction of BC-OH with HOCl leads to the formation of a chlorinated phenolic product, which could be used as a specific product for HOCl. We conclude that BC-BA shows potential as an improved fluorescent probe for the detection of peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of oxidant-specific products will help to identify the oxidants detected.
Collapse
Affiliation(s)
- Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| |
Collapse
|
3
|
Smartphone colorimetric assay of acid phosphatase based on a controlled iodine-mediated etching of gold nanorods. Anal Bioanal Chem 2020; 412:8051-8059. [PMID: 33001243 DOI: 10.1007/s00216-020-02954-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
A simple but efficient colorimetric assay was developed for the detection and quantification of acid phosphatase (ACP) using a smartphone. This strategy is based on target-controlled iodine-mediated etching of gold nanorods (AuNRs). Due to effective hydrolysis of the substrate pyrophosphate (PPi) by ACP, chelated Cu2+ with PPi was released, which promoted the redox reaction with an iodide ion (I-), leading to the formation of I3-. As the etching agent of AuNRs, I3- caused a blueshift of the localized surface plasmon resonance peak and, more importantly, an observable color change. The vivid colors were recorded with a smartphone camera and directly analyzed using an image-processing app. On the basis of the direct correlation between ACP concentration and the etching degree of AuNRs as well as color change, this smartphone nanocolorimetry technique showed a good linear response toward ACP over the range of 0-15.0 U/L, with a detection limit of 0.97 U/L. Using the standard addition method, the practical applicability of the proposed smartphone-based assay was successfully demonstrated by determining ACP in human serum samples, with results consistent with those obtained by UV-Vis spectrophotometry.
Collapse
|
4
|
McCullough BS, Barrios AM. Fluorogenic probes for imaging cellular phosphatase activity. Curr Opin Chem Biol 2020; 57:34-40. [PMID: 32470893 PMCID: PMC7483602 DOI: 10.1016/j.cbpa.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 11/23/2022]
Abstract
The ability to visualize enzyme activity in a cell, tissue, or living organism can greatly enhance our understanding of the biological roles of that enzyme. While many aspects of cellular signaling are controlled by reversible protein phosphorylation, our understanding of the biological roles of the protein phosphatases involved is limited. Here, we provide an overview of progress toward the development of fluorescent probes that can be used to visualize the activity of protein phosphatases. Significant advances include the development of probes with visible and near-infrared (near-IR) excitation and emission profiles, which provides greater tissue and whole-animal imaging capabilities. In addition, the development of peptide-based probes has provided some selectivity for a phosphatase of interest. Key challenges involve the difficulty of achieving sufficient selectivity for an individual member of a phosphatase enzyme family and the necessity of fully validating the best probes before they can be adopted widely.
Collapse
Affiliation(s)
- Brandon S McCullough
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112-0581, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112-0581, USA.
| |
Collapse
|
5
|
Cai S, Liu C, Jiao X, He S, Zhao L, Zeng X. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells. Org Biomol Chem 2020; 18:1148-1154. [PMID: 31971197 DOI: 10.1039/c9ob02188d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent probes for the detection of acid phosphatases (ACP) are important in the investigation of the pathology and diagnosis of diseases. We reported a lysosome-targeted near-infrared (NIR) fluorescent probe SHCy-P based on a novel NIR-emitting thioxanthene-indolium dye for the detection of ACP. The probe showed a long wavelength fluorescence emission at λem = 765 nm. Due to the ACP-catalyzed cleavage of the phosphate group in SHCy-P, the probe exhibited high selectivity and sensitivity for the 'turn-on' detection of ACP with a limit of detection as low as 0.48 U L-1. The probe SHCy-P could also be used to detect and image endogenous ACP in lysosomes. In light of these prominent properties, we envision that SHCy-P will be an efficient optical imaging approach for investigating the ACP activity in disease diagnosis.
Collapse
Affiliation(s)
- Songtao Cai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianshun Zeng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China and Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Kershaw NM, Byrne DP, Parsons H, Berry NG, Fernig DG, Eyers PA, Cosstick R. Structure-based design of nucleoside-derived analogues as sulfotransferase inhibitors. RSC Adv 2019; 9:32165-32173. [PMID: 35530783 PMCID: PMC9072872 DOI: 10.1039/c9ra07567d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Regulated sulfation of biomolecules by sulfotransferases (STs) plays a role in many biological processes with implications for a number of disease areas. A structure-based approach and molecular docking were used to design a library of ST inhibitors.
Collapse
Affiliation(s)
- Neil M. Kershaw
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Dominic P. Byrne
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
- UK
| | - Hollie Parsons
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Neil G. Berry
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - David G. Fernig
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
- UK
| | - Patrick A. Eyers
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
- UK
| | - Richard Cosstick
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| |
Collapse
|
7
|
Gonçalves CC, da Costa BZ, Lima ML, Fiorito GF, Ruiz ALT, de Oliveira SB, Barbosa GO, de Carvalho HF, Marsaioli AJ. Enzymatic profiling in prostate and breast cancer cells: phosphate hydrolysis and alcohol oxidation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Zadlo A, Koszelewski D, Borys F, Ostaszewski R. Mixed Carbonates as Useful Substrates for a Fluorogenic Assay for Lipases and Esterases. Chembiochem 2015; 16:677-82. [DOI: 10.1002/cbic.201402528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 11/10/2022]
|
9
|
Lin Z, Liu Z, Zhang H, Su X. Near-infrared fluorescence probe for the determination of acid phosphatase and imaging of prostate cancer cells. Analyst 2015; 140:1629-36. [PMID: 25632410 DOI: 10.1039/c4an01868k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we developed a near-infrared mercaptopropionic acid (MPA)-capped CuInS2 quantum dot (QD) fluorescence probe for the detection of acid phosphatases (ACP), which is an important biomarker and indicator of prostate cancer. The fluorescence of CuInS2 QDs could be quenched by Cu(2+), and then the addition of adenosine-5'-triphosphate (ATP) could effectively turn on the quenched fluorescence due to the strong interaction between Cu(2+) and ATP. The ACP could catalyze the hydrolysis of ATP, which would disassemble the complex of Cu(2+)-ATP. Therefore, the recovered fluorescence could be quenched again by the addition of ACP. In our method, the limit of detection (LOD) is considerably low for ACP detection in solution. Using the CuInS2 QDs fluorescence probe, we successfully performed in vitro imaging of human prostate cancer cells.
Collapse
Affiliation(s)
- Zihan Lin
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | | | | | | |
Collapse
|
10
|
Xu Y, Li B, Xiao L, Ouyang J, Sun S, Pang Y. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening. Chem Commun (Camb) 2014; 50:8677-80. [DOI: 10.1039/c3cc49254k] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Mao GJ, Zhang XB, Shi XL, Liu HW, Wu YX, Zhou LY, Tan W, Yu RQ. A highly sensitive and reductant-resistant fluorescent probe for nitroxyl in aqueous solution and serum. Chem Commun (Camb) 2014; 50:5790-2. [PMID: 24756360 DOI: 10.1039/c4cc01440e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel coumarin-based fluorescent probe, P-CM, for quantitative detection of nitroxyl (HNO) was developed. P-CM exhibits a selective response to HNO over other biological reductants and was also applied for quantitative detection of HNO in bovine serum with satisfactory results.
Collapse
Affiliation(s)
- Guo-Jiang Mao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Phosphatases are a heterogeneous group of enzymes catalyzing dephosphorylation of diverse substrates ranging from small organic molecules to large phosphorylated multiprotein complexes. A wide variety of biochemical approaches for measuring phosphatase activity exists. Spectrophotometric methods utilizing artificial chromogenic, fluorogenic, and luminogenic substrates and taking advantage of the optical properties of dephosphorylated products are broadly used by research community. Another major assay type is based on quantitation of the second product of any phosphatase reactions, inorganic phosphate, using a variety of phosphate detection methods. Although, in theory, compatible with any phosphatase substrate, these assays often are unable to provide acceptable high-throughput screening adaptations of native phosphatase reactions. Conversely, phosphatase assays with artificial substrates frequently are incapable to mirror the intricacies of substrate binding and catalysis of the native reaction and, as a result, unable to deliver biologically relevant phosphatase modulators. Utilization of comprehensive phosphatase assay panels, employing honed biochemical assays and cell-based model systems, in conjunction with novel approaches for screening phosphatases may aid in identification of potent, selective, and biologically active phosphatase modulators.
Collapse
|
13
|
Huo F, Wang L, Yang Y, Chu Y, Yin C, Chao J, Zhang Y, Yan X, Zheng A, Jin S, Zhi P. A highly selective fluorescent probe for BO3−based on acetate derivatives of coumarin in aqueous solution and thimerosal. Analyst 2013; 138:813-8. [DOI: 10.1039/c2an36492a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Guo P, Yan S, Zhou Y, Wang C, Xu X, Weng X, Zhou X. A novel fluorescent “Turn-Off/Turn-On” system for the detection of acid phosphatase activity. Analyst 2013; 138:3365-7. [DOI: 10.1039/c3an00375b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Choi K, Park B, Han SY, Ahn HC. Fluorescence Probes for Tyrosine Dephosphorylation Based on Coumarin–Proline Conjugates. CHEM LETT 2011. [DOI: 10.1246/cl.2011.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kinetic delay of cyclization/elimination-coupled enzyme assays: Analysis and solution. Bioorg Med Chem Lett 2011; 21:1069-71. [DOI: 10.1016/j.bmcl.2010.09.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/21/2010] [Indexed: 01/01/2023]
|