1
|
Ingaladal N, Lankalapalli RS. Synthetic strategy for polyhydroxylated indolizidine iminosugar from sugar-derived HWE precursor. Carbohydr Res 2024; 545:109302. [PMID: 39500034 DOI: 10.1016/j.carres.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
The diversity of polyhydroxylated indolizidine (PI) iminosugars is ever-expanding due to the wide range of methods developed and substrate choice during synthesis. This study used an HWE precursor derived from d-glucose to extend the chain length at the C1 position. A double reductive amination and dihydroxylation of the resulting olefin, followed by intramolecular cyclization, enabled the successful synthesis of a new PI. In addition, the precursor intermediate for Mitsunobu reaction was utilized in synthesis of a new iminononulol.
Collapse
Affiliation(s)
- Nagaraja Ingaladal
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi S Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Kalník M, Gabko P, Kóňa J, Šesták S, Moncoľ J, Bella M. (5S)-5-Benzylswainsonines as potent and selective inhibitors of Golgi α-mannosidase II: synthesis, enzyme evaluation and molecular modelling. Bioorg Chem 2024; 150:107578. [PMID: 38955002 DOI: 10.1016/j.bioorg.2024.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Development of novel anti-cancer therapeutics based on Golgi α-mannosidase II (GMII) inhibition is considerably impeded by an undesired co-inhibition of lysosomal α-mannosidase leading to severe side-effects. In this contribution, we describe a fully stereoselective synthesis of (5S)-5-[4-(halo)benzyl]swainsonines as highly potent and selective inhibitors of GMII. The synthesis starts from a previously reported aldehyde readily available from l-ribose, and the key features include an intramolecular reductive amination with substrate-controlled stereoselectivity and a late-stage derivatisation of the benzyl group via ipso-substitution. These novel swainsonine analogues were found to be nanomolar inhibitors of the Golgi-type α-mannosidase AMAN-2 (Ki = 23-75 nM) with excellent selectivity (selectivity index = 205-870) over the lysosomal-type Jack bean α-mannosidase. Finally, molecular docking and pKa calculations were performed to provide more insight into the structure of the inhibitor:enzyme complexes, and a pair interaction energy analysis (FMO-PIEDA) was carried out to rationalise the observed potency and selectivity of the inhibitors.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Gabko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia; Medical Vision, Civic Research Association, Záhradnícka 4837/55, SK-82108 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia.
| |
Collapse
|
3
|
Wang JZ, Cheng B, Kato A, Kise M, Shimadate Y, Jia YM, Li YX, Fleet GW, Yu CY. Design, synthesis and glycosidase inhibition of C-4 branched LAB and DAB derivatives. Eur J Med Chem 2022; 233:114230. [DOI: 10.1016/j.ejmech.2022.114230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
|
4
|
Ramesh NG. From Glycals to Nitrogen Heterocycles and Carbocycles via "Cleavage-Intramolecular Recombination Strategy". CHEM REC 2021; 21:2930-2957. [PMID: 34472196 DOI: 10.1002/tcr.202100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Glycals (carbohydrate enol-ethers) have enjoyed profound applications in organic synthesis for more than a century. They not only serve as versatile glycosyl donors or as substrates for Ferrier rearrangement, but also find extensive synthetic applications especially as a "chiral pool" for accomplishing the synthesis of a variety of natural and biologically important compounds. As cyclic enol ethers, they demonstrate high reactivity and are among the most and variously transformable monosaccharide derivatives. The uniqueness of the reactivity of glycals is that they can be synthetically tuned to get a library of derivatives through stereo- and regioselective introduction of a variety of functional groups at C1, C2, C3 as well as C4 carbons of the sugar. We have developed a practical approach for stereoselective mono- and diamination of glycals and over the years utilized these scaffolds for the synthesis of a variety of biologically important nitrogen heterocycles and carbocycles through a "Diversity Oriented Approach". Our synthetic strategy in this direction mainly relied on the cleavage of ring O-C bond of the sugar followed by an "intramolecular recombination" reaction. Utilizing this strategy, we have accomplished the synthesis of several biologically important natural products, their analogues and related unnatural derivatives. Examples of such compounds reported from our group include polyhydroxypyrrolidines, DMDP, anisomycin, steviamine, pochonicine, conduramines, bulgecinine, aminocyclitols, azepanes, 4-hydroxy-D-proline, azanucleosides and their analogues. A personal account highlighting these syntheses is presented here.
Collapse
Affiliation(s)
- Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
5
|
Yan X, Shimadate Y, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Synthesis of Pyrrolidine Monocyclic Analogues of Pochonicine and Its Stereoisomers: Pursuit ofSimplified Structures and Potent β- N-Acetylhexosaminidase Inhibition. Molecules 2020; 25:E1498. [PMID: 32218360 PMCID: PMC7180638 DOI: 10.3390/molecules25071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) and pochonicine (1) configurations showed potent inhibition of β-N-acetylhexosaminidases (β-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested enzymes. The assay results reveal the importance of the N-acetylamino group and the possible right configurations of pyrrolidine ring required for this type of inhibitors.
Collapse
Affiliation(s)
- Xin Yan
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK;
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
6
|
Prasad SS, Baskaran S. Iminosugar C-Nitromethyl Glycoside: Stereoselective Synthesis of Isoxazoline and Isoxazole-Fused Bicyclic Iminosugars. J Org Chem 2018; 83:1558-1564. [PMID: 29313687 DOI: 10.1021/acs.joc.7b02803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and efficient method for the stereoselective synthesis of isoxazoline/isoxazole-fused iminosugar derivatives has been developed using intramolecular nitrile oxide cycloaddition (INOC) as a key step. Iminosugar C-nitromethyl glycosides, derived from simple carbohydrates, served as excellent nitrile oxide precursors in 1,3-dipolar cycloaddition reactions. N-Alkenyl iminosugar C-nitromethyl glycosides afforded novel isoxazoline-fused indolizidine-, pyrrolizidine-, and quinolizidine-based iminosugars in excellent yields with a high degree of stereoselectivity, whereas N-alkynyl iminosugar C-nitromethyl glycosides furnished the corresponding isoxazole containing tricyclic iminosugars in very good yields.
Collapse
Affiliation(s)
- Sure Siva Prasad
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
7
|
One pot oxidative dehydration - oxidation of polyhydroxyhexanal oxime to polyhydroxy oxohexanenitrile: A versatile methodology for the facile access of azasugar alkaloids. Carbohydr Res 2016; 435:1-6. [DOI: 10.1016/j.carres.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
|
8
|
Wang HY, Kato A, Kinami K, Li YX, Fleet GWJ, Yu CY. Concise synthesis of calystegines B2 and B3via intramolecular Nozaki-Hiyama-Kishi reaction. Org Biomol Chem 2016; 14:4885-96. [PMID: 27161660 DOI: 10.1039/c6ob00697c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The key step in the concise syntheses of calystegine B2 and its C-2 epimer calystegine B3 was the construction of cycloheptanone 8via an intramolecular Nozaki-Hiyama-Kishi (NHK) reaction of 9, an aldehyde containing a Z-vinyl iodide. Vinyl iodide 9 was obtained by the Stork olefination of aldehyde 10, derived from carbohydrate starting materials. Calystegines B2 (3) and B3 (4) were synthesized from d-xylose and l-arabinose derivatives respectively in 11 steps in excellent overall yields (27% and 19%).
Collapse
Affiliation(s)
- Hong-Yao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
9
|
Qian BC, Kamori A, Kinami K, Kato A, Li YX, Fleet GWJ, Yu CY. Epimerization of C5 of an N-hydroxypyrrolidine in the synthesis of swainsonine related iminosugars. Org Biomol Chem 2016; 14:4488-98. [DOI: 10.1039/c6ob00531d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Malinowski M, Rowicki T, Guzik P, Gryszel M, Łapczyński S, Wielechowska M, Czerwińska K, Madura I, Sas W. [1,4]-sigmatropic rearrangement of chiral nitrones and their utilization in the synthesis of new iminosugars. Org Biomol Chem 2016; 14:470-482. [DOI: 10.1039/c5ob01432h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new mechanism of nitrone epimerization via [1,4]-sigmatropic rearrangement was proposed and a set of epimeric iminosugars was synthesized.
Collapse
Affiliation(s)
- Maciej Malinowski
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Tomasz Rowicki
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Patrycja Guzik
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Maciej Gryszel
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | | | | | | | - Izabela Madura
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Wojciech Sas
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
11
|
Kato A, Zhang ZL, Wang HY, Jia YM, Yu CY, Kinami K, Hirokami Y, Tsuji Y, Adachi I, Nash RJ, Fleet GWJ, Koseki J, Nakagome I, Hirono S. Design and Synthesis of Labystegines, Hybrid Iminosugars from LAB and Calystegine, as Inhibitors of Intestinal α-Glucosidases: Binding Conformation and Interaction for ntSI. J Org Chem 2015; 80:4501-15. [DOI: 10.1021/acs.joc.5b00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Zhao-Lan Zhang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Yao Wang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Mei Jia
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chu-Yi Yu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kyoko Kinami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yuki Hirokami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Robert J. Nash
- Institute
of Biological, Environmental and Rural Sciences, Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - George W. J. Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jun Koseki
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Izumi Nakagome
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
12
|
Abstract
This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis(quinolizidine) alkaloids.
Collapse
|
13
|
Rajasekaran P, Ansari AA, Vankar YD. Diastereoselective Overman Rearrangement of anL-Ascorbic-Acid-Derived Allylic Alcohol: Application in the Synthesis of (+)-1,2-Di-epi-swainsonine and a Tetrahydroxypyrrolizidine. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Cheng WC, Guo CW, Lin CK, Jiang YR. Synthesis and Inhibition Study of Bicyclic Iminosugar-Based Alkaloids, Scaffolds, and Libraries towards Glucosidase. Isr J Chem 2015. [DOI: 10.1002/ijch.201400140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Marquès S, Schuler M, Tatibouët A. Preparation of Pyranose-Based ThioimidateN-Oxides (TINOs). European J Org Chem 2015. [DOI: 10.1002/ejoc.201403619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Lin CK, Cheng LW, Li HY, Yun WY, Cheng WC. Synthesis of novel polyhydroxylated pyrrolidine–triazole/-isoxazole hybrid molecules. Org Biomol Chem 2015; 13:2100-7. [DOI: 10.1039/c4ob01934b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthesis of novel, 2-heterocyclyl polyhydroxylated pyrrolidines is described.
Collapse
Affiliation(s)
| | - Li-Wei Cheng
- Department of Chemistry
- National Cheng Kung University
- Tainan City
- Taiwan
| | - Huang-Yi Li
- Genomics Research Center
- Academia Sinica
- Taipei
- Taiwan
| | - Wen-Yi Yun
- Genomics Research Center
- Academia Sinica
- Taipei
- Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center
- Academia Sinica
- Taipei
- Taiwan
- Department of Chemistry
| |
Collapse
|
17
|
Lahiri R, Palanivel A, Kulkarni SA, Vankar YD. Synthesis of Isofagomine–Pyrrolidine Hybrid Sugars and Analogues of (−)-Steviamine and (+)-Hyacinthacine C5 Using 1,3-Dipolar Cycloaddition Reactions. J Org Chem 2014; 79:10786-800. [DOI: 10.1021/jo5016745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rima Lahiri
- Department
of Chemistry, Indian Institute of Technology Kanpur Kanpur 208016, India
| | - Ashokkumar Palanivel
- Department
of Chemistry, Indian Institute of Technology Kanpur Kanpur 208016, India
| | - Sudhir A. Kulkarni
- VLife Sciences Technologies Pvt. Ltd., second
Floor Anaahat, Plot No. 5, Ram Indu Park, Baner Road, Pune 411045, India
| | - Yashwant D. Vankar
- Department
of Chemistry, Indian Institute of Technology Kanpur Kanpur 208016, India
| |
Collapse
|
18
|
Santhanam V, Ramesh NG. A Glycal Approach to the Synthesis of Steviamine Analogues. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402943] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Brás NF, Cerqueira NMFSA, Ramos MJ, Fernandes PA. Glycosidase inhibitors: a patent review (2008 – 2013). Expert Opin Ther Pat 2014; 24:857-74. [DOI: 10.1517/13543776.2014.916280] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Ayers BJ, Hollinshead J, Saville AW, Nakagawa S, Adachi I, Kato A, Izumori K, Bartholomew B, Fleet GWJ, Nash RJ. Iteamine, the first alkaloid isolated from Itea virginica L. inflorescence. PHYTOCHEMISTRY 2014; 100:126-131. [PMID: 24534106 DOI: 10.1016/j.phytochem.2014.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Iteamine, o-aminobenzyl β-D-glucopyranoside, is the first alkaloid to be isolated from Itea virginica. Itea is the sole plant source of D-psicose, a rare sugar likely to be a major dietary supplement. The structure of iteamine was established by NMR and confirmed by total synthesis. Iteamine and its galacto-analog (which was not found in Itea plants) showed no strong inhibition of any of the 15 glycosidases tested; unnatural galacto-iteamine was a weak inhibitor of chicken liver α-N-acetylgalactosaminidase.
Collapse
Affiliation(s)
- Benjamin J Ayers
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK.
| | | | | | - Shinpei Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Isao Adachi
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ken Izumori
- Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-07, Japan
| | - Barbara Bartholomew
- Phytoquest Limited, IBERS, Plas Gogerddan, Ceredigion, Aberystwyth SY23 3EB, Wales, UK
| | - George W J Fleet
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Robert J Nash
- Phytoquest Limited, IBERS, Plas Gogerddan, Ceredigion, Aberystwyth SY23 3EB, Wales, UK.
| |
Collapse
|
21
|
Mironiuk-Puchalska E, Rowicki T, Sas W, Koszytkowska-Stawińska M. Convenient synthesis of epimeric indolizidines by the intramolecular 1,3-dipolar cycloaddition of a sugar derived N-(3-alkenyl)nitrone. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zhu JS, Nakagawa S, Chen W, Adachi I, Jia YM, Hu XG, Fleet GWJ, Wilson FX, Nitoda T, Horne G, van Well R, Kato A, Yu CY. Synthesis of Eight Stereoisomers of Pochonicine: Nanomolar Inhibition of β-N-Acetylhexosaminidases. J Org Chem 2013; 78:10298-309. [DOI: 10.1021/jo401694e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jian-She Zhu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shinpei Nakagawa
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Wei Chen
- College
of Chemistry and Chemical Engineering, Jiang Xi Normal University, Nanchang, Jiangxi 330022, China
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yue-Mei Jia
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Guo Hu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Francis X. Wilson
- Summit PLC, 85b Park Drive, Milton Park, Abingdon, Oxon OX14 4RY, U.K
| | - Teruhiko Nitoda
- Laboratory
of Bioresources Chemistry, the Graduate School of Environmental and
Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Graeme Horne
- Summit PLC, 85b Park Drive, Milton Park, Abingdon, Oxon OX14 4RY, U.K
| | - Renate van Well
- Summit PLC, 85b Park Drive, Milton Park, Abingdon, Oxon OX14 4RY, U.K
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Chu-Yi Yu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Liautard V, Jardel D, Davies C, Berlande M, Buffeteau T, Cavagnat D, Robert F, Vincent JM, Landais Y. Organocatalyzed Aldol Reaction between Pyridine-2-carbaldehydes and α-Ketoacids: A Straightforward Route towards Indolizidines and Isotetronic Acids. Chemistry 2013; 19:14532-9. [DOI: 10.1002/chem.201302264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Indexed: 11/08/2022]
|
24
|
Ansari AA, Vankar YD. Synthesis of Dihydroxymethyl Dihydroxypyrrolidines and Steviamine Analogues from C-2 Formyl Glycals. J Org Chem 2013; 78:9383-95. [DOI: 10.1021/jo401613v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alafia A. Ansari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Yashwant D. Vankar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
25
|
Flores M, García-García P, Garrido NM, Marcos IS, Sanz-González F, Díez D. Domino Elimination/Nucleophilic Addition in the Synthesis of Chiral Pyrrolidines. J Org Chem 2013; 78:7068-75. [DOI: 10.1021/jo400873c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Pilar García-García
- Instituto de Tecnología
Química (UPV-CSIC), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | - Francisca Sanz-González
- Servicio General
de Rayos X and §Departamento de Química Orgánica, Facultad
de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, Spain
| | | |
Collapse
|
26
|
Stereocomplementary Routes to Hydroxylated Nitrogen Heterocycles: Total Syntheses of Casuarine, Australine, and 7-epi-Australine. Chemistry 2013; 19:10595-604. [DOI: 10.1002/chem.201301320] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 11/07/2022]
|
27
|
Huang MH, Li YX, Jia YM, Yu CY. General intermediates for the synthesis of 6-C-alkylated DMDP-related natural products. Molecules 2013; 18:6723-33. [PMID: 23749160 PMCID: PMC6269708 DOI: 10.3390/molecules18066723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 12/03/2022] Open
Abstract
Protected L-homoDMDP en-8 and its C-6 epimer en-7 were prepared through two different pathways starting from the vinylpyrrolidine en-9. Based on the NMR and X-ray analysis, the stereochemistry of homoDMDP at C-6 was confirmed to be consistent with reported data. Compounds en-7 and en-8 are general intermediates for the synthesis of a series of 6-C-alkylated DMDP-related natural products, such as broussonetine G, homoDMDP-7-O-apioside, homoDMDP-7-O-b-D-xyloside and so on.
Collapse
Affiliation(s)
- Mu-Hua Huang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
| |
Collapse
|
28
|
An efficient synthesis of aldohexose-derived piperidine nitrones: precursors of piperidine iminosugars. Molecules 2013; 18:6021-34. [PMID: 23698053 PMCID: PMC6270483 DOI: 10.3390/molecules18056021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 11/17/2022] Open
Abstract
d-Glucopyranose-derived and l-idopyranose-derived piperidine nitrones were synthesized in good overall yields through six-step reaction sequence starting from readily available 2,3,4,6-tetra-O-benzyl-d-glucopyranose. The method is efficient and could be general for the synthesis of aldohexose-derived piperidine nitrones which are precursors of piperidine iminosugars.
Collapse
|
29
|
Martella D, Cardona F, Parmeggiani C, Franco F, Tamayo JA, Robina I, Moreno-Clavijo E, Moreno-Vargas AJ, Goti A. Synthesis and Glycosidase Inhibition Studies of 5-Methyl-Substituted Tetrahydroxyindolizidines and -pyrrolizidines Related to Natural Hyacinthacines B. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Zhao WB, Nakagawa S, Kato A, Adachi I, Jia YM, Hu XG, Fleet GWJ, Wilson FX, Horne G, Yoshihara A, Izumori K, Yu CY. General Synthesis of Sugar-Derived Azepane Nitrones: Precursors of Azepane Iminosugars. J Org Chem 2013; 78:3208-21. [DOI: 10.1021/jo400130p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-Bo Zhao
- Beijing National
Laboratory of Molecular Science (BNLMS), CAS Key Laboratory of Molecular
Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shinpei Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194,
Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194,
Japan
| | - Isao Adachi
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194,
Japan
| | - Yue-Mei Jia
- Beijing National
Laboratory of Molecular Science (BNLMS), CAS Key Laboratory of Molecular
Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Guo Hu
- Beijing National
Laboratory of Molecular Science (BNLMS), CAS Key Laboratory of Molecular
Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - George W. J. Fleet
- Chemistry Research
Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | | | - Graeme Horne
- Summit PLC, 91 Milton
Park, Abingdon, Oxon OX14 4RY, U.K
| | - Akihide Yoshihara
- Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Ken Izumori
- Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Chu-Yi Yu
- Beijing National
Laboratory of Molecular Science (BNLMS), CAS Key Laboratory of Molecular
Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Rajender A, Rao JP, Rao BV. A Divergent and Stereoselective Approach for the Syntheses of Some Polyhydroxylated Indolizidine and Pyrrolizidine Iminosugars. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Jiangseubchatveera N, Bouillon ME, Liawruangrath B, Liawruangrath S, Nash RJ, Pyne SG. Concise synthesis of (−)-steviamine and analogues and their glycosidase inhibitory activities. Org Biomol Chem 2013; 11:3826-33. [DOI: 10.1039/c3ob40374b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Lahiri R, Ansari AA, Vankar YD. Recent developments in design and synthesis of bicyclic azasugars, carbasugars and related molecules as glycosidase inhibitors. Chem Soc Rev 2013; 42:5102-18. [DOI: 10.1039/c3cs35525j] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Xu WY, Iwaki R, Jia YM, Zhang W, Kato A, Yu CY. NHC-mediated cross-coupling of sugar-derived cyclic nitrones with enals: general and efficient synthesis of polyhydroxylated pyrrolizidines and indolizidines. Org Biomol Chem 2013; 11:4622-39. [DOI: 10.1039/c3ob40696b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Shao J, Yang JS. A Diastereoselective Cyclic Imine Cycloaddition Strategy To Access Polyhydroxylated Indolizidine Skeleton: Concise Syntheses of (+)-/(−)-Lentiginosines and (−)-2-epi-Steviamine. J Org Chem 2012; 77:7891-900. [PMID: 22946565 DOI: 10.1021/jo3010777] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia Shao
- Key Laboratory of Drug Targeting, Ministry of Education,
and Department of Chemistry of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University,
Chengdu 610041, P. R. China
| | - Jin-Song Yang
- Key Laboratory of Drug Targeting, Ministry of Education,
and Department of Chemistry of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University,
Chengdu 610041, P. R. China
| |
Collapse
|
36
|
Pardo LM, Tellitu I, Domínguez E. Application of the intramolecular PIFA-mediated amidation of alkynes to the synthesis of substituted indolizidinones. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Zhuang JJ, Ye JL, Zhang HK, Huang PQ. An unexpected high erythro-selection in the Grignard reaction with an N,O-acetal: a concise asymmetric synthesis of indolizidine alkaloid (−)-2-epi-lentiginosine. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Fu Y, Liu Y, Chen Y, Hügel HM, Wang M, Huang D, Hu Y. Trimethylsilyl chloride promoted synthesis of α-branched amines by nucleophilic addition of organozinc halides to nitrones. Org Biomol Chem 2012; 10:7669-72. [DOI: 10.1039/c2ob26202a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Gómez L, Garrabou X, Joglar J, Bujons J, Parella T, Vilaplana C, Cardona PJ, Clapés P. Chemoenzymatic synthesis, structural study and biological activity of novel indolizidine and quinolizidine iminocyclitols. Org Biomol Chem 2012; 10:6309-21. [DOI: 10.1039/c2ob25943e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Chronowska A, Gallienne E, Nicolas C, Kato A, Adachi I, Martin OR. An expeditious synthesis of an analogue of (−)-steviamine by way of the 1,3-dipolar cycloaddition of a nitrile oxide with a 1-C-allyl iminosugar. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Abstract
For the purpose of this article, iminosugars are polyhydroxylated secondary and tertiary amines in which the molecules resemble monosaccharide sugars in which the ring oxygen is replaced by the nitrogen. The bicyclic structures may biologically resemble disaccharides. Very few iminosugars have been available up to now for evaluation of their pharmaceutical applications. The early compounds were discovered and selected for study due to glycosidase inhibition, which is now known to not be necessary for pharmacological activity and may cause off-target effects. Glyset® and Zavesca®, derived from the glucosidase-inhibiting natural product 1-deoxynojirimycin, are the first two examples of iminosugar drugs. Since the discovery of this first generation, many new natural products have been identified with a wide range of biological activities but few are widely available. Among the biological properties of these compounds are good oral bioavailability and very specific immune modulatory and chaperoning activity. Although the natural products from plants and microorganisms can have good specificity, modifications of the template natural products have been very successful recently in producing bioactive compounds with good profiles. The field of iminosugars continues to open up exciting new opportunities for therapeutic agent discovery and offers many new tools for precisely modifying carbohydrate structures and modulating glycosidase activity in vivo. Current efforts are directed towards a greater range of structures and a wider range of biochemical targets.
Collapse
|
42
|
Zhang ZX, Wu B, Wang B, Li TH, Zhang PF, Guo LN, Wang WJ, Zhao W, Wang PG. Facile and stereo-controlled synthesis of 2-deoxynojirimycin, Miglustat and Miglitol. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Stereoselective synthesis of novel C-azanucleoside analogues by microwave-assisted nucleophilic addition of sugar-derived cyclic nitrones. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Li YX, Huang MH, Yamashita Y, Kato A, Jia YM, Wang WB, Fleet GWJ, Nash RJ, Yu CY. l-DMDP, l-homoDMDP and their C-3 fluorinated derivatives: synthesis and glycosidase-inhibition. Org Biomol Chem 2011; 9:3405-14. [DOI: 10.1039/c0ob01063d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Zhang ZL, Nakagawa S, Kato A, Jia YM, Hu XG, Yu CY. A concise stereoselective synthesis of (−)-erycibelline. Org Biomol Chem 2011; 9:7713-9. [DOI: 10.1039/c1ob06244a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|