1
|
Shao L, Hua B, Zhao X, Lu S, Li G. Pillar[5]arene-Based Fluorescent Supramolecular Polymers Without Conventional Chromophores. Chemistry 2023; 29:e202303071. [PMID: 37843981 DOI: 10.1002/chem.202303071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorescent supramolecular polymers have garnered significant attention due to their successful integration of supramolecular polymers and fluorescence, offering vast potential for applications in sensing, imaging, optoelectronics, and photonics. In this study, we present a novel supramolecular polymer based on P5-OH, derived from mono-substituted pillararene macrocycles. Notably, these formed supramolecular polymeric aggregates exhibit a prominent blue emission, representing a rare instance of fluorescent polymers devoid of conventional chromophores. Furthermore, through the modification of alkyl chain ending groups attached to pillar[5]arenes, slight shifts in the emission peak could be observed. This research expands the scope of functional supramolecular polymeric systems utilizing pillararenes, providing valuable insights for the design of innovative luminescent materials and optical devices.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xueru Zhao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Shuai Lu
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
2
|
Yao Y, Meng X, Li C, Bernaerts KV, Zhang K. Tuning the Chiral Structures from Self-Assembled Carbohydrate Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208286. [PMID: 36918751 DOI: 10.1002/smll.202208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Carbohydrates have been regarded as one of the most ideally suited candidates for chirality study via self-assembly owning to their unique chemical structures, abundance, and sustainability. Much efforts have been devoted to design and synthesize diverse carbohydrate derivatives and self-assemble them into various supermolecular morphologies. Nevertheless, still inadequate attention is paid to deeply and comprehensively understand how the carbohydrate structures and self-assembly approaches affect the final morphologies and properties for future demands. Herein, to fulfill the need, a range of recently published studies relating to the chirality of carbohydrates is reviewed and discussed. Furthermore, to tune the chirality of carbohydrate-based structures on both molecular and superstructural levels via chirality transfer and chirality expression, the designing of the molecules and choosing of the proper approaches for self-assembly are elucidated.
Collapse
Affiliation(s)
- Yawen Yao
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Xintong Meng
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Cheng Li
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Katrien V Bernaerts
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Kim S, Park IH, Ju H, Lee Y, Kim JR, Jung JH, Lee SS, Lee E. Solvent-Dependent Self-Assembly of a Pillar[5]arene-Based Poly-Pseudo-Rotaxane Linked and Threaded by Silver(I) Trifluoroacetate: A Double Role. Inorg Chem 2023; 62:2058-2064. [PMID: 36662552 DOI: 10.1021/acs.inorgchem.2c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the supramolecule area, the fabrication of a new concept called polyrotaxanes or poly-pseudo-rotaxanes remains challenging. We herein report the formation of a poly-pseudo-rotaxane in which the same salt-type guest serves both linking and threading in the resulting structure. The combination of A1/A2-thiopyridyl pillar[5]arene (L) and silver(I) trifluoroacetate in CHCl3/CH3OH afforded a one-dimensional (1D) poly-pseudo-rotaxane. In this structure, to our surprise, the AgCF3CO2 guest not only links the di-armed L ligands via an infinite -L-Ag-L-Ag- arrangement but also threads into a pillar[5]arene cavity in a dimer form, (AgCF3CO2)2. In contrast, the same reaction in CH2Cl2/CH3OH yielded a simple 1D coordination polymer because an included CH2Cl2 molecule in the pillar[5]arene cavity prevents the threading of the silver(I) trifluoroacetate guest. Comparative 1H- and 19F-NMR studies support the solvent-dependent poly-pseudo-rotaxane formation at a lower concentration of L.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Huiyeong Ju
- Korea Basic Science Institute (KBSI), Western Seoul Center, 150, Bugahyeon-ro, Seoul 03759, South Korea
| | - Yelim Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Joon Rae Kim
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| |
Collapse
|
4
|
Kazi I, Nandy A, Selvam R, Sekar G. Halogen Bond-Activated Visible-Light-Mediated Regioselective C-H Arylation of 2-Phenylimidazo-[1,2- a]pyridines. J Org Chem 2022; 87:12323-12333. [PMID: 36065525 DOI: 10.1021/acs.joc.2c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient method for transition metal-free halogen bond-assisted regioselective C-H arylation of 2-phenylimidazo-[1,2-a]pyridines under visible-light condition has been developed. The halogen bond between an aryl halide and base KOtBu initiates an electron transfer process and generates an aryl radical, which catalyzes its coupling with 2-phenylimidazo-[1,2-a]pyridines to give arylated products in good yield. Several control experiments, density functional theory calculations, and ultraviolet-visible analysis indicate the presence of a halogen bond between an aryl halide and KOtBu. This methodology has been successfully utilized to synthesize antileishmanial agents.
Collapse
Affiliation(s)
- Imran Kazi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Anuradha Nandy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Raji Selvam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
5
|
Kim S, Park IH, Lee E, Jung JH, Lee SS. Metallosupramolecules of Pillar[5]arene with Two Flexible Thiopyridyl Arms: A Heterochiral Cyclic Dimer and Organic Guest-Assisted Homochiral Poly-Pseudo-Rotaxanes. Inorg Chem 2022; 61:7069-7074. [PMID: 35482519 DOI: 10.1021/acs.inorgchem.2c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of a cyclic dimer complex (1) and a poly-pseudo-rotaxane (2) of a racemic A1/A2-thiopyridyl pillar[5]arene (rac-L) with different chirality is reported. A one-pot reaction of rac-L with HgCl2 afforded a heterochiral cyclic dimer complex, [Hg2(pR-L)(pS-L)Cl4]·8CH2Cl2 (1), in which two Hg2+ atoms and one (pR-L)/(pS-L) enantiomeric pair form a [2:2] metallacycle via a metal coordination-based cyclization. Interestingly, the same reaction in the presence of the linear dinitrile guest, CN(CH2)8CN (G), yielded a one-dimensional poly-pseudo-rotaxane, {[Hg(G@pR-L)Cl2][Hg(G@pS-L)Cl2]}n (2), probably due to the rigidified ligand structure resulting from the dinitrile guest (G) threading. In 2, pR-L and pS-L generate two separated homochiral poly-pseudo-rotaxanes in a crystal. Both products are new members of the pillararene-derivative family. This study improves our understanding of self-assembly in nature and leads to this approach being an engineering tool for the construction of mechanically interlocked supramolecules.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| |
Collapse
|
6
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
7
|
Zhao J, Yang W, Liang C, Gao L, Xu J, Sue ACH, Zhao H. Rim-differentiated Co-pillar[4+1]arenes. Chem Commun (Camb) 2021; 57:11193-11196. [PMID: 34622259 DOI: 10.1039/d1cc04840f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of rim-differentiated Co-pillar[4+1]arenes featuring penta-substituted "upper" rims and mono-functionalisable "lower" rims was successfully synthesised and fully characterised. These novel pillar[5]arene-based scaffolds with clickable moieties and extra synthetic handles are versatile platforms for self-assembled molecular architectures and biological applications.
Collapse
Affiliation(s)
- Jianyi Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Weiwei Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Chuanyun Liang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Liya Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, China.
| | - Hongxia Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| |
Collapse
|
8
|
Acikbas Y, Aksoy M, Aksoy M, Karaagac D, Bastug E, Kursunlu AN, Erdogan M, Capan R, Ozmen M, Ersoz M. Recent progress in pillar[n]arene-based thin films on chemical sensor applications. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01059-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Al-Azemi TF, Vinodh M. Concentration-dependent supramolecular self-assembly of A1/A2-asymmetric-difunctionalized pillar[5]arene. RSC Adv 2021; 11:2995-3002. [PMID: 35424224 PMCID: PMC8693802 DOI: 10.1039/d1ra00078k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
A series of A1/A2-bromoalkoxy-and-hydroxy-difunctionalized pillar[5]arenes were synthesized by the removal of the pillar[5]arene-bearing benzyl group using catalytic hydrogenation. The difunctionalized pillar[5]arene bearing 8-bromooctoxy and benzyloxy substituents at the A1/A2 positions formed pseudo[1]rotaxane at low concentration and double-threaded supramolecular dimer at high concentration. The supramolecular self-assembly behavior has been probed with multiple methods including varying (variable) concentration 1H NMR spectroscopy, diffusion-ordered spectroscopy (DOSY), dynamic light scattering (DLS) measurements, isothermal titration calorimetry (ITC), and single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Talal F Al-Azemi
- Chemistry Department, Kuwait University P. O. Box 5969 Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Mickey Vinodh
- Chemistry Department, Kuwait University P. O. Box 5969 Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| |
Collapse
|
10
|
Ruengsuk A, Khamphaijun K, Pananusorn P, Docker A, Tantirungrotechai J, Sukwattanasinitt M, Harding DJ, Bunchuay T. Pertosylated pillar[5]arene: self-template assisted synthesis and supramolecular polymer formation. Chem Commun (Camb) 2020; 56:8739-8742. [PMID: 32633280 DOI: 10.1039/d0cc04005c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of decatosylate pillar[5]arene 1 is reported in excellent yield (>70%). The high yield is attributed to a self-template effect of the pendant tosylate arms. The X-ray crystal structure shows the formation of a linear supramolecular polymer, stabilised by intermolecular pillar[5]arene-tosylate inclusion complexes. These polymeric arrays persist in solution and form rod-like microfibril nanostructures evidenced by SEM.
Collapse
Affiliation(s)
- Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Korawit Khamphaijun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Puttipong Pananusorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Andrew Docker
- Department of Chemistry, University of Oxford Chemistry Research Laboratory Mansfield Road, Oxford, OX1 3TA, USA
| | - Jonggol Tantirungrotechai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
12
|
Zhou Y, Jie K, Zhao R, Huang F. Supramolecular-Macrocycle-Based Crystalline Organic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904824. [PMID: 31535778 DOI: 10.1002/adma.201904824] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Supramolecular macrocycles are well known as guest receptors in supramolecular chemistry, especially host-guest chemistry. In addition to their wide applications in host-guest chemistry and related areas, macrocycles have also been employed to construct crystalline organic materials (COMs) owing to their particular structures that combine both rigidity and adaptivity. There are two main types of supramolecular-macrocycle-based COMs: those constructed from macrocycles themselves and those prepared from macrocycles with other organic linkers. This review summarizes recent developments in supramolecular-macrocycle-based COMs, which are categorized by various types of macrocycles, including cyclodextrins, calixarenes, resorcinarenes, pyrogalloarenes, cucurbiturils, pillararenes, and others. Effort is made to focus on the structures of supramolecular-macrocycle-based COMs and their structure-function relationships. In addition, the application of supramolecular-macrocycle-based COMs in gas storage or separation, molecular separation, solid-state electrolytes, proton conduction, iodine capture, water or environmental treatment, etc., are also presented. Finally, perspectives and future challenges in the field of supramolecular-macrocycle-based COMs are discussed.
Collapse
Affiliation(s)
- Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
13
|
Wang P, Wang R, Xia D. pH-Induced Transition Between Single-Chain Macrocyclic Amphiphile and [ c2]Daisy Chain-Based Bola-Type Amphiphile and the Related Self-Assembly Behavior in Water. Front Chem 2020; 7:894. [PMID: 32039140 PMCID: PMC6992661 DOI: 10.3389/fchem.2019.00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
Macrocyclic amphiphiles, a type of amphiphiles synthesized based on macrocyclic compounds, have attracted much attention over the past decades due to their unique superiority in the construction of various functional nanomaterials. The regulation of the state of macrocyclic amphiphiles by introducing stimuli-responsive motif to macrocyclic amphiphiles is an efficient way to extend their applications in diverse fields. Herein, pillararene-based macrocyclic amphiphile H1 was prepared. H1 can act as single-chain amphiphile to self-assemble into micelles in water when the pH was ≥5.0. H1 can be protonated to turn into H2 when pH changed to <5.0. Interestingly, H2 formed [c2]daisy chain-based bola-type supramolecular amphiphile. This bola-type supramolecular amphiphile self-assembled into nanosheets in water. Therefore, pH-induced transition between single-chain macrocyclic amphiphile and bola-type amphiphile and the corresponding self-assembly system based on pillararene in water were constructed.
Collapse
Affiliation(s)
- Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Ruihuan Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan, China
| |
Collapse
|
14
|
Li E, Jie K, Liu M, Sheng X, Zhu W, Huang F. Vapochromic crystals: understanding vapochromism from the perspective of crystal engineering. Chem Soc Rev 2020; 49:1517-1544. [PMID: 32016241 DOI: 10.1039/c9cs00098d] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vapochromic materials, which undergo colour and/or emission changes upon exposure to certain vapours or gases, have received increasing attention recently because of their wide range of applications in, e.g., chemical sensors, light-emitting diodes, and environmental monitors. Vapochromic crystals, as a specific kind of vapochromic materials, can be investigated from the perspective of crystal engineering to understand the mechanism of vapochromism. Moreover, understanding the vapochromism mechanism will be beneficial to design and prepare task-specific vapochromic crystals as one kind of low-cost 'electronic nose' to detect toxic gases or volatile organic compounds. This review provides important information in a broad scientific context to develop new vapochromic materials, which covers organometallic or coordination complexes and organic crystals, as well as the different mechanisms of the related vapochromic behaviour. In addition, recent examples of supramolecular vapochromic crystals and metal-organic-framework (MOFs) vapochromic crystals are introduced.
Collapse
Affiliation(s)
- Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Zhang Z, Sun K, Jin L, Xie C, Li S. Preparation of a mechanically interlocked polymer from a linear supramolecular polymer. Org Chem Front 2020. [DOI: 10.1039/d0qo00315h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We transformed a linear supramolecular polymer into a mechanically interlocked polymer by photoisomerization.
Collapse
Affiliation(s)
- Zibin Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Kechang Sun
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Leqiong Jin
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Chunsong Xie
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Shijun Li
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|
16
|
Li F, Zhang G, Xia S, Yu L. Host-guest interactions accompanying the cationic nitrogen heterocyclic guests encapsulation within pillar[5]arene: A theoretical research. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Hirao T, Hisano N, Akine S, Kihara SI, Haino T. Ring–Chain Competition in Supramolecular Polymerization Directed by Molecular Recognition of the Bisporphyrin Cleft. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shin-ichi Kihara
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
18
|
Chen YY, Lin Q, Zhang YM, Yao H, Wei TB, Fan YQ, Guan XW, Gong GF, Zhou Q. Rationally introduce AIE into chemosensor: A novel and efficient way to achieving ultrasensitive multi-guest sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:263-270. [PMID: 31003051 DOI: 10.1016/j.saa.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Recently, ultrasensitive detection and multi-guest sensing have received extensive attention due to their high sensitivity and efficiency. Herein, we report a novel approach to achieve ultrasensitive detection of multi-analyte. This approach is concluded as "rationally introduce Aggregation-Induced Emission (AIE) into chemosensor". According to this approach, by rationally introducing self-assembly moiety, the obtained chemosensor DNS could serve as a novel AIEgen and show strong AIE in DMSO/H2O (water fraction 80%) binary solution. Interestingly, a simple fluorescent sensor array based on the DNS has been developed. This sensor array could selectively sense Fe3+, Al3+, H2PO4- and L-Arg in water solution. More importantly, this sensor array shows ultrasensitive detection for Fe3+, Al3+ and L-Arg. The LODs of the sensor array for Fe3+, Al3+ and L-Arg are in the range of 3.54×10-9M to 9.42×10-9M. Moreover, H2PO4- could realize the reversible detection of Fe3+ in the DMSO/H2O (water fraction 80%) solution. Meanwhile, DNS-based test papers and thin films were prepared, which could serve as test kits for convenient detection Fe3+, Al3+, and L-Arg in water. In addition, they could also act as efficient erasable fluorescent display materials.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China; College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu 730070, China.
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yan-Qing Fan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Guan-Fei Gong
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
19
|
Duan Q, Zhang H, Mai W, Wang F, Lu K. Acid/base- and base/acid-switchable complexation between anionic-/cationic-pillar[6]arenes and a viologen ditosylate salt. Org Biomol Chem 2019; 17:4430-4434. [PMID: 30888007 DOI: 10.1039/c9ob00398c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two new host-guest complexes between water-soluble anionic pillar[6]arene (WP6) or cationic pillar[6]arene (CP6) and a viologen ditosylate salt G·2TsO were constructed, among which one formed from WP6 and G2+ ions can be controlled by the sequential addition of an acid and a base (HCl and NaOH, respectively), whereas the other fabricated from CP6 and TsO- ions can be switched through the sequential addition of basic and acidic reagents (NaOH and HCl, respectively).
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China.
| | | | | | | | | |
Collapse
|
20
|
Han C, Zhao D, Lü Z, Zhan F, Zhang L, Dong S, Jin L. Synthesis of a Difunctionalized Pillar[5]arene with Hydroxyl and Amino Groups at A1/A2 Positions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengyou Han
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Dezhi Zhao
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Zhifeng Lü
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Fengtao Zhan
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Liangliang Zhang
- Institute of Flexible Electronics; College of Science; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering; College of Science; Hunan University; 410082 Changsha Hunan P. R. China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| |
Collapse
|
21
|
|
22
|
Li H, Yang Y, Xu F, Liang T, Wen H, Tian W. Pillararene-based supramolecular polymers. Chem Commun (Camb) 2019; 55:271-285. [PMID: 30418439 DOI: 10.1039/c8cc08085b] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pillararenes, as a new type of macrocyclic hosts, possess columnar structures and electron-rich cavities. Pillararenes not only recognize suitable cations, but also bind many neutral molecules. Due to the easy modification of pillararenes, various functional groups can be conveniently attached to the rim of pillararenes to provide suitable interaction sites, and the modified pillararenes even bind anionic guests. Thus, pillararenes and their derivatives have presented intriguing and unique host-guest recognition nature in the past few years, which make them ideal building blocks for the preparation of supramolecular polymers. Pillararene-based supramolecular polymers (PSPs) not only possess many merits of traditional covalent polymers but also have many specific properties, such as self-reparability, degradability, and self-adaptation. This feature paper gives an overview of the preparation of PSPs and covers recent research advance and future trends of pillararene-based host-guest pairs, assembly methods, topological architectures, stimuli-responsiveness, and functional features. We expect that the review will be helpful to researchers working in the fields of supramolecular chemistry and polymer science.
Collapse
Affiliation(s)
- Hui Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Duan Q, Zhao Q, Lu C, Lu K. pH-Responsive Host-Guest Complexations between Carboxylatopillar[5]arene or Carboxylatopillar[6]arene and N,N′-Bis(4-pyridylmethyl)-1,4-diaminobutane Dihydrochloride. CHEM LETT 2018. [DOI: 10.1246/cl.180608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qunpeng Duan
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Qiankun Zhao
- School of Resources and Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Chennan Lu
- School of Resources and Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Kui Lu
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
- School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou 450044, P. R. China
| |
Collapse
|
24
|
Dutta B, Dey A, Maity S, Sinha C, Ray PP, Mir MH. Supramolecular Assembly of a Zn(II)-Based 1D Coordination Polymer through Hydrogen Bonding and π···π Interactions: Crystal Structure and Device Applications. ACS OMEGA 2018; 3:12060-12067. [PMID: 31459286 PMCID: PMC6645665 DOI: 10.1021/acsomega.8b01924] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/13/2018] [Indexed: 05/29/2023]
Abstract
A new mixed-ligand divalent one-dimensional coordination polymer (1D CP) [Zn(adc)(4-nvp)2(H2O)2] n , (1) [H2adc = acetylenedicarboxylic acid and 4-nvp = 4-(1-naphthylvinyl)pyridine] has been synthesized and well characterized by elemental analysis, infrared spectrum, single-crystal X-ray crystallography, powder X-ray diffraction pattern, and thermogravimetric analysis. The compound 1 constructs a 3D supramolecular network by the combination of hydrogen bonding, C-H···π, and π···π interactions. Interestingly, the material shows Schottky behavior which is exclusively analyzed with the help of thermionic emission and space charge-limited current theory. In addition, the Schottky barrier diode parameters for compound 1 demonstrate better device performance after light soaking. Hence, the compound has applicability in the fabrication of optoelectronic devices.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Arka Dey
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Suvendu Maity
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Chittaranjan Sinha
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Partha Pratim Ray
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | | |
Collapse
|
25
|
Zhang Z, Shao L, Yang J. A phosphonated copillar[5]arene: Synthesis and application in the construction of pH-responsive supramolecular polymer in water. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Montecinos R, Diaz-Wilson F, Bravo-Sepulveda A, Salas CO, Recabarren-Gajardo G, Nome F. Investigation about the complexation of trimethylammonium-derived pillar[5]arene with indole and azaindole derivatives. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rodrigo Montecinos
- Facultad de Química; Pontificia Universidad Católica de Chile; Santiago Chile
| | | | | | - Cristian O. Salas
- Facultad de Química; Pontificia Universidad Católica de Chile; Santiago Chile
| | | | - Faruk Nome
- Department of Chemistry; Federal University of Santa Catarina; Florianopolis Santa Catarina Brazil
| |
Collapse
|
27
|
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2018; 53:677-696. [PMID: 27942626 DOI: 10.1039/c6cc08967d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pillar[n]arenes are a new class of synthetic supramolecular macrocycles streamlined by their particular pillar-shaped architecture which consists of an electron-rich cavity and two fine-tuneable rims. The ease and diversity of the functionalization of the two rims open possibilities for the design of new architectures, topological isomers, and scaffolds. Significantly, this emerging class of macrocyclic receptors offers a unique platform for biological purposes. This review article covers the most recent contributions from the pillar[n]arene field in terms of artificial membrane transport systems, controlled drug delivery systems, biomedical imaging, biosensors, cell adhesion, fluorescent sensing, and pesticide detection based on host-guest interactions. The review also uniquely describes the properties of sub-units that make pillar[n]arenes suitable for biological applications and it provides a detailed outline for the design of new innovative pillar-like structures with specific properties to open up a new avenue for pillar[n]arene chemistry.
Collapse
Affiliation(s)
- CuhaWijay Sathiyajith
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Rafik Rajjak Shaikh
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qian Han
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yue Zhang
- The First Clinical College, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, P. R. China.
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
28
|
Han C, Zhao D, Li H, Wang H, Huang X, Sun D. Effective Binding of Neutral Dinitriles by Pillar[4]arene[1]quinone both in Solution and in Solid State. ChemistrySelect 2018. [DOI: 10.1002/slct.201702793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chengyou Han
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Dezhi Zhao
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Haiyu Li
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Haibo Wang
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Xu Huang
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Daofeng Sun
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| |
Collapse
|
29
|
Li Z, Yang J, Huang F. pH-Responsive Host−Guest Complexation between a Water-soluble
Pillar[7]Arene and a 2,7-Diazapyrenium Salt and Its Application in
Controllable Self-assembly. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhengtao Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High- Performance & Novel Materials, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High- Performance & Novel Materials, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High- Performance & Novel Materials, Department of Chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| |
Collapse
|
30
|
Assembly of a self-complementary monomer: Formation of a pH-responsive pillar[5]arene-based supramolecular polymer†. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. Constitutional Isomers of Pentahydroxy-Functionalized Pillar[5]arenes: Synthesis, Characterization, and Crystal Structures. J Org Chem 2017; 82:10945-10952. [DOI: 10.1021/acs.joc.7b01837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Talal F. Al-Azemi
- Chemistry Department, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Mickey Vinodh
- Chemistry Department, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fatemeh H. Alipour
- Chemistry Department, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | | |
Collapse
|
32
|
Wu H, Zhao P, Li X, Chen W, Ågren H, Zhang Q, Zhu L. Tuning for Visible Fluorescence and Near-Infrared Phosphorescence on a Unimolecular Mechanically Sensitive Platform via Adjustable CH-π Interaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3865-3872. [PMID: 28073247 DOI: 10.1021/acsami.6b15939] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
CH-π interaction-assisted alignment of organic conjugated systems has played an important role to regulate molecular electronic and photophysical properties, whereas harnessing such a smart noncovalent interaction into the tuning of unimolecular complex emissive bands covering a wide spectral region remains a challenging research topic. Since the tuning for visible and near-infrared emissive properties in a single π-functional platform relates to its multicolor luminescent behaviors and potential superior application in analysis, bioimaging, and sensing, herein, we report a proportional control of the singlet and triplet emissions that cover visible and near-infrared spectral regions, respectively, can be straightforwardly achieved by CH-π interaction-assisted self-assembly at the unimolecular level. Employing an octathionaphthalene-based single luminophore as a prototype, we find that a strength-adjustable CH-π interaction-assisted self-assembly can be established in mixed DMF/H2O and in the film state. The hybridization of planar local excited and intramolecular charge transfer transitions occurs on the basis, allowing a competitive inhibition to the intersystem crossing process to generate a complex emission composed of visible fluorescence and near-infrared phosphorescence. Furthermore, reversible mechanochromic and mechanoluminescent conversions of the corresponding solid sample can both be observed to rely on a corresponding self-assembly alternation. These results can probably provide new visions for the development of future intelligent and multifunctional luminescent materials.
Collapse
Affiliation(s)
- Hongwei Wu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Pei Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Xin Li
- Division of Theoretical Chemistry and Biology School of Biotechnology, KTH Royal Institute of Technology , Stockholm SE-10691, Sweden
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power , Shanghai 200090, China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology School of Biotechnology, KTH Royal Institute of Technology , Stockholm SE-10691, Sweden
| | - Qing Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
33
|
Li Z, Yu G, Yang J. Dual-pH responsive host–guest complexation between a water-soluble pillar[9]arene and a 2,7-diazapyrenium salt. Org Chem Front 2017. [DOI: 10.1039/c6qo00579a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The host–guest complexation between a water-soluble pillar[9]arene and a 2,7-diazapyrenium salt not only can be controlled by the sequential addition of an acid and a base but also can be switched through the sequential addition of a base and an acid.
Collapse
Affiliation(s)
- Zhengtao Li
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Guocan Yu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jie Yang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
34
|
Shangguan L, Xing H, Mondal JH, Shi B. Novel rare earth fluorescent supramolecular polymeric assemblies constructed by orthogonal pillar[5]arene-based molecular recognition, Eu(iii)-coordination and π–π donor–acceptor interactions. Chem Commun (Camb) 2017; 53:889-892. [DOI: 10.1039/c6cc08336f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Linear rare earth fluorescent supramolecular polymer is easily constructed by pillar[5]arene-based molecular interaction.
Collapse
Affiliation(s)
- Liqing Shangguan
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Hao Xing
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | | | - Bingbing Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
35
|
Zhang Y, Su J, Li Q, Li W, Liang G, Li H, Ma H, Lin Q, Yao H, Wei T. Novel Fluorescent Chemosensor for Detection of F−Anions Based on a Single Functionalized Pillar[5]arene Iron(III) Complex. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Zhang YM, Su JX, Li Q, Qu WJ, Zhu X, Leng YL, Xin SF, Yao H, Lin Q, Wei TB. Novel fluorescent cyanide-selective chemosensor based on a functionalised pillar[5]arene copper(II) complex. Supramol Chem 2016. [DOI: 10.1080/10610278.2016.1253843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Jun-Xia Su
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Qiao Li
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Xin Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Yan-Li Leng
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Shi-Fang Xin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| |
Collapse
|
37
|
Yu G, Zhou J, Shen J, Tang G, Huang F. Cationic pillar[6]arene/ATP host-guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem Sci 2016; 7:4073-4078. [PMID: 30155051 PMCID: PMC6013913 DOI: 10.1039/c6sc00531d] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Due to the differences in the cavity size of the hosts and the charge and length of the guests, a cationic water-soluble pillar[6]arene (WP6) selectively complexes with ATP to form a stable 1 : 1 inclusion complex WP6⊃ATP. This host-guest complexation was utilized to efficiently inhibit the hydrolysis of ATP, arising from the existence of the hydrophobic cavity of WP6. A folic acid functionalized diblock copolymer (FA-PEG-b-PAA) was employed to PEGylate WP6 to endow the polyion complex (PIC) micelles with specific targeting ability, preferentially delivering WP6 to folate receptor over-expressing KB cell. This host-guest complexation was further used to block the efflux pump to transport anticancer drugs out of cells by cutting off the energy source, which enhanced the efficacy of the cancer chemotherapy of DOX·HCl towards drug resistant MCF-7/ADR cell. This supramolecular method provides an extremely distinct strategy to potentially overcome multidrug resistance (MDR).
Collapse
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Jie Shen
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Guping Tang
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| |
Collapse
|
38
|
Liu LZ, Hua ZZ, Duan WG, Huang HF, Huang Y, Lin GS, Cen B. Selective and effective rotation mode of copillar[5]arene by mono-functionalizing bulky substituent. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Ogoshi T, Yamagishi TA, Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chem Rev 2016; 116:7937-8002. [PMID: 27337002 DOI: 10.1021/acs.chemrev.5b00765] [Citation(s) in RCA: 928] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In 2008, we reported a new class of pillar-shaped macrocyclic hosts, known as "pillar[n]arenes". Today, pillar[n]arenes are recognized as key players in supramolecular chemistry because of their facile synthesis, unique pillar shape, versatile functionality, interesting host-guest properties, and original supramolecular assembly characteristics, which have resulted in numerous electrochemical and biomedical material applications. In this Review, we have provided historical background to macrocyclic chemistry, followed by a detailed discussion of the fundamental properties of pillar[n]arenes, including their synthesis, structure, and host-guest properties. Furthermore, we have discussed the applications of pillar[n]arenes to materials science, as well as their applications in supramolecular chemistry, in terms of their fundamental properties. Finally, we have described the future perspectives of pillar[n]arene chemistry. We hope that this Review will provide a useful reference for researchers working in the field and inspire discoveries concerning pillar[n]arene chemistry.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiaki Nakamoto
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
40
|
Wang Y, Ping G, Li C. Efficient complexation between pillar[5]arenes and neutral guests: from host–guest chemistry to functional materials. Chem Commun (Camb) 2016; 52:9858-72. [DOI: 10.1039/c6cc03999e] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article covers the molecular recognition of pillar[5]arenes and neutral guests, and its application in making supramolecular structures, polymers and functional materials.
Collapse
Affiliation(s)
- Yiliang Wang
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Guchuan Ping
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Chunju Li
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
41
|
Ams MR, Fields M, Grabnic T, Janesko BG, Zeller M, Sheridan R, Shay A. Unraveling the Role of Alkyl F on CH−π Interactions and Uncovering the Tipping Point for Fluorophobicity. J Org Chem 2015; 80:7764-9. [DOI: 10.1021/acs.joc.5b01072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mark R. Ams
- Department
of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335-3902, United States
| | - Michael Fields
- Department
of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335-3902, United States
| | - Timothy Grabnic
- Department
of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335-3902, United States
| | - Benjamin G. Janesko
- Department
of Chemistry, Texas Christian University, 2800 Souh University Drive, Fort Worth, Texas 76109, United States
| | - Matthias Zeller
- Department
of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555, United States
| | - Rose Sheridan
- Department
of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335-3902, United States
| | - Amanda Shay
- Department
of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335-3902, United States
| |
Collapse
|
42
|
Peng L, Zhu P, Meng X, Zhang C. Bromine Bonding Induced Selective Recognition of Different Guests for Hexaphenylbenzene Bromides in the Solid State. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
|
44
|
Li C. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem Commun (Camb) 2015; 50:12420-33. [PMID: 25033095 DOI: 10.1039/c4cc03170a] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pillar[n]arenes (P[n]As) and their derivatives, consisting of (substituted) hydroquinone units linked by methylene bridges at para-positions, are new type of cyclophane hosts developed in 2008. Their intrinsic characteristics and properties, such as facile preparation and flexible modification, symmetrical and columnar architectures, very rigid and π-rich cavities, as well as intriguing and peculiar guest complexation capability, make them ideal building blocks for the fabrication of polymeric supramolecules. This Feature Article provides an overview of the construction of pillararene-based supramolecular polymers and covers recent research endeavors of the marriage between pillararene-based host-guest pairs and polymeric aggregates. These polymers are classified into two major classes according to the different types of guest species: (1) supramolecular polymers relying on pillararene-based cationic guest recognition; (2) supramolecular polymers relying on pillararene-based neutral guest recognition. The host-guest motifs, building strategies, topological architectures, stimuli-responsiveness and functionalities are comprehensively discussed.
Collapse
Affiliation(s)
- Chunju Li
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
45
|
Xu L, Hu Y, Liu M, Chen J, Huang X, Gao W, Wu H. Gelation properties and glucose-sensitive behavior of phenylboronic acid based low-molecular-weight organogels. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Xue M, Yang Y, Chi X, Yan X, Huang F. Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chem Rev 2015; 115:7398-501. [DOI: 10.1021/cr5005869] [Citation(s) in RCA: 605] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Min Xue
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yong Yang
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Xiaodong Chi
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xuzhou Yan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
47
|
Yu G, Jie K, Huang F. Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chem Rev 2015; 115:7240-303. [DOI: 10.1021/cr5005315] [Citation(s) in RCA: 766] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
48
|
Hydrophobic interactions in the pillar[5]arene-based host–guest complexation and their application in the inhibition of acetylcholine hydrolysis. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Qi Z, Achazi K, Haag R, Dong S, Schalley CA. Supramolecular hydrophobic guest transport system based on pillar[5]arene. Chem Commun (Camb) 2015; 51:10326-9. [DOI: 10.1039/c5cc03955j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A pillar[5]arene-based bioactive guest loading system was developed, which increased the solubility of norharmane in aqueous medium.
Collapse
Affiliation(s)
- Zhenhui Qi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Shengyi Dong
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | |
Collapse
|
50
|
Mandal AK, Gangopadhyay M, Das A. Photo-responsive pseudorotaxanes and assemblies. Chem Soc Rev 2015; 44:663-76. [DOI: 10.1039/c4cs00295d] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical responses for understanding the dynamic conformational change(s) in solution during the stimuli responsive complexation and decomplexation process(es) in a supramolecular assembly.
Collapse
Affiliation(s)
- Amal Kumar Mandal
- University of Twente
- Molecular Nanofabrication
- 7522 Enschede
- The Netherland
| | | | - Amitava Das
- Organic Chemistry Division
- National Chemical Laboratory
- Pune
- India
| |
Collapse
|