1
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
2
|
Pyridoneimine-catalyzed anomeric aqueous oxa-Michael additions of native mono- and disaccharides. Carbohydr Res 2022; 520:108610. [PMID: 35863121 DOI: 10.1016/j.carres.2022.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
A pyridoneimine-catalyzed oxa-Michael addition of protecting groups-free, native mono- and disaccharides with Michael acceptors in aq. solution is reported. Several mono- and disaccharides are reacted with acceptors, namely, methylvinyl ketone, acrylonitrile and tert-butyl acrylate in aq. solution, the addition catalyzed by n-pentylpyridone imine. The addition occurs site-selectively at the anomeric lactol and the remaining hydroxy functionalities are un-affected. The resulting keto-glycopyranoside products are explored in aldol, allylation and oxime product formation, occurring at either α-methyl moiety or at the keto-moiety, with appropriate synthons. In another direction, the keto-glycopyranoside is functionalized further with amino acids through reductive amination in aq. methanol solution. Formation of hemiacetal anion occurs in the presence of pyridoneimine in aq. Solution, enabling subsequent addition to occur with acceptors. Facile reductive amination of the resulting keto-glycoside provides an avenue for conjugations with amino acids in the present work.
Collapse
|
3
|
Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Md. Firoj Hossain
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
4
|
Dey K, Jayaraman N. Anomeric alkylations and acylations of unprotected mono- and disaccharides mediated by pyridoneimine in aqueous solutions. Chem Commun (Camb) 2022; 58:2224-2227. [PMID: 35072677 DOI: 10.1039/d1cc07056h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A site-specific deprotonation followed by alkylations and acylations of sugar hemiacetals to the corresponding alkyl glycosides and acylated sugars in aqueous solutions is disclosed herein. Pyridoneimine as a new base is developed to mediate the deprotonation of readily available sugar hemiacetals and further reactions with alkylation and acylation agents.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
5
|
Traboni S, Bedini E, Silipo A, Vessella G, Iadonisi A. Solvent‐Free Glycosylation from per‐
O
‐Acylated Donors Catalyzed by Methanesulfonic Acid. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Giulia Vessella
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
6
|
Zhang J, Wei J, Ding WY, Li S, Xiang SH, Tan B. Asymmetric Pnictogen-Bonding Catalysis: Transfer Hydrogenation by a Chiral Antimony(V) Cation/Anion Pair. J Am Chem Soc 2021; 143:6382-6387. [PMID: 33904724 DOI: 10.1021/jacs.1c02808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pnictogen-bonding catalysis based on σ-hole interactions has recently attracted the attention of synthetic chemists. As a proof-of-concept for asymmetric pnictogen-bonding catalysis, we report herein an enantioselective transfer hydrogenation of benzoxazines catalyzed by a novel chiral antimony cation/anion pair. The chiral pnictogen catalyst library could be rapidly accessed from triarylstibine with readily available mandelic acid analogues, and the catalyst displays remarkable efficiency and enantiocontrol potency even at 0.05 mol % loading. Moreover, the properties of the catalyst and the mechanistic insights have been investigated by nonlinear effect studies, 1H NMR, LC-MS, and control experiments.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.,Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Bizzarri BM, Fanelli A, Kapralov M, Krasavin E, Saladino R. Meteorite-catalyzed intermolecular trans-glycosylation produces nucleosides under proton beam irradiation. RSC Adv 2021; 11:19258-19264. [PMID: 35478633 PMCID: PMC9033569 DOI: 10.1039/d1ra02379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Di-glycosylated adenines act as glycosyl donors in the intermolecular trans-glycosylation of pyrimidine nucleobases under proton beam irradiation conditions. Formamide and chondrite meteorite NWA 1465 increased the yield and the selectivity of the reaction. The glycosyl transfer process was highly regioselective in yielding canonical N1-pyrimidine nucleosides, the natural β-anomers prevailing in the presence of formamide and NWA 1465. These data highlight the possible role of intermolecular trans-glycosylation in the prebiotic formation of purine and pyrimidine nucleosides, avoiding the occurrence of independent synthetic pathways. Di-glycosylated adenines act as glycosyl donors in the intermolecular trans-glycosylation of pyrimidine nucleobases under proton beam irradiation conditions.![]()
Collapse
Affiliation(s)
| | - Angelica Fanelli
- Ecological and Biological Sciences Department (DEB)
- University of Tuscia
- Viterbo
- Italy
| | - Michail Kapralov
- Joint Institute for Nuclear Research
- JINR's Laboratory of Radiation Biology
- Russia
- Dubna State University
- Ulitsa Universitetskaya
| | - Eugene Krasavin
- Joint Institute for Nuclear Research
- JINR's Laboratory of Radiation Biology
- Russia
- Dubna State University
- Ulitsa Universitetskaya
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB)
- University of Tuscia
- Viterbo
- Italy
| |
Collapse
|
8
|
Pal KB, Guo A, Das M, Lee J, Báti G, Yip BRP, Loh TP, Liu XW. Iridium-promoted deoxyglycoside synthesis: stereoselectivity and mechanistic insight. Chem Sci 2020; 12:2209-2216. [PMID: 34163986 PMCID: PMC8179265 DOI: 10.1039/d0sc06529c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herein, we devised a method for stereoselective O-glycosylation using an Ir(i)-catalyst which enables both hydroalkoxylation and nucleophilic substitution of glycals with varying substituents at the C3 position. In this transformation, 2-deoxy-α-O-glycosides were acquired when glycals equipped with a notoriously poor leaving group at C3 were used; in contrast 2,3-unsaturated-α-O-glycosides were produced from glycals that bear a good leaving group at C3. Mechanistic studies indicate that both reactions proceed via the directing mechanism, through which the acceptor coordinates to the Ir(i) metal in the α-face-coordinated Ir(i)-glycal π-complex and then attacks the glycal that contains the O-glycosidic bond in a syn-addition manner. This protocol exhibits good functional group tolerance and is exemplified with the preparation of a library of oligosaccharides in moderate to high yields and with excellent stereoselectivities. Ir(i)-catalyzed α-selective O-glycosylation of glycals provided an access to both 2-deoxyglycosides and 2,3-unsaturated glycosides with a broad substrate scope. The underlying rationale of α-selectivity has been illustrated by the DFT study.![]()
Collapse
Affiliation(s)
- Kumar Bhaskar Pal
- Institute of Advanced Synthesis, Northwestern Polytechnical University Xi'an 710072 China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Jiande Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 .,Nanyang Environment and Water Research Institute, Nanyang Technological University 1 Cleantech Loop Singapore 637141
| | - Gábor Báti
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Benjamin Rui Peng Yip
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, Northwestern Polytechnical University Xi'an 710072 China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 .,Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang Jiangsu 215400 China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| |
Collapse
|
9
|
Shiozaki Y, Sakurai S, Sakamoto R, Matsumoto A, Maruoka K. Iron-Catalyzed Radical Cleavage/C-C Bond Formation of Acetal-Derived Alkylsilyl Peroxides. Chem Asian J 2020; 15:573-576. [PMID: 32017369 DOI: 10.1002/asia.201901695] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/15/2020] [Indexed: 12/12/2022]
Abstract
A novel radical-based approach for the iron-catalyzed selective cleavage of acetal-derived alkylsilyl peroxides, followed by the formation of a carbon-carbon bond is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the acetal moiety and the carbon electrophile. Mechanistic studies suggest that the present reaction proceeds through a free-radical process involving carbon radicals generated by the homolytic cleavage of a carbon-carbon bond within the acetal moiety. A synthetic application of this method to sugar-derived alkylsilyl peroxides is also described.
Collapse
Affiliation(s)
- Yoko Shiozaki
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Shunya Sakurai
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Ryu Sakamoto
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto, 606-8501, Japan
| | - Keiji Maruoka
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto, 606-8501, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Ghosh T, Mukherji A, Srivastava HK, Kancharla PK. Secondary amine salt catalyzed controlled activation of 2-deoxy sugar lactols towards alpha-selective dehydrative glycosylation. Org Biomol Chem 2019; 16:2870-2875. [PMID: 29633773 DOI: 10.1039/c8ob00423d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new organocatalytic glycosylation method exploiting the lactol functionality has been disclosed. The catalytic generation of glycosyl oxacarbenium ions from lactols under forcible conditions via weakly Brønsted-acidic, readily available secondary amine salts affects the diastereoselective glycosylation of 2-deoxypyranoses and furanoses. This operationally simple iminium catalyzed activation of 2-deoxy hemi-acetals is a potential alternative to the existing cumbersome methods that need specialized handling. The mechanisms for this unique transformation and kinetic/thermodynamic effects have been discussed based on both experimental evidence and theoretical studies.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | | | | | | |
Collapse
|
11
|
Synthesis of C 3 -Neoglycosides of digoxigenin and their anticancer activities. Eur J Med Chem 2018; 145:252-262. [DOI: 10.1016/j.ejmech.2017.12.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/04/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
|
12
|
Downey AM, Hocek M. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center. Beilstein J Org Chem 2017; 13:1239-1279. [PMID: 28694870 PMCID: PMC5496566 DOI: 10.3762/bjoc.13.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosylation is an immensely important biological process and one that is highly controlled and very efficient in nature. However, in a chemical laboratory the process is much more challenging and usually requires the extensive use of protecting groups to squelch reactivity at undesired reactive moieties. Nonetheless, by taking advantage of the differential reactivity of the anomeric center, a selective activation at this position is possible. As a result, protecting group-free strategies to effect glycosylations are available thanks to the tremendous efforts of many research groups. In this review, we showcase the methods available for the selective activation of the anomeric center on the glycosyl donor and the mechanisms by which the glycosylation reactions take place to illustrate the power these techniques.
Collapse
Affiliation(s)
- A Michael Downey
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, 12843 Prague 2, Czech Republic
| |
Collapse
|
13
|
Li X, Zhu J. Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600484] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohua Li
- Department of Natural Sciences; University of Michigan-Dearborn; 4901 Evergreen Road 48128 Dearborn Michigan USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering; The University of Toledo; 2801 West Bancroft Street 43606 Toledo Ohio USA
| |
Collapse
|
14
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
15
|
|
16
|
Chandra S, Yadav RN, Paniagua A, Banik BK. Indium salts-catalyzed O and S-glycosylation of bromo sugar with benzyl glycolate: an unprecedented hydrogenolysis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Thombal RS, Jadhav VH. Sulfonated graphene oxide as highly efficient catalyst for glycosylation. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2015.1120874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Thorsheim K, Siegbahn A, Johnsson RE, Stålbrand H, Manner S, Widmalm G, Ellervik U. Chemistry of xylopyranosides. Carbohydr Res 2015; 418:65-88. [PMID: 26580709 DOI: 10.1016/j.carres.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
Xylose is one of the few monosaccharidic building blocks that are used by mammalian cells. In comparison with other monosaccharides, xylose is rather unusual and, so far, only found in two different mammalian structures, i.e. in the Notch receptor and as the linker between protein and glycosaminoglycan (GAG) chains in proteoglycans. Interestingly, simple soluble xylopyranosides can not only initiate the biosynthesis of soluble GAG chains but also function as inhibitors of important enzymes in the biosynthesis of proteoglycans. Furthermore, xylose is a major constituent of hemicellulosic xylans and thus one of the most abundant carbohydrates on Earth. Altogether, this has spurred a strong interest in xylose chemistry. The scope of this review is to describe synthesis of xylopyranosyl donors, as well as protective group chemistry, modifications, and conformational analysis of xylose.
Collapse
Affiliation(s)
- Karin Thorsheim
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anna Siegbahn
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Richard E Johnsson
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Centre for Molecular Protein Science, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
19
|
Downey AM, Richter C, Pohl R, Mahrwald R, Hocek M. Direct One-Pot Synthesis of Nucleosides from Unprotected or 5-O-Monoprotected d-Ribose. Org Lett 2015; 17:4604-7. [DOI: 10.1021/acs.orglett.5b02332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- A. Michael Downey
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nám. 2, Prague-6 16610, Czech Republic
| | - Celin Richter
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor
Strasse 2, Berlin 12489, Germany
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nám. 2, Prague-6 16610, Czech Republic
| | - Rainer Mahrwald
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor
Strasse 2, Berlin 12489, Germany
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nám. 2, Prague-6 16610, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|
20
|
Polanki IK, Kurma SH, Bhattacharya AK. Direct Glycosylation of Unprotected and Unactivated Sugars Using Bismuth Nitrate Pentahydrate. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1028585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Voigt B, Linke M, Mahrwald R. Multicomponent Cascade Reactions of Unprotected Carbohydrates and Amino Acids. Org Lett 2015; 17:2606-9. [DOI: 10.1021/acs.orglett.5b00887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Benjamin Voigt
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Linke
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Rainer Mahrwald
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
22
|
Matviitsuk A, Berndt F, Mahrwald R. Four into One: Organocatalyzed Stereoselective Conjugate Addition of Unprotected and Unactivated Carbohydrates. Org Lett 2014; 16:5474-7. [DOI: 10.1021/ol5027443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anastassia Matviitsuk
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Falko Berndt
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Rainer Mahrwald
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
23
|
Zhang F, Liang C, Wu X, Li H. A Nanospherical Ordered Mesoporous Lewis Acid Polymer for the Direct Glycosylation of Unprotected and Unactivated Sugars in Water. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Zhang F, Liang C, Wu X, Li H. A nanospherical ordered mesoporous Lewis acid polymer for the direct glycosylation of unprotected and unactivated sugars in water. Angew Chem Int Ed Engl 2014; 53:8498-502. [PMID: 25055738 DOI: 10.1002/anie.201404353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/21/2014] [Indexed: 12/28/2022]
Abstract
The design of robust solid catalysts which can selectively synthesize highly functionalized carbohydrate derivatives from unprotected and unactivated simple sugars in water is an outstanding challenge. Herein we describe the preparation of a novel nanospherical ordered mesoporous Lewis acid polymer (Sc(OTf)2-NSMP) by functionalizing the mesoporous phenol-formaldehyde polymer framework with scandium triflate groups. In the C-glycosylation reaction between D-glucose and dimedone with the Sc(OTf)2-NSMP catalyst, the conversion was 99% and the yield of xanthone-C-glucoside reached 92% after 2 days, which exceeded the previous best results. It was shown that other xanthone glycosides can be obtained from various sugars with moderate to good yields. Furthermore, the catalyst can be easily recovered and reused at least seven times without loss of catalytic activity.
Collapse
Affiliation(s)
- Fang Zhang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 (China).
| | | | | | | |
Collapse
|
25
|
Schmalisch S, Mahrwald R. Organocatalyzed Direct Glycosylation of Unprotected and Unactivated Carbohydrates. Org Lett 2013; 15:5854-7. [DOI: 10.1021/ol402914v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastian Schmalisch
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Rainer Mahrwald
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| |
Collapse
|
26
|
Organocatalyzed Knoevenagel-addition—simple access to carbon chain-elongated branched carbohydrates. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Abstract
Having access to mild and operationally simple techniques for attaining carbohydrate targets will be necessary to facilitate advancement in biological, medicinal, and pharmacological research. Even with the abundance of elegant reports for generating glycosidic linkages, stereoselective construction of α- and β-oligosaccharides and glycoconjugates is by no means trivial. In an era where expanded awareness of the impact we are having on the environment drives the state-of-the-art, synthetic chemists are tasked with developing cleaner and more efficient reactions for achieving their transformations. This movement imparts the value that prevention of waste is always superior to its treatment or cleanup. This review will highlight recent advancement in this regard by examining strategies that employ transition metal catalysis in the synthesis of oligosaccharides and glycoconjugates. These methods are mild and effective for constructing glycosidic bonds with reduced levels of waste through utilization of sub-stoichiometric amounts of transition metals to promote the glycosylation.
Collapse
Affiliation(s)
- Matthew J. McKay
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hien M. Nguyen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
28
|
Affiliation(s)
- Xiaohua Li
- a Department of Chemistry and School for Green Chemistry and Engineering , University of Toledo , Toledo , OH , 43606 , USA
| | - Jianglong Zhu
- a Department of Chemistry and School for Green Chemistry and Engineering , University of Toledo , Toledo , OH , 43606 , USA
| |
Collapse
|
29
|
Voigt B, Scheffler U, Mahrwald R. Stereoselective amine-catalyzed carbohydrate chain elongation. Chem Commun (Camb) 2012; 48:5304-6. [PMID: 22510673 DOI: 10.1039/c2cc31541f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldol additions of unprotected carbohydrates to 1.3-dicarbonyl compounds have been described. This transformation is based on a dual activation by tertiary amines and 2-hydroxypyridine.
Collapse
Affiliation(s)
- Benjamin Voigt
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | | | | |
Collapse
|