1
|
Liu Y, Li R, Lv Q, Yu B. Embracing heterogeneous photocatalysis: evolution of photocatalysts in annulation of dimethylanilines and maleimides. Chem Commun (Camb) 2024. [PMID: 39078307 DOI: 10.1039/d4cc02516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Recent advances in visible-light-promoted construction of tetrahydroquinolines from dimethylanilines and maleimides are documented. Homogeneous and heterogeneous photocatalytic systems, as well as the reaction mechanism, are emphasized. The mechanism of this photocatalytic annulation reaction is quite clear, i.e., dimethylanilines and maleimides serve as the radical precursors and radical acceptors, respectively. This annulation reaction could serve as an excellent platform for evaluating novel oxidative heterogeneous photocatalytic systems, which could further inspire chemists in this field to develop more efficient photocatalytic systems. Significant opportunities are expected in the future for heterogeneous photocatalysis strategies.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Qiyan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Zhelavskyi O, Parikh S, Jhang YJ, Staples RJ, Zimmerman PM, Nagorny P. Green Light Promoted Iridium(III)/Copper(I)-Catalyzed Addition of Alkynes to Aziridinoquinoxalines Through the Intermediacy of Azomethine Ylides. Angew Chem Int Ed Engl 2024; 63:e202318876. [PMID: 38267370 PMCID: PMC10939844 DOI: 10.1002/anie.202318876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.
Collapse
Affiliation(s)
| | - Seren Parikh
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yin-Jia Jhang
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J Staples
- Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul M Zimmerman
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Lutovsky GA, Yoon TP. Cu(II) salts as terminal oxidants in visible-light photochemical oxidation reactions. Org Biomol Chem 2023; 22:25-36. [PMID: 38047405 PMCID: PMC10842929 DOI: 10.1039/d3ob01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Photochemistry provides an important platform for the discovery of synthetically useful transformations. The development of new oxidative photoreactions, however, has proven to be relatively challenging. The importance of the identity of the terminal oxidant has been an underappreciated consideration in the design of these reactions. Many of the most common terminal oxidants used in ground-state catalytic methods are poorly compatible with the one-electron oxidation state changes characteristic of photoredox reactions and result in hard-to-control deleterious side reactions. As an alternative, Cu(II) salts have emerged as versatile terminal oxidants in photochemical oxidation reactions that are terrestrially abundant, cost-effective, and readily compatible with one-electron oxidation state changes. This review highlights recent reaction methods that leverage Cu(II) oxidation in combination with the photochemical activation of substrates or that use Cu(II) salts as both the active chromophore and terminal oxidant.
Collapse
Affiliation(s)
- Grace A Lutovsky
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Zhao Y, Hou X, He M, Wang Y, Yang S, Wang W, Bao M, Yu X. Visible-Light-Driven α-Substituted Amines Enabled by In Situ Formation of Amine Substrate Aggregates. Org Lett 2023; 25:7344-7348. [PMID: 37791683 DOI: 10.1021/acs.orglett.3c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A visible-light-driven, photocatalyst-free, air-promoted, α-substituted reaction of amines with varying nucleophiles is described. The amine substrate aggregates formed in situ through physical π-π stacking by H2O regulation in organic solvent can absorb visible light and then generate iminium ion intermediates, which undergo nucleophilic substitution reactions with varying nucleophiles to afford α-substituted amines. This reaction features catalyst-free, good functional group tolerance, simple operation procedure, and green reaction conditions.
Collapse
Affiliation(s)
- Yuqian Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Xiaoli Hou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Min He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Shilei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wanhui Wang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
5
|
Filipović A, Džambaski Z, Bondžić AM, Bondžić BP. Visible-light promoted photoredox catalysis in flow: addition of biologically important α‑amino radicals to michael acceptors. Photochem Photobiol Sci 2023; 22:2259-2270. [PMID: 37340217 DOI: 10.1007/s43630-023-00448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Visible light promoted photoredox catalyzed formation of α-amino radicals from cyclic tertiary amine compounds and their subsequent addition to Michael acceptors performed in flow conditions allowed access to a wide range of functionalized N-aryl-substituted tetrahydroisoquinolines (THIQs) and N-aryl-substituted tetrahydro-β-carbolines (THBCs). Visible light in conjunction with Ru(bpy)3Cl2 photocatalyst allowed the formation and high reactivities of α-amino radicals in flow conditions at room temperature. These reactions gave valuable products with high efficiencies; some previously unavailable reaction pathways photo or thermal reaction conditions; i.e. direct synthesis of 1-substituted (THBCs) via α-amino radical path were successfully realized in flow. The use of custom-made FEP tube microreactor proved to be the key to succesfull α-amino-radical formation and overall reaction performance in flow. Three types of light transparent custom-made microfluidic devices were tested, among them glass/silicon and FEP type reactor showed very good results in the conversion of tested compounds. Plausible reaction mechanism is proposed in accordance with known principles of photo activation of tertiary amines. Visible light promoted C(sp3)-H functionalization of N-aryl-protected tetrahydroisoquinolines and N-aryl-protected tetrahydro-β-carbolines in microflow conditions via a-amino radical pathway with various coupling partners in excellent yields and efficiencies.
Collapse
Affiliation(s)
- Ana Filipović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Republic of Serbia
| | - Zdravko Džambaski
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Republic of Serbia
| | - Aleksandra M Bondžić
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000, Belgrade, Serbia
| | - Bojan P Bondžić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Republic of Serbia.
| |
Collapse
|
6
|
Lim SH, Kim MJ, Wee KR, Cho DW. Reaction-Environment-Dependent Photoaddition Reactions of N-Phenyl Amino Acid Esters Possessing a Silyl Group with Fullerene C 60: Selective Formation of Aminomethyl-1,2-dihydrofullerenes vs Fulleropyrrolidines. J Org Chem 2023; 88:12294-12310. [PMID: 37602462 DOI: 10.1021/acs.joc.3c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The current study investigates SET-promoted photoaddition reactions of the silyl-group-containing N-phenylglycinates and N-phenylalaninates, N-((trimethylsilyl)methyl)-N-phenyl-substituted glycinates and alaninates, respectively, with fullerene C60 to explore how the types of amino acid esters (AAEs) and molecular oxygen affect the photoaddition reaction efficiencies and chemoselectivity of in situ formed radical cations of AAEs. The results showed that under deoxygenated (N2-purged) conditions, photoreactions of N-phenylglycinates with C60 produced aminomethyl-1,2-dihydrofullerenes through the addition of α-amino radicals arising by sequential SET and desilylation processes from initially formed secondary anilines to C60. In oxygenated conditions, photoreactions of N-phenylglycinates with C60, albeit less efficient, took place to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of azomethine ylides to C60 assisted by in situ formed 1O2. The same types of photoproducts were observed with N-phenylalaninates, though the reactions were less efficient. The use of methylene blue (MB) as a photosensitizer in the photoreactions under oxygenated conditions was especially effective in enhancing the efficiency of fulleropyrrolidine formation. These results demonstrate that photoaddition reactions of silyl-tether-containing N-phenyl AAEs with C60 can be governed by the reaction conditions and the presence or absence of a photosensitizer employed.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Min-Ji Kim
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
7
|
Rana P, Saini KM, Kaushik B, Solanki K, Dixit R, Sharma RK. Unleashing the photocatalytic potential of a noble-metal-free heteroleptic copper complex-based nanomaterial for an enhanced aza-Henry reaction. NANOSCALE 2023; 15:14007-14017. [PMID: 37539685 DOI: 10.1039/d3nr01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
In this work, we fabricated a versatile and noble metal free copper-based heterogeneous photocatalyst, representing a green shift away from precious group metals such as Ir, Ru, Pt, which have been widely utilized as photocatalysts. The successfully synthesized and characterized copper photocatalyst was employed to establish a cross dehydrogenative coupling via C-H activation between tertiary amines and carbon nucleophiles. The highly efficient copper-based photocatalyst was characterized by numerous physico-chemical techniques, which confirmed its successful formation as well as its high activity. Inductively coupled plasma (ICP-OES) analysis revealed that the composite Cu@Xantphos@ASMNPs had a very high loading of 0.423 mmol g-1 of copper. The magnetic Cu@Xantphos@ASMNPs were utilized as a potential heterogeneous photocatalyst for the very facile and regioselective conversion of aryl tetrahydroqinoline to the respective nitroalkyl aryl tetrahydroisoquinoline in high yield using air as an oxidant and methanol as a green solvent with irradiation with visible light under mild reaction conditions. Additionally, the catalyst shows exceptional chemical stability and reusability without any agglomeration even after several cycles of use, which is one of the key features of this material, rendering it a potential candidate from economic and environmental perspectives.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kapil Mohan Saini
- Kalindi College, University of Delhi, New Delhi, Delhi-110008, India
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi-110019, India
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Shyamlal College, University of Delhi, New Delhi, Delhi-1100032, India
| | - Ranjana Dixit
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Ramjas College, University of Delhi, New Delhi-110007, India
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
8
|
Mei Y, Zhang T, Hao X, Jin K, Zhang R, Duan C, Li Y. Visible-light-mediated α-amino alkylation of ketimines and aldimines for the synthesis of 1,2-diamines. Org Biomol Chem 2023. [PMID: 37466287 DOI: 10.1039/d3ob00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A visible-light-mediated protocol to prepare 1,2-diamines has been successfully explored based on the photoredox/Brønsted acid co-catalyzed α-amino alkylations of imines with tertiary amines. Both ketimines and aldimines are applicable to this transformation. Various 1,2-diamines with different functional groups were produced in moderate to excellent yields. Moreover, this approach could be performed on a gram scale, showing its practicality.
Collapse
Affiliation(s)
- Yuru Mei
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Tiexin Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Kun Jin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Yaming Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| |
Collapse
|
9
|
Lv S, Li Q, Sang JW, Zhang Y, Wang J, Zhang WD. Uranyl nitrate as a recyclable homogeneous photocatalyst for selective cross-coupling of N-substituted amines and indoles. RSC Adv 2023; 13:11929-11937. [PMID: 37077263 PMCID: PMC10108382 DOI: 10.1039/d3ra01037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
A homogeneous photocatalytic recyclable system for the selective radical-radical cross-coupling of N-substituted amines and indoles has been established. This system could conduct in water or acetonitrile, featuring the reuse of uranyl nitrate as the recyclable photocatalyst via a simple extraction. With this mild strategy in hand, good to excellent yields of cross-coupling products could be achieved even under the irradiation of sunlight, including 26 natural product derivatives and 16 natural product inspired re-engineered compounds. A radical-radical cross-coupling mechanism was newly proposed based on experimental evidence and reported literature. This strategy has been also applied to a gram scale synthesis to demonstrate its practical utility.
Collapse
Affiliation(s)
- Shuaipeng Lv
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Ji-Wei Sang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| |
Collapse
|
10
|
He Z, Liu HL, Wang ZH, Jiao KJ, Li ZM, Li ZJ, Fang P, Mei TS. C(sp 3)-H Aerobic Alkenylation of Tetrahydroisoquinolines via Organic Electrosynthesis. J Org Chem 2023; 88:6203-6208. [PMID: 37058587 DOI: 10.1021/acs.joc.3c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
A method for the C(sp3)-H alkenylation of N-aryl-tetrahydroisoquinoline (THIQ) has been developed by the combination of electrooxidation and a copper catalyst. The corresponding products were obtained with good to excellent yields under mild conditions. Besides, the addition of TEMPO as an electron mediator is crucial to this transformation, since the oxidative reaction could proceed under a low electrode potential. In addition, the catalytic asymmetric variant has also been demonstrated with good enantioselectivity.
Collapse
Affiliation(s)
- Zeng He
- College of Chemistry and Materials, Sichuan Normal University, Chengdu 610068, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui-Lin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ke-Jing Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zi-Meng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhang-Jian Li
- College of Chemistry and Materials, Sichuan Normal University, Chengdu 610068, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | | |
Collapse
|
11
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
12
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
13
|
Dimitrova D, McMahon C, Kennedy AR, Parkinson JA, Leach SG, Boulton LT, Pascoe DD, Murphy JA. A study of the reactivity of cyclic aminomethylammonium mannich salts. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Bjerg EE, Marchán-García J, Buxaderas E, Moglie Y, Radivoy G. Oxidative α-Functionalization of 1,2,3,4-Tetrahydroisoquinolines Catalyzed by a Magnetically Recoverable Copper Nanocatalyst. Application in the Aza-Henry Reaction and the Synthesis of 3,4-Dihydroisoquinolones. J Org Chem 2022; 87:13480-13493. [PMID: 36154121 DOI: 10.1021/acs.joc.2c01782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative α-functionalization of 2-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) promoted by a versatile heterogeneous nanocatalyst consisting of copper nanoparticles immobilized on silica-coated maghemite (CuNPs/MagSilica) has been accomplished. The methodology was successfully applied in the cross-dehydrogenative coupling (CDC) reaction of N-aryl THIQs and other tertiary amines with nitromethane as a pro-nucleophile (aza-Henry reaction) and the α-oxidation of THIQs with O2 as a green oxidant. Phosphite, alkyne, or indole derivatives were also shown to be suitable candidates for their use as pro-nucleophiles in the CDC reaction with THIQs. The catalyst, with very low copper loading (0.4-1.0 mol % Cu), could be easily recovered by means of an external magnet and reused in four cycles without significant loss of activity.
Collapse
Affiliation(s)
- Esteban E Bjerg
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Joaquín Marchán-García
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Eduardo Buxaderas
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Yanina Moglie
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gabriel Radivoy
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
15
|
Zhai J, Zhou B, Wu H, Jia S, Chu M, Han S, Xia W, He M, Han B. Photocatalytic Cleavage of C(sp 3 )-N Bond in Trialkylamines to Dialkylamines and Olefins. CHEMSUSCHEM 2022; 15:e202201119. [PMID: 35819857 DOI: 10.1002/cssc.202201119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Development of a new and green strategy for C(sp3 )-N bond cleavage is very interesting. Herein, photocatalytic cleavage of the C(sp3 )-N bond of trialkylamines was achieved, with concurrent formation of dialkylamines and olefins. It was found that a rationally designed 2D-Bi2 WO6 @1D-LaPO4 heterostructure was very efficient for the reaction due to its high light collection efficiency and unique catalytic properties. The strategy could be used for different trialkylamines, including triethylamine, tri-n-propylamine, and ethyl-di-isopropylamine. The mechanistic investigation indicated that the catalyst with heterostructure was not only favorable for charge carrier separation but also rendered excited electrons with high reduction capacity. This work opens a way for C(sp3 )-N bond cleavage of trialkylamines.
Collapse
Affiliation(s)
- Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Mengen Chu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
16
|
Yu F, Valles DA, Chen W, Daniel SD, Ghiviriga I, Seidel D. Regioselective α-Cyanation of Unprotected Alicyclic Amines. Org Lett 2022; 24:6364-6368. [PMID: 36036764 PMCID: PMC9548390 DOI: 10.1021/acs.orglett.2c02148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary alicyclic amines are converted to α-aminonitriles via addition of TMSCN to their corresponding imines, intermediates that are produced in situ via the oxidation of amine-derived lithium amides with simple ketone oxidants. Amines with an existing α-substituent undergo regioselective α'-cyanation even if the C-H bonds at that site are less activated. Amine α-arylation can be combined with α'-cyanation to generate difunctionalized products in a single operation.
Collapse
Affiliation(s)
- Fuchao Yu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Daniel A. Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weijie Chen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
17
|
Ji Y, Zhang X, Wu Y, Dang ZL, Han WW, Wang SC, Dong SB, Zhang QZ. Oxidative Cyanation of Tertiary Amines for Facile Synthesis of Tetrahydroisoquinolines with Quaternary Centers. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Xu F, Zhang F, Wang W, Yao M, Lin X, Yang F, Qian Y, Chen Z. Iron(III)-catalyzed α-cyanation and carbonylation with 2-pyridylacetonitrile: divergent synthesis of α-amino nitriles and tetrahydroisoquinolinones. Org Biomol Chem 2022; 20:7031-7035. [PMID: 36018561 DOI: 10.1039/d2ob01199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-catalyzed oxidative synthesis of N-aryl-substituted tetrahydroisoquinolines (THIQs) toward tetrahydroisoquinoline-based derivatives is reported. A wide range of α-amino nitriles and tetrahydroisoquinolinones are synthesized in moderate to good yields. This approach involves a new organic nitrile source, a cheap iron catalyst under an oxygen atmosphere, and temperature-controlled divergent synthesis and features complete selectivity and operational simplicity.
Collapse
Affiliation(s)
- Fan Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fanglian Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Wenjia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Mingxu Yao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Xing Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fang Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Yiping Qian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
19
|
Singh T, Panday P, Upreti GC, Ranjan S, Gupta RK, Singh A. Visible-light-mediated synthesis of α,β-diamino esters via coupling of N, N-dimethylanilines and glyoxalic oxime ethers. Org Biomol Chem 2022; 20:4522-4525. [PMID: 35605977 DOI: 10.1039/d2ob00361a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-mediated synthesis of α,β-diamino esters has been developed via the cross coupling of N,N-dimethylanilines with glyoxalic oxime ethers. This protocol involves the generation of α-aminoalkyl radicals under mild reaction conditions, provides α,β-diamino esters in good to excellent yields, and can be performed on a gram-scale.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U. P., 208016, India.
| | - Prabhakar Panday
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U. P., 208016, India.
| | - Ganesh Chandra Upreti
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U. P., 208016, India.
| | - Sudhir Ranjan
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, U. P., 208016, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, U. P., 208016, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U. P., 208016, India.
| |
Collapse
|
20
|
Wu M, Huang S, Hou H, Lin J, Lin M, Zhou S, Zheng Z, Sun W, Ke F. DIPEA-induced activation of OH - for the synthesis of amides via photocatalysis. RSC Adv 2022; 12:14724-14728. [PMID: 35702194 PMCID: PMC9109258 DOI: 10.1039/d2ra02107b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
The development of green protocols for photocatalysis where water acts as a nucleophile, induced by a weak organic base, is difficult to achieve in organic chemistry. Herein, an efficient light-mediated strategy for the synthesis of amides in which a weak organic base acts as a reductant to induce the formation of OH– from water under metal-free conditions is reported. A mechanistic study reveals that the generation of an N,N-diisopropylethylamine (DIPEA) radical via single electron transfer (SET), with the assistance of photocatalyst, that increases the nucleophilicity of the water molecules with respect to the cyanides is essential. Moreover, the removal rate of nitrile in wastewater can be as high as 83%, indicating that this strategy has excellent potential for nitrile degradation. Under weak organic base condition DIPEA as a reductant to increase the nucleophilicity of H2O an excellent potential system for nitrile degradation.![]()
Collapse
Affiliation(s)
- Mei Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Sheng Huang
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Huiqing Hou
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Jie Lin
- Department of VIP Dental Service, School and Hospital of Stomatology, Fujian Medical University Fuzhou 350002 China
| | - Mei Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Sunying Zhou
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Zhiqiang Zheng
- Department of VIP Dental Service, School and Hospital of Stomatology, Fujian Medical University Fuzhou 350002 China
| | - Weiming Sun
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Fang Ke
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| |
Collapse
|
21
|
Hsu C, Gonçalves CR, Tona V, Pons A, Kaiser M, Maulide N. Leveraging Electron‐Deficient Iminium Intermediates in a General Synthesis of Valuable Amines. Angew Chem Int Ed Engl 2022; 61:e202115435. [PMID: 35103377 PMCID: PMC9311413 DOI: 10.1002/anie.202115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/11/2022]
Abstract
The development of reactions converting alkenes and alkynes into valuable building blocks remains one of the main goals of synthetic chemistry. Herein, we present the leveraging of highly electron‐deficient iminium ions, rare and fleeting intermediates, into a general amine synthesis. This enables the preparation of amines bearing e.g. valuable α‐trifluoromethyl moieties under mild conditions. This broad concept is highlighted by the late‐stage amination of quinine into a biologically interesting new analogue.
Collapse
Affiliation(s)
- Che‐Sheng Hsu
- University of Vienna Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna Austria
| | - Carlos R. Gonçalves
- University of Vienna Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna Austria
| | - Veronica Tona
- University of Vienna Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna Austria
| | - Amandine Pons
- University of Vienna Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute Socinstrasse 57 4002 Basel Switzerland
| | - Nuno Maulide
- University of Vienna Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
22
|
Hsu C, Gonçalves CR, Tona V, Pons A, Kaiser M, Maulide N. Nutzung von elektronenarmen Iminiumintermediaten zur Synthese von wertvollen Aminen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202115435. [PMID: 38505700 PMCID: PMC10946883 DOI: 10.1002/ange.202115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/09/2022]
Abstract
AbstractDie Entwicklung von Reaktionen zur Umwandlung von Alkenen und Alkinen in wertvolle Bausteine ist nach wie vor eines der Hauptziele in der synthetischen Chemie. In dieser Arbeit berichten wir von der Nutzbarmachung von stark elektronenarmen, seltenen und kurzlebigen Iminiumionen zur Synthese von Aminen. Dies ermöglicht die milde Herstellung von Aminen mit z. B. trifluormethylierten Einheiten. Dieses umfassende Konzept wird durch die Aminierung von Chinin zu einem biologisch interessanten neuen Analogon verdeutlicht.
Collapse
Affiliation(s)
- Che‐Sheng Hsu
- Institut für Organische ChemieUniversität WienWähringer Strasse 381090WienÖsterreich
| | - Carlos R. Gonçalves
- Institut für Organische ChemieUniversität WienWähringer Strasse 381090WienÖsterreich
| | - Veronica Tona
- Institut für Organische ChemieUniversität WienWähringer Strasse 381090WienÖsterreich
| | - Amandine Pons
- Institut für Organische ChemieUniversität WienWähringer Strasse 381090WienÖsterreich
| | - Marcel Kaiser
- Schweizerisches Tropen- und Public-Health-InstitutSocinstrasse 574002BaselSchweiz
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Strasse 381090WienÖsterreich
| |
Collapse
|
23
|
Tropane and related alkaloid skeletons via a radical [3+3]-annulation process. Commun Chem 2022; 5:57. [PMID: 36697883 PMCID: PMC9814087 DOI: 10.1038/s42004-022-00671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 01/28/2023] Open
Abstract
Tropanes and related bicyclic alkaloids are highly attractive compounds possessing a broad biological activity. Here we report a mild and simple protocol for the synthesis of N-arylated 8-azabicyclo[3.2.1]octane and 9-azabicyclo[3.3.1]nonane derivatives. It provides these valuable bicyclic alkaloid skeletons in good yields and high levels of diastereoselectivity from simple and readily available starting materials using visible-light photoredox catalysis. These bicyclic aniline derivatives are hardly accessible via the classical Robinson tropane synthesis and represent a particularly attractive scaffold for medicinal chemistry. This unprecedented annulation process takes advantage of the unique reactivity of ethyl 2-(acetoxymethyl)acrylate as a 1,3-bis radical acceptor and of cyclic N,N-dialkylanilines as radical 1,3-bis radical donors. The success of this process relies on efficient electron transfer processes and highly selective deprotonation of aminium radical cations leading to the key α-amino radical intermediates.
Collapse
|
24
|
Kersting L, Kuhn L, Anokhin M, Schuster F, Häberli C, Sambyal S, Sampath Kumar HM, Keiser J, Alabugin I, Tsogoeva SB. Visible Light‐driven Metal‐free C–H Functionalization: Access to New Bioactive Tetrahydroisoquinoline‐Butenolide Hybrids via Domino Amine Oxidation/Vinylogous Mannich Reaction. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lena Kersting
- Friedrich-Alexander University Erlangen-Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Leah Kuhn
- Florida State University Department of Chemistry and Biochemistry UNITED STATES
| | - Maksim Anokhin
- Friedrich-Alexander University Erlangen-Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Florian Schuster
- Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Cécile Häberli
- University of Basel: Universitat Basel Swiss Tropical and Public Health Institute SWITZERLAND
| | - Shainy Sambyal
- IICT CSIR: Indian Institute of Chemical Technology Organic Synthesis and Process Chemistry Divison INDIA
| | - Halmuthur M. Sampath Kumar
- IICT CSIR: Indian Institute of Chemical Technology Organic Synthesis and Process Chemistry Division INDIA
| | - Jennifer Keiser
- University of Basel: Universitat Basel Swiss Tropical and Public Health Institute SWAZILAND
| | - Igor Alabugin
- Florida State University Department of Chemistry and Biochemistry UNITED STATES
| | - Svetlana B. Tsogoeva
- Institut für Organische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg Department Chemie und Pharmazie Henkestrasse 42 91054 Erlangen GERMANY
| |
Collapse
|
25
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
26
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
28
|
Ma N, Guo L, Shen ZJ, Qi D, Yang C, Xia W. Cascade Cyclization for the Synthesis of Indolo[2,1-α]isoquinoline Derivatives via Visible-Light-Induced Halogen-Atom-Transfer (XAT) and Hydrogen-Atom-Transfer (HAT). Org Biomol Chem 2022; 20:1731-1737. [DOI: 10.1039/d1ob02480a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition metal-free photoredox cascade cyclization is herein reported. In this protocol, sustainable visible light was used as energy source and organic light-emitting molecule Eosin Y served as efficient photocatalyst....
Collapse
|
29
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 514] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
Guo X, Shao BR, Jiang WF, Shi L. The Photocatalyst-Free Cross-Dehydrogenative Coupling Reaction Enabled by Visible-Light Direct Excitation of Substrate. J Org Chem 2021; 86:15743-15752. [PMID: 34694134 DOI: 10.1021/acs.joc.1c01775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new photocatalyst-free strategy for the cross-dehydrogenative C-C and C-P coupling reaction has been described. This protocol provides a concise method to synthesize various 1-substituted tetrahydroisoquinoline (THIQ) derivatives enabled by visible-light direct excitation of substrates without using any photocatalyst. Moreover, a wide substrate scope demonstrated good synthetic versatility and practicality.
Collapse
Affiliation(s)
- Xuan Guo
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bing-Ru Shao
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wen-Feng Jiang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lei Shi
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
31
|
Cao Z, Li J, Zhang G. Photo-induced copper-catalyzed sequential 1,n-HAT enabling the formation of cyclobutanols. Nat Commun 2021; 12:6404. [PMID: 34737326 PMCID: PMC8569169 DOI: 10.1038/s41467-021-26670-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
Cyclobutanols are privileged cyclic skeletons in natural products and synthetic building blocks. C(sp3)-H functionalization is a prolonged challenge in organic synthesis. The synthesis of cyclobutanols through double C(sp3)-H bond functionalization remains elusive. Here we report the efficient synthesis of cyclobutanols through intermolecular radical [3 + 1] cascade cyclization, involving the functionalization of two C - H bonds through sequential hydrogen atom transfer. The copper complex reduces the iodomethylsilyl alcohols efficiently under blue-light irradiation to initiate the tandem transformation. The mild reaction tolerates a broad range of functional groups and allows for the facile generation of elaborate polycyclic structures.
Collapse
Affiliation(s)
- Zhusong Cao
- College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jianye Li
- College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Guozhu Zhang
- College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
| |
Collapse
|
32
|
Dutta S, Li B, Rickertsen DRL, Valles DA, Seidel D. C-H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. SYNOPEN 2021; 5:173-228. [PMID: 34825124 PMCID: PMC8612105 DOI: 10.1055/s-0040-1706051] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This Graphical Review provides a concise overview of the manifold and mechanistically diverse methods that enable the functionalization of sp3 C-H bonds in amines and their derivatives.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Bowen Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dillon R L Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel A Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
33
|
Zhang HY, Chen J, Lu CC, Han YP, Zhang Y, Zhao J. Visible-Light-Induced C(sp 2)-C(sp 3) Cross-Dehydrogenative-Coupling Reaction of N-Heterocycles with N-Alkyl- N-methylanilines under Mild Conditions. J Org Chem 2021; 86:11723-11735. [PMID: 34369160 DOI: 10.1021/acs.joc.1c01207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disclosed herein is a cross-dehydrogenative-coupling reaction of N-heterocycles including 1,2,4-triazine-3,5(2H, 4H)-diones and quinoxaline-2(1H)-ones with N-methylanilines to form C(sp2)-C(sp3) under visible-light illumination and ambient air at room temperature. In this process, easily available Ru(bpy)3Cl2·6H2O serves as the catalyst, and air acts as the green oxidant. This method features high atom economy, environmental friendliness, and convenient operation and provides an efficient and practical access to aminomethyl-substituted N-heterocycles with extensive functional group compatibility in 40-86% yields.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jianjun Chen
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Cong-Cong Lu
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
34
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
35
|
Larionova NA, Ondozabal JM, Smith EG, Cambeiro XC. A Photocatalytic Regioselective Direct Hydroaminoalkylation of Aryl-Substituted Alkenes with Amines. Org Lett 2021; 23:5383-5388. [PMID: 34197124 DOI: 10.1021/acs.orglett.1c01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photocatalytic method for the α-selective hydroaminoalkylation of cinnamate esters has been developed. The reaction involves the regioselective addition of α-aminoalkyl radicals generated from aniline derivatives or aliphatic amines to the α-position of unsaturated esters. The scope of aromatic alkenes was extended to styrenes undergoing hydroaminoalkylation with anti-Markovnikov selectivity, which confirms the importance of the aromatic group at the β-position. Simple scale-up is demonstrated under continuous flow conditions, highlighting the practicality of the method.
Collapse
Affiliation(s)
- Natalia A Larionova
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Jun Miyatake Ondozabal
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Emily G Smith
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Xacobe C Cambeiro
- School of Science, University of Greenwich. Chatham Maritime, ME4 4TB, United Kingdom.,Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| |
Collapse
|
36
|
Chen Z, Zheng S, Wang Z, Liao Z, Yuan W. Electron Donor‐Acceptor Complex Enabled Photocyanation of Tertiary Amines with a Stable and User‐Friendly Cyanobenziodoxolone Reagent. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zimin Chen
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Songlin Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Zijie Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Zixuan Liao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Weiming Yuan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| |
Collapse
|
37
|
Chen H, Qiao P, Luo Y, Hu J, Gao Y. Cu‐Catalyzed Aerobic Oxidative Coupling of Tetrahydro‐β‐carbolines with Indoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Panpan Qiao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Yining Luo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jing Hu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
38
|
Dong C, Huang L, Guan Z, Huang C, He Y. Visible‐Light‐Mediated Aerobic Oxidative C(
sp
3
)−C(
sp
3
) Bond Cleavage of Morpholine Derivatives Using 4CzIPN as a Photocatalyst. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chun‐Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Lan‐Qian Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Chu‐Sheng Huang
- Guangxi Teachers Education University Nanning 530001 People's Republic of China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| |
Collapse
|
39
|
Comerford TA, Zysman-Colman E. Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thomas A. Comerford
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| |
Collapse
|
40
|
Ao NRM, Zhu XQ, Zhao CX, Gao YR, Wang YQ. Photocatalyzed Csp 3-Csp 3 cross-dehydrogenative coupling of N-Boc-tetrahydroisoquinolines with α,β-unsaturated ketones. Org Biomol Chem 2021; 19:4752-4759. [PMID: 33978053 DOI: 10.1039/d1ob00527h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel photocatalyzed cross-dehydrogenative coupling reaction of N-Boc-tetrahydroisoquinolines with α,β-unsaturated ketones has been developed. This research provides an easy access to a variety of C1-substituted tetrahydroisoquinolines, which can be further transformed into benzo[a]-quinolizine-2-ones, the skeletons of natural products with a wide range of biological activities. The load of the photocatalyst is low and the oxidant is inexpensive and less toxic.
Collapse
Affiliation(s)
- Na-Ri-Mei Ao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Xue-Qing Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Chun-Xin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Ya-Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| |
Collapse
|
41
|
Lin C, Li P, Wang L. Visible-light induced Cross-Dehydrogenative-Coupling (CDC) reactions of N-aryl tetrahydroisoquinolines under aerobic conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Filipović A, DŽambaski Z, Vasiljević-Radović D, BondŽić BP. Visible light promoted photoredox C(sp 3)-H bond functionalization of tetrahydroisoquinolines in flow. Org Biomol Chem 2021; 19:2668-2675. [PMID: 33666639 DOI: 10.1039/d0ob02582h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A merger of organocatalysis and visible light photoredox catalysis performed in flow allowed access to a wide range of functionalized N-aryl-substituted tetrahydroisoquinolines (THIQs) in a formal C-H oxidation/Mannich reaction. Strecker type functionalization and copper-catalyzed alkynylation of several N-aryl-substituted THIQs were also successfully performed in flow, giving valuable products with high efficiencies. The use of custom-made porous polymeric type microreactors proved to be crucial regarding the C-H oxidation step and overall reaction performance.
Collapse
Affiliation(s)
- Ana Filipović
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Republic of Serbia.
| | | | | | | |
Collapse
|
43
|
Abstract
The nature of the terminal oxidant in oxidation reactions is an important reaction variable that can profoundly impact the mechanism, efficiency, and practicality of a synthetic protocol. One might reasonably categorize catalytic oxidation reactions into either "oxygenase" type reactions, in which the oxidant serves as an atom- or group-transfer reagent, or "oxidase" type reactions, where the oxidant is involved in catalyst turnover but does not become structurally incorporated into the product. As the field of photoredox catalysis has matured over the past decade, many successful oxygenase-type photoreactions have been reported. The development of photocatalytic oxidase reactions, on the other hand, has been somewhat slower. This tutorial review presents selected examples of some of the key classes of terminal oxidants that have been used in the design of photoredox oxidase transformations, along with the mechanistic features and benefits of each.
Collapse
Affiliation(s)
- Nicholas L Reed
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
44
|
Kaur J, Shahin A, Barham JP. Photocatalyst-Free, Visible-Light-Mediated C(sp3)–H Arylation of Amides via a Solvent-Caged EDA Complex. Org Lett 2021; 23:2002-2006. [PMID: 33596084 DOI: 10.1021/acs.orglett.1c00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jaspreet Kaur
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
| | - Ahmed Shahin
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
- Chemistry Department, Faculty of Science, Benha University, 13518 Benha, Egypt
| | - Joshua P. Barham
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
| |
Collapse
|
45
|
Urban RD, Fischer TG, Charvat A, Wink K, Krafft B, Ohla S, Zeitler K, Abel B, Belder D. On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization. Anal Bioanal Chem 2021; 413:1561-1570. [PMID: 33479818 PMCID: PMC7921053 DOI: 10.1007/s00216-020-03115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light. This works both for non-polar solvents such as n-heptane and for water non-miscible solvents like chloroform. In a proof of concept study, this approach is applied to monitor a photooxidation of N-phenyl-1,2,3,4-tetrahydroisoquinoline. By using water as an infrared absorbing matrix, analytes, dissolved in non-polar solvents from reactions carried out on a microchip, can be desorbed and ionized for investigation by mass spectrometry.
Collapse
Affiliation(s)
- Raphael D Urban
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tillmann G Fischer
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Ales Charvat
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Konstantin Wink
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Benjamin Krafft
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Stefan Ohla
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Kirsten Zeitler
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
46
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
47
|
Zhuang X, Shi X, Zhu R, Sun B, Su W, Jin C. Photocatalytic intramolecular radical cyclization involved synergistic SET and HAT: synthesis of 3,3-difluoro-γ-lactams. Org Chem Front 2021. [DOI: 10.1039/d0qo01188f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mild and metal-free protocol for visible-light induced intramolecular radical cyclization of N-allyl(propargyl)-2-bromo-2,2-difluoro-N-arylacetamide has been developed.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Xiayue Shi
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Rui Zhu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - WeiKe Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
- College of Pharmaceutical Sciences
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|
48
|
Xia Q, Li Y, Cheng L, Liang X, Cao C, Dai P, Deng H, Zhang W, Wang Q. Electron Donor-Acceptor Complex-Initiated Photochemical Cyanation for the Preparation of α-Amino Nitriles. Org Lett 2020; 22:9638-9643. [PMID: 33285068 DOI: 10.1021/acs.orglett.0c03703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An electron donor-acceptor complex-initiated α-cyanation of tertiary amines has been described. The reaction protocol provides a novel method to synthesize various α-amino nitriles under mild conditions. The reaction can proceed smoothly without the presence of photocatalysts and transition metal catalysts, and either oxidants are unnecessary or O2 is the only oxidant. The practicality of this method is showcased not only by the late-stage functionalization of natural alkaloid derivatives and pharmaceutical intermediate, but also by the applicability of a stop-flow microtubing reactor.
Collapse
Affiliation(s)
- Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Cheng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenlin Cao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongping Deng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Mori-Quiroz LM, Londhe SS, Clift MD. Formal α-Allylation of Primary Amines by a Dearomative, Palladium-Catalyzed Umpolung Allylation of N-(Aryloxy)imines. J Org Chem 2020; 85:14827-14846. [PMID: 33152244 DOI: 10.1021/acs.joc.0c01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-(Aryloxy)imines, readily accessible by condensation/tautomerization of (pseudo)benzylic primary amines and 2,6-di-tert-butyl-1,4-benzoquinone, undergo efficient allylation to afford a wide range of homoallylic primary amines following hydrolytic workup. Deprotonation of N-(aryloxy)imines generates a delocalized 2-azaallyl anion-type nucleophile that engages in dearomative C-C bond-forming reactions with allylpalladium(II) electrophiles generated from allylic tert-butyl carbonates. This reactivity umpolung enables the formal α-allylation of (pseudo)benzylic primary amines. Mechanistic studies reveal that the apparent regioselectivity of the desired bond-forming event is a convergent process that is initiated by unselective allylation of N-(aryloxy)imines to give several regioisomeric species, which subsequently rearrange via stepwise [1,3]- or concerted [3,3]-sigmatropic shifts, ultimately converging to provide the desired regioisomer of the amine products.
Collapse
Affiliation(s)
- Luis M Mori-Quiroz
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Shrikant S Londhe
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Michael D Clift
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
50
|
Rostoll‐Berenguer J, Blay G, Pedro JR, Vila C. Asymmetric Oxidative Mannich Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jaume Rostoll‐Berenguer
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - José R. Pedro
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Carlos Vila
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| |
Collapse
|