1
|
Ullah Q, Ali Z, Rashid U, Ali G, Ahmad N, Khan R, Ullah S, Ayaz M, Murthy HCA. Involvement of the Opioidergic Mechanism in the Analgesic Potential of a Novel Indazolone Derivative: Efficacy in the Management of Pain, Neuropathy, and Inflammation Using In Vivo and In Silico Approaches. ACS OMEGA 2023; 8:22809-22819. [PMID: 37396203 PMCID: PMC10308391 DOI: 10.1021/acsomega.3c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023]
Abstract
Indazolones possess interesting pharmacological activities. The search for indazole and indazolone-containing nuclei as drugs is an important research area of medicinal chemistry. The current work aims to evaluate a novel indazolone derivative against in vivo and in silico targets of pain, neuropathy, and inflammation. An indazolone derivative (ID) was synthesized and characterized using advanced spectroscopic techniques. Well-established animal models of abdominal constriction, hot plate, tail immersion, carrageenan paw edema, and Brewer's yeast-induced pyrexia were employed for evaluating the potential of the ID at different doses (20-60 mg kg-1). Nonselective GABA antagonists, opioid antagonist naloxone (NLX) and pentylenetetrazole (PTZ), were employed to assess the potential role of GABAergic and opioidergic processes. The antineuropathic potential of the drug was evaluated using a vincristine-induced neuropathic pain model. In silico studies were performed to assess any possible interactions of the ID with pain target sites like cyclooxygenases (COX-I/II), GABAA, and opioid receptors. This study revealed that the selected ID (doses of 20-60 mg kg-1) efficiently hampered chemically and thermally induced nociceptive responses, producing significant anti-inflammatory and antipyretic effects. These effects produced by the ID were dose-dependent (i.e., 20-60 mg kg-1 and p range of 0.001-0.01) and significant in comparison to standards (p < 0.001). Antagonistic studies with NLX (1.0 mg kg-1) and PTZ (15.0 mg kg-1) revealed the involvement of the opioidergic mechanism rather than the GABAergic mechanism. The ID showed promising anti-static allodynia effects as well. In silico studies revealed preferential binding interactions of the ID with cyclooxygenases (COX-I/II), GABAA, and opioid receptors. According to the results of the current investigation, the ID may serve in the future as a therapeutic agent for the treatment of pyrexia, chemotherapy-induced neuropathic pain, and nociceptive inflammatory pain.
Collapse
Affiliation(s)
- Qarib Ullah
- Department of Chemistry, Hazara University, Mansehra 21310, Pakistan
| | - Zarshad Ali
- Department of Chemistry, Hazara University, Mansehra 21310, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad-Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Nisar Ahmad
- School of Pharmacy, Institute of Health Sciences Mardan, Mardan, KPK 23200, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara, KP 18000, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Oromia 1888, Ethiopia
- Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
2
|
Raut SV, Tidke AD, Dhotre BK, Pathan MA. Synthesis of 3-[5-(Substituted Phenyl)-[1,3,4] Oxadiazol-2-yl]-1 H-Indazole. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1665552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. V. Raut
- Department of Chemistry, Maulana Azad College of Arts, Science and Commerce, Mantha, Dist Jalna, Maharashtra, India
| | - A. D. Tidke
- Department of Chemistry, Maulana Azad College of Arts, Science and Commerce, Mantha, Dist Jalna, Maharashtra, India
| | - B. K. Dhotre
- Department of Chemistry, Swami Vivekanand Sr. College, Mantha, Maharashtra, India
| | - Mohd Arif Pathan
- Department of Chemistry, Maulana Azad College of Arts, Science and Commerce, Mantha, Dist Jalna, Maharashtra, India
| |
Collapse
|
3
|
Raut S, Tidke A, Dhotre B, Arif PM. Different Strategies to the Synthesis of Indazole and its Derivatives: A Review. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190430160324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this review, works of various researchers working on the synthesis of indazole and their related compound are cited. The review comprises of methodologies for the synthesis of 1H and 2H indazole derivatives, along with some pharmacological activities. In this review, research papers published in various peer-reviewed journals between the year 2000 and year 2017 are enlisted in alphabetical order.
Collapse
Affiliation(s)
- Santosh Raut
- Maulana Azad College and Research Center, Rouza Bagh, Aurangabad (M.S.), India
| | - Atul Tidke
- Maulana Azad College and Research Center, Rouza Bagh, Aurangabad (M.S.), India
| | | | - Pathan Mohd Arif
- Maulana Azad College and Research Center, Rouza Bagh, Aurangabad (M.S.), India
| |
Collapse
|
4
|
Ghosh P, Mondal S, Hajra A. tert-Butyl Hydroperoxide-Mediated Oxo-Sulfonylation of 2H-Indazoles with Sulfinic Acid toward Indazol-3(2H)-ones. Org Lett 2020; 22:1086-1090. [DOI: 10.1021/acs.orglett.9b04617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
5
|
Nie HJ, Guo AD, Lin HX, Chen XH. Rapid and halide compatible synthesis of 2- N-substituted indazolone derivatives via photochemical cyclization in aqueous media. RSC Adv 2019; 9:13249-13253. [PMID: 35520758 PMCID: PMC9063774 DOI: 10.1039/c9ra02466b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
A straightforward protocol for the rapid construction of privileged indazolone architectures suggests a new avenue of great importance to medicinal chemistry.
Collapse
Affiliation(s)
- Hui-Jun Nie
- Department of Chemistry
- Innovative Drug Research Center
- College of Sciences Shanghai University
- Shanghai
- China
| | - An-Di Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry Laboratory
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Hai-Xia Lin
- Department of Chemistry
- Innovative Drug Research Center
- College of Sciences Shanghai University
- Shanghai
- China
| | - Xiao-Hua Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry Laboratory
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
6
|
Singh S, Saquib M, Singh SB, Singh M, Singh J. Catalyst free, multicomponent-tandem synthesis of spirooxindole-indazolones and spirooxindole-pyrazolines: a glycerol mediated green approach. RSC Adv 2015. [DOI: 10.1039/c5ra02794b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of a versatile new one pot, catalyst free, multicomponent-tandem strategy for assembly of spirooxindole-indazolones and spirooxindole-pyrazolines is described.
Collapse
Affiliation(s)
- Swastika Singh
- Environmentally Benign Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad-211002
- India
| | - Mohammad Saquib
- Environmentally Benign Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad-211002
- India
| | | | - Mandavi Singh
- Environmentally Benign Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad-211002
- India
| | - Jagdamba Singh
- Environmentally Benign Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad-211002
- India
| |
Collapse
|
7
|
Bharathiraja G, Sengoden M, Kannan M, Punniyamurthy T. Expedient synthesis of tetrasubstituted pyrroles via a copper-catalyzed cascade inter-/intramolecular cyclization of 1,3-enynes carry a nitro group with amines. Org Biomol Chem 2015; 13:2786-92. [DOI: 10.1039/c4ob02508c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various tetrasubstituted pyrroles/pyrazoles have been prepared from nitro-substituted 1,3-enynes with aromatic amines/hydrazinesviaa copper-catalyzed cascade aza-Michael addition, cyclization and aromatization.
Collapse
Affiliation(s)
- Ganesan Bharathiraja
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Mani Sengoden
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Masanam Kannan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | |
Collapse
|
8
|
Gaikwad DD, Chapolikar AD, Devkate CG, Warad KD, Tayade AP, Pawar RP, Domb AJ. Synthesis of indazole motifs and their medicinal importance: an overview. Eur J Med Chem 2014; 90:707-31. [PMID: 25506810 DOI: 10.1016/j.ejmech.2014.11.029] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 11/03/2014] [Accepted: 11/15/2014] [Indexed: 01/16/2023]
Abstract
Indazoles is an important class of heterocyclic compounds having a wide range of biological and pharmaceutical applications. There is enormous potential in the synthesis of novel heterocyclic systems to be used as building blocks for the next generation of pharmaceuticals as anti-bacterial, anti-depressant and anti-inflammatory. Fused aromatic 1H and 2H-indazoles are well recognized for anti-hypertensive and anti-cancer properties. The present review focuses on novel routes of their synthesis and various biological activities.
Collapse
Affiliation(s)
- Digambar D Gaikwad
- Dept. of Chemistry, Govt. College of Arts & Science, Aurangabad 431001, India.
| | | | | | - Khandu D Warad
- Dept. of Chemistry, Govt. College of Arts & Science, Aurangabad 431001, India
| | - Amit P Tayade
- Dept. of Chemistry, Govt. College of Arts & Science, Aurangabad 431001, India
| | | | - Abraham J Domb
- School of Pharmacy, Department of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|