1
|
Dai Y, Ostendorff D, Li SM. Divergent Metabolism of Cyclo-l-Trp-l-Leu in Streptomyces albofaciens by Hydroxylation and Nucleobase Transfer with Two Cytochrome P450 Enzymes. JOURNAL OF NATURAL PRODUCTS 2024; 87:2716-2723. [PMID: 39653608 DOI: 10.1021/acs.jnatprod.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A three-gene salb cluster from Streptomyces albofaciens was proven to be responsible for the formation of cyclo-l-Trp-l-Leu (cWL) derivatives. An Escherichia coli strain harboring the cyclodipeptide synthase (CDPS) gene salbA produced cWL. Expression of the whole cluster or genes of various combinations in Streptomyces coelicolor revealed different metabolites of cWL by two cytochrome P450 enzymes. Isolation and structure elucidation proved the conversion of cWL to guatrypleumycine A by nucleobase transfer with SalbB and to cyclo(trans-10-hydroxy-l-Trp-l-Leu) by hydroxylation with SalbC. Incubation with 15NH4Cl supported the incorporation of guanine in guatrypleumycine A and an X-ray crystallographic study confirmed the stereospecific hydroxylation at C-10 of the tryptophanyl residue. Cultivation of the salbB or salbC expression strains with different substrates further proved the divergent metabolisms of cWL. To the best of our knowledge, SalbC is the first report of the P450 enzyme from CDPS-associated pathways to catalyze β-hydroxylation at the amino acid side chain.
Collapse
Affiliation(s)
- Yu Dai
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Daniel Ostendorff
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| |
Collapse
|
2
|
Su L, Huber EM, Westphalen M, Gellner J, Bode E, Köbel T, Grün P, Alanjary MM, Glatter T, Cirnski K, Müller R, Schindler D, Groll M, Bode HB. Isofunctional but Structurally Different Methyltransferases for Dithiolopyrrolone Diversification. Angew Chem Int Ed Engl 2024; 63:e202410799. [PMID: 39185606 DOI: 10.1002/anie.202410799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Dithiolopyrrolone (DTP) natural products are produced by several different bacteria and have potent antibacterial, antifungal and anticancer activities. While the amide of their DTP core can be methylated to fine-tune bioactivity, the enzyme responsible for the amide N-methylation has remained elusive in most taxa. Here, we identified the amide methyltransferase XrdM that is responsible for xenorhabdin (XRD) methylation in Xenorhabdus doucetiae but encoded outside of the XRD gene cluster. XrdM turned out to be isofunctional with the recently reported methyltransferase DtpM, that is involved in the biosynthesis of the DTP thiolutin, although its X-ray structure is unrelated to that of DtpM. To investigate the structural basis for ligand binding in both enzymes, we used X-ray crystallography, modeling, site-directed mutagenesis, and kinetic activity assays. Our study expands the limited knowledge of post-non-ribosomal peptide synthetase (NRPS) amide methylation in DTP biosynthesis and reveals an example of convergent evolution of two structurally completely different enzymes for the same reaction in different organisms.
Collapse
Affiliation(s)
| | - Eva M Huber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, 85748, Garching, Germany
| | - Margaretha Westphalen
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jonas Gellner
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, 85748, Garching, Germany
| | - Edna Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tania Köbel
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Max Planck Biofoundry MaxGENESYS, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Peter Grün
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Mohammad M Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, PB 6708, Netherlands
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Katarina Cirnski
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centrefor Infection Research(HZI), Saarland University, 66123, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centrefor Infection Research(HZI), Saarland University, 66123, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover, 38124, Braunschweig, Germany
| | - Daniel Schindler
- Max Planck Biofoundry MaxGENESYS, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Michael Groll
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, 85748, Garching, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Philipps University of Marburg, 35043, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am, Main, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, 35043, Marburg, Germany
| |
Collapse
|
3
|
Stierle SA, Harken L, Li SM. P450 in C-C coupling of cyclodipeptides with nucleobases. Methods Enzymol 2023; 693:231-265. [PMID: 37977732 DOI: 10.1016/bs.mie.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bacterial cytochrome P450 enzymes catalyze various and often intriguing tailoring reactions during the biosynthesis of natural products. In contrast to the majority of membrane-bound P450 enzymes from eukaryotes, bacterial P450 enzymes are soluble proteins and therefore represent excellent candidates for in vitro biochemical investigations. In particular, cyclodipeptide synthase-associated cytochrome P450 enzymes have recently gained attention due to the broad spectrum of reactions they catalyze, i.e. hydroxylation, aromatization, intramolecular C-C bond formation, dimerization, and nucleobase addition. The latter reaction has been described during the biosynthesis of guanitrypmycins, guatrypmethines and guatyromycines in various Streptomyces strains, where the nucleobases guanine and hypoxanthine are coupled to cyclodipeptides via C-C, C-N, and C-O bonds. In this chapter, we provide an overview of cytochrome P450 enzymes involved in the C-C coupling of cyclodipeptides with nucleobases and describe the protocols used for the successful characterization of these enzymes in our laboratory. The procedure includes cloning of the respective genes into expression vectors and subsequent overproduction of the corresponding proteins in E. coli as well as heterologous expression in Streptomyces. We describe the purification and in vitro biochemical characterization of the enzymes and protocols to isolate the produced compounds for structure elucidation.
Collapse
Affiliation(s)
- Sina A Stierle
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Stierle SA, Harken L, Li SM. Production of Diketopiperazine Derivatives by Pathway Engineering with Different Cyclodipeptide Synthases from Various Streptomyces Strains. ACS Synth Biol 2023; 12:1804-1812. [PMID: 37183364 DOI: 10.1021/acssynbio.3c00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyclodipeptides from fungi and bacteria are often modified by different tailoring enzymes. They display various biological and pharmacological activities, and some derivatives are used as drugs. In a previous study, we elucidated the function of the silent guatrypmethine gene cluster from Streptomyces cinnamoneus containing a cyclodipeptide synthase (CDPS) core gene gtmA and four genes gtmB-gtmE for tailoring enzymes. The latter are used in this study for the design of modified cyclodipeptides by genetic engineering. Addition of six different cyclodipeptides to the Streptomyces albus transformant harboring gtmB-gtmE led to the detection of different pathway products. Coexpression of five CDPS genes from four Streptomyces strains with gtmB-gtmE resulted in the formation of diketopiperazine derivatives, differing in their modification stages. Our results demonstrate the potential of rational gene combination to increase structural diversity.
Collapse
Affiliation(s)
- Sina A Stierle
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| |
Collapse
|
5
|
Liu J, Yang Y, Xie X, Li SM. A Streptomyces Cytochrome P450 Enzyme Catalyzes Regiospecific C2-Guaninylation for the Synthesis of Diverse Guanitrypmycin Analogs. JOURNAL OF NATURAL PRODUCTS 2023; 86:94-102. [PMID: 36599087 DOI: 10.1021/acs.jnatprod.2c00787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heterologous expression of a cdps-p450 locus from Streptomyces sp. NRRL S-1521 led to the identification of guanitrypmycin D1, a new guaninylated diketopiperazine. The cytochrome P450 GutD1521 catalyzed the regiospecific transfer of guanine to C-2 of the indole ring of cyclo-(l-Trp-l-Tyr) via a C-C linkage and represents a new chemical transformation within this enzyme class. Furthermore, GutD1521 efficiently accepts several other tryptophan-containing cyclodipeptides or derivatives for regiospecific coupling with guanine, thus generating different guanitrypmycin analogs.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
6
|
Nielsen JB, Gren T, Mohite OS, Jørgensen TS, Klitgaard AK, Mourched AS, Blin K, Oves-Costales D, Genilloud O, Larsen TO, Tanner D, Weber T, Gotfredsen CH, Charusanti P. Identification of the Biosynthetic Gene Cluster for Pyracrimycin A, an Antibiotic Produced by Streptomyces sp. ACS Chem Biol 2022; 17:2411-2417. [PMID: 36040247 DOI: 10.1021/acschembio.2c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Actinomycetes make a wealth of complex, structurally diverse natural products, and a key challenge is to link them to their biosynthetic gene clusters and delineate the reactions catalyzed by each of the enzymes. Here, we report the biosynthetic gene cluster for pyracrimycin A, a set of nine genes that includes a core nonribosomal peptide synthase (pymB) that utilizes serine and proline as precursors and a monooxygenase (pymC) that catalyzes Baeyer-Villiger oxidation. The cluster is similar to the one for brabantamide A; however, pyracrimycin A biosynthesis differs in that feeding experiments with isotope-labeled serine and proline suggest that a ring opening reaction takes place and a carbon is lost from serine downstream of the oxidation reaction. Based on these data, we propose a full biosynthesis pathway for pyracrimycin A.
Collapse
Affiliation(s)
- Julie B Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Andreas K Klitgaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Anna-Sophie Mourched
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - David Tanner
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Linardi D, She W, Zhang Q, Yu Y, Qian PY, Lam H. Proteomining-Based Elucidation of Natural Product Biosynthetic Pathways in Streptomyces. Front Microbiol 2022; 13:913756. [PMID: 35898901 PMCID: PMC9309509 DOI: 10.3389/fmicb.2022.913756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
The genus Streptomyces is known to harbor numerous biosynthetic gene clusters (BGCs) of potential utility in synthetic biology applications. However, it is often difficult to link uncharacterized BGCs with the secondary metabolites they produce. Proteomining refers to the strategy of identifying active BGCs by correlating changes in protein expression with the production of secondary metabolites of interest. In this study, we devised a shotgun proteomics-based workflow to identify active BGCs during fermentation when a variety of compounds are being produced. Mycelia harvested during the non-producing growth phase served as the background. Proteins that were differentially expressed were clustered based on the proximity of the genes in the genome to highlight active BGCs systematically from label-free quantitative proteomics data. Our software tool is easy-to-use and requires only 1 point of comparison where natural product biosynthesis was significantly different. We tested our proteomining clustering method on three Streptomyces species producing different compounds. In Streptomyces coelicolor A3(2), we detected the BGCs of calcium-dependent antibiotic, actinorhodin, undecylprodigiosin, and coelimycin P1. In Streptomyces chrestomyceticus BCC24770, 7 BGCs were identified. Among them, we independently re-discovered the type II PKS for albofungin production previously identified by genome mining and tedious heterologous expression experiments. In Streptomyces tenebrarius, 5 BGCs were detected, including the known apramycin and tobramycin BGC as well as a newly discovered caerulomycin A BGC in this species. The production of caerulomycin A was confirmed by LC-MS and the inactivation of the caerulomycin A BGC surprisingly had a significant impact on the secondary metabolite regulation of S. tenebrarius. In conclusion, we developed an unbiased, high throughput proteomics-based method to complement genome mining methods for the identification of biosynthetic pathways in Streptomyces sp.
Collapse
Affiliation(s)
- Darwin Linardi
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, Hong Kong SAR, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Qian Zhang
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yi Yu
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, Hong Kong SAR, China
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Henry Lam,
| |
Collapse
|
8
|
Liu J, Harken L, Yang Y, Xie X, Li SM. Widely Distributed Bifunctional Bacterial Cytochrome P450 Enzymes Catalyze both Intramolecular C-C Bond Formation in cyclo-l-Tyr-l-Tyr and Its Coupling with Nucleobases. Angew Chem Int Ed Engl 2022; 61:e202200377. [PMID: 35201649 PMCID: PMC9401060 DOI: 10.1002/anie.202200377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/30/2022]
Abstract
Tailoring enzymes are important modification biocatalysts in natural product biosynthesis. We report herein six orthologous two‐gene clusters for mycocyclosin and guatyromycine biosynthesis. Expression of the cyclodipeptide synthase genes gymA1–gymA6 in Escherichia coli resulted in the formation of cyclo‐l‐Tyr‐l‐Tyr as the major product. Reconstruction of the biosynthetic pathways in Streptomyces albus and biochemical investigation proved that the cytochrome P450 enzymes GymB1–GymB6 act as both intramolecular oxidases and intermolecular nucleobase transferases. They catalyze not only the oxidative C−C coupling within cyclo‐l‐Tyr‐l‐Tyr, leading to mycocyclosin, but also its connection with guanine and hypoxanthine, and are thus responsible for the formation of tyrosine‐containing guatyromycines, instead of the reported tryptophan‐nucleobase adducts. Phylogenetic data suggest the presence of at least 47 GymB orthologues, indicating the occurrence of a widely distributed enzyme class.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| |
Collapse
|
9
|
Liu J, Harken L, Yang Y, Xie X, Li SM. Widely Distributed Bifunctional Bacterial Cytochrome P450 Enzymes Catalyze both Intramolecular C‐C Bond Formation in cyclo‐l‐Tyr‐l‐Tyr and Its Coupling with Nucleobases. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Liu
- Philipps-Universitat Marburg Universitatsbibliothek: Philipps-Universitat Marburg Pharmazie GERMANY
| | - Lauritz Harken
- Philipps-Universität Marburg: Philipps-Universitat Marburg Pharmazie GERMANY
| | - Yiling Yang
- Philipps-Universitat Marburg Institut Pharm.Biol.Biotechnol. GERMANY
| | - Xiulan Xie
- Philipps-Universität Marburg: Philipps-Universitat Marburg Chemie GERMANY
| | - Shu-Ming Li
- Philipps-Universität Marburg Institut für Pharmazeutische Biologie Robert-Koch-Str. 4 35037 Marburg GERMANY
| |
Collapse
|
10
|
Chen M, Pang B, Ding W, Zhao Q, Tang Z, Liu W. Investigation of 2,2'-Bipyridine Biosynthesis Reveals a Common Two-Component System for Aldehydes Production by Carboxylate Reduction. Org Lett 2022; 24:897-902. [PMID: 35044177 DOI: 10.1021/acs.orglett.1c04239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report a two-component enzymatic system that efficiently catalyzes the reduction of a carboxylate to an aldehyde in the biosynthesis of 2,2'-bipyridine antibiotics caerulomycins. The associated paradigm involves the activation of carboxylate by ATP-dependent adenylation protein CaeF, followed by its reduction catalyzed by CaeB2, a new class of NADPH-dependent aldehyde dehydrogenase (ALDH) that directly reduces AMP-conjugated carboxylate, which is distinct from the known aldehyde-producing enzymes that reduce ACP- or CoA-conjugated carboxylates.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo Pang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenping Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qunfei Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
11
|
(±)-Pyriindolin with a 2,2′-bipyridine-spiro[furan-3,3′-indoline] chimeric skeleton from the endophytic Streptomyces albolongus EA12432. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Liu J, Yang Y, Harken L, Li SM. Elucidation of the Streptoazine Biosynthetic Pathway in Streptomyces aurantiacus Reveals the Presence of a Promiscuous Prenyltransferase/Cyclase. JOURNAL OF NATURAL PRODUCTS 2021; 84:3100-3109. [PMID: 34846144 DOI: 10.1021/acs.jnatprod.1c00844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterologous expression of a three-gene cluster from Streptomyces aurantiacus coding for a cyclodipeptide synthase, a prenyltransferase, and a methyltransferase led to the elucidation of the biosynthetic steps of streptoazine C (2). In vivo biotransformation experiments proved the high flexibility of the prenyltransferase SasB toward tryptophan-containing cyclodipeptides for regular C-3-prenylation. Furthermore, their corresponding dehydrogenated derivatives prepared by using cyclodipeptide oxidases were also used for prenylation. This study provides an enzyme with high substrate promiscuity from a less explored group of prenyltransferases for potential use to generate prenylated derivatives.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
13
|
Harken L, Liu J, Kreuz O, Berger R, Li SM. Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for exo Double Bond Installation at the Diketopiperazine Ring. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Oliver Kreuz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
14
|
Pang B, Liao R, Tang Z, Guo S, Wu Z, Liu W. Caerulomycin and collismycin antibiotics share a trans-acting flavoprotein-dependent assembly line for 2,2'-bipyridine formation. Nat Commun 2021; 12:3124. [PMID: 34035275 PMCID: PMC8149447 DOI: 10.1038/s41467-021-23475-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Linear nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) template the modular biosynthesis of numerous nonribosomal peptides, polyketides and their hybrids through assembly line chemistry. This chemistry can be complex and highly varied, and thus challenges our understanding in NRPS and PKS-programmed, diverse biosynthetic processes using amino acid and carboxylate building blocks. Here, we report that caerulomycin and collismycin peptide-polyketide hybrid antibiotics share an assembly line that involves unusual NRPS activity to engage a trans-acting flavoprotein in C-C bond formation and heterocyclization during 2,2'-bipyridine formation. Simultaneously, this assembly line provides dethiolated and thiolated 2,2'-bipyridine intermediates through differential treatment of the sulfhydryl group arising from L-cysteine incorporation. Subsequent L-leucine extension, which does not contribute any atoms to either caerulomycins or collismycins, plays a key role in sulfur fate determination by selectively advancing one of the two 2,2'-bipyridine intermediates down a path to the final products with or without sulfur decoration. These findings further the appreciation of assembly line chemistry and will facilitate the development of related molecules using synthetic biology approaches.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhuhua Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,Huzhou Center of Bio-Synthetic Innovation, Huzhou, China.
| |
Collapse
|
15
|
Liu J, Xie X, Li SM. Increasing cytochrome P450 enzyme diversity by identification of two distinct cyclodipeptide dimerases. Chem Commun (Camb) 2021; 56:11042-11045. [PMID: 32808942 DOI: 10.1039/d0cc04772d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genome mining revealed the presence of two cdps-p450 operons in Saccharopolyspora antimicrobica. Heterologous expression, biochemical characterisation and structure elucidation proved that the two P450 enzymes catalyse distinct regio- and stereospecific dimerizations of cyclo-(l-Trp-l-Trp), which significantly expands the repertoire of diketopiperazine-tailoring enzymes. TtpB1 connects the monomers via C3-C3', both from the opposite side of H-11/H-11', while TtpB2 is characterised as the first P450 to mainly catalyse the unusual linkage between N1' and C3 from the H-11 side.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, Marburg 35032, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| |
Collapse
|
16
|
Qin L, Yi W, Lian XY, Zhang Z. Bioactive Alkaloids from the Actinomycete Actinoalloteichus sp. ZZ1866. JOURNAL OF NATURAL PRODUCTS 2020; 83:2686-2695. [PMID: 32864967 DOI: 10.1021/acs.jnatprod.0c00588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The new alkaloids marinacarbolines E-Q (1-10, 12-14), caerulomycin N (15), and actinoallonaphthyridine A (16), together with the known marinacarboline C (11) and cyanogramide (17), were isolated from the actinomycete Actinoalloteichus sp. ZZ1866. The structures of the isolated compounds were elucidated based on their HRESIMS data, extensive NMR spectroscopic analyses, Mosher's method, ECD calculations, single-crystal X-ray diffraction analysis, and chemical degradation studies. Marinacarbolines E-L (1-8) share an indole-pyridone-imidazole tetracyclic skeleton, which is the first example of this kind of skeleton. Caerulomycin N (15) and cyanogramide (17) exhibited cytotoxic activity against both human glioma U251 and U87MG cells with IC50 values of 2.0-7.2 μM. Marinacarbolines E (1), G (3), I (5), and M (9) showed cytotoxic activity against U87MG cells with IC50 values of 2.3-8.9 μM.
Collapse
Affiliation(s)
- Le Qin
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Wenwen Yi
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| |
Collapse
|
17
|
Structural studies reveal flexible roof of active site responsible for ω-transaminase CrmG overcoming by-product inhibition. Commun Biol 2020; 3:455. [PMID: 32814814 PMCID: PMC7438487 DOI: 10.1038/s42003-020-01184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Amine compounds biosynthesis using ω-transaminases has received considerable attention in the pharmaceutical industry. However, the application of ω-transaminases was hampered by the fundamental challenge of severe by-product inhibition. Here, we report that ω-transaminase CrmG from Actinoalloteichus cyanogriseus WH1-2216-6 is insensitive to inhibition from by-product α-ketoglutarate or pyruvate. Combined with structural and QM/MM studies, we establish the detailed catalytic mechanism for CrmG. Our structural and biochemical studies reveal that the roof of the active site in PMP-bound CrmG is flexible, which will facilitate the PMP or by-product to dissociate from PMP-bound CrmG. Our results also show that amino acceptor caerulomycin M (CRM M), but not α-ketoglutarate or pyruvate, can form strong interactions with the roof of the active site in PMP-bound CrmG. Based on our results, we propose that the flexible roof of the active site in PMP-bound CrmG may facilitate CrmG to overcome inhibition from the by-product.
Collapse
|
18
|
Zhu Y, Zhang Q, Fang C, Zhang Y, Ma L, Liu Z, Zhai S, Peng J, Zhang L, Zhu W, Zhang C. Refactoring the Concise Biosynthetic Pathway of Cyanogramide Unveils Spirooxindole Formation Catalyzed by a P450 Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Yingli Zhang
- College of Life Sciences Hebei Normal University Shijiazhuang 050024 China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| |
Collapse
|
19
|
Xie Y, Chen J, Wang B, Chen T, Chen J, Zhang Y, Liu X, Chen Q. Activation and enhancement of caerulomycin A biosynthesis in marine-derived Actinoalloteichus sp. AHMU CJ021 by combinatorial genome mining strategies. Microb Cell Fact 2020; 19:159. [PMID: 32762690 PMCID: PMC7412835 DOI: 10.1186/s12934-020-01418-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities. Results To well activate the expression of cam, ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development. Conclusions Our results had constructed an ideal CRM A producer. More importantly, our efforts also had demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.
Collapse
Affiliation(s)
- Yunchang Xie
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiawen Chen
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, 518120, China
| | - Tai Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, 518120, China
| | - Junyu Chen
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuan Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Zhu Y, Zhang Q, Fang C, Zhang Y, Ma L, Liu Z, Zhai S, Peng J, Zhang L, Zhu W, Zhang C. Refactoring the Concise Biosynthetic Pathway of Cyanogramide Unveils Spirooxindole Formation Catalyzed by a P450 Enzyme. Angew Chem Int Ed Engl 2020; 59:14065-14069. [PMID: 32329169 DOI: 10.1002/anie.202004978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Cyanogramide (1) from the marine actinomycete Actinoalloteichus cyanogriseus WH1-2216-6 features a unique spirooxindole skeleton and exhibits significant bioactivity to efficiently reverse drug resistance in tumor cells. The biosynthetic gene cluster of 1 in A. cyanogriseus WH1-2216-6 was identified and refactored by promoter engineering for heterologous expression in Streptomyces coelicolor YF11, thereby enabling the production of 1 and five new derivatives. Interesting, four of them, including 1, were identified as enantiomeric mixtures in different ratios. The functions of tailoring enzymes, including two methyltransferases (CyaEF), and three cytochrome P450 monooxygenases (CyaGHI) were confirmed by gene inactivation and feeding experiments, leading to the elucidation of a concise biosynthetic pathway for 1. Notably, CyaH was biochemically verified to catalyze the formation of the spirooxindole skeleton in 1 through an unusual carbocation-mediated semipinacol-type rearrangement reaction.
Collapse
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| |
Collapse
|
21
|
Zhang H, Lan M, Cui G, Zhu W. The Influence of Caerulomycin A on the Intestinal Microbiota in SD Rats. Mar Drugs 2020; 18:md18050277. [PMID: 32456087 PMCID: PMC7281470 DOI: 10.3390/md18050277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/14/2023] Open
Abstract
Caerulomycin A (CRM A) is the first example of natural caerulomycins with a 2,2'-bipyridyl ring core and 6-aldoxime functional group from Streptomyces caeruleus and recently from marine-derived Actinoalloteichus cyanogriseus WH1-2216-6. Our previous study revealed that CRM A showed anti-tumor activity against human colorectal cancer (CRC) both in vitro and in vivo. Because some intestinal flora can affect the occurrence and development of CRC, the influence of CRM A on the intestinal flora is worthy of study in Sprague-Dawley (SD) rats. The high throughput sequencing of the V3-V4 hypervariable region in bacterial 16S rDNA gene results showed that the CRM A affected the diversity of intestinal flora of the SD rats treated with CRM A for 2, 3 and 4 weeks. Further analysis indicated that the abundance of genera Prevotella_1, Prevotellaceae_UCG-001, and Lactobacillus were increased while the that of genera Alloprevotella and Ruminiclostridium_1 were decreased. For the CRC related intestinal flora, the abundance of genera Bacteroides, Fusobacterium, Enterococcus, Escherichia-Shigella, Klebsiella, Streptococcus, Ruminococcus_2, and Peptococcus of SD rats treated with CRM A were decreased, while that of abundance of genera Bifidobacterium, Lactobacillus, Faecalibacterium, Blautia, Oscillibacter, and Clostridium were increased. The results indicated that CRM A could influence the intestinal flora by inhibiting some species of harmful flora and improving the beneficial bacteria in intestinal flora in the SD rats. The results may provide a new idea for revealing the mechanism of the anti-CRC activity of CRM A.
Collapse
Affiliation(s)
- Hongwei Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
| | - Mengmeng Lan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
| | - Guodong Cui
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
- Correspondence: ; Tel.: +86-532-8203-1268
| |
Collapse
|
22
|
Yu H, Xie X, Li SM. Coupling of cyclo-l-Trp-l-Trp with Hypoxanthine Increases the Structure Diversity of Guanitrypmycins. Org Lett 2019; 21:9104-9108. [DOI: 10.1021/acs.orglett.9b03491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huili Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
23
|
Yu H, Li SM. Two Cytochrome P450 Enzymes from Streptomyces sp. NRRL S-1868 Catalyze Distinct Dimerization of Tryptophan-Containing Cyclodipeptides. Org Lett 2019; 21:7094-7098. [DOI: 10.1021/acs.orglett.9b02666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huili Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
24
|
Liu J, Xie X, Li SM. Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio- and Stereospecific Guaninyl-Transfer Reactions. Angew Chem Int Ed Engl 2019; 58:11534-11540. [PMID: 31206992 DOI: 10.1002/anie.201906891] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 12/22/2022]
Abstract
Mining microbial genomes including those of Streptomyces reveals the presence of a large number of biosynthetic gene clusters. Unraveling this genetic potential has proved to be a useful approach for novel compound discovery. Here, we report the heterologous expression of two similar P450-associated cyclodipeptide synthase-containing gene clusters in Streptomyces coelicolor and identification of eight rare and novel natural products, the C3-guaninyl indole alkaloids guanitrypmycins. Expression of different gene combinations proved that the cyclodipeptide synthases assemble cyclo-l-Trp-l-Phe and cyclo-l-Trp-l-Tyr, which are consecutively and regiospecifically modified by cyclodipeptide oxidases, cytochrome P450 enzymes, and N-methyltransferases. In vivo and in vitro results proved that the P450 enzymes function as key biocatalysts and catalyze the regio- and stereospecific 3α-guaninylation at the indole ring of the tryptophanyl moiety. Isotope-exchange experiments provided evidence for the non-enzymatic epimerization of the biosynthetic pathway products via keto-enol tautomerism. This post-pathway modification during cultivation further increases the structural diversity of guanitrypmycins.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| |
Collapse
|
25
|
Liu J, Xie X, Li S. Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio‐ and Stereospecific Guaninyl‐Transfer Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und BiotechnologiePhilipps-Universität Marburg Robert-Koch Straße 4 35037 Marburg Germany
| | - Xiulan Xie
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - Shu‐Ming Li
- Institut für Pharmazeutische Biologie und BiotechnologiePhilipps-Universität Marburg Robert-Koch Straße 4 35037 Marburg Germany
| |
Collapse
|
26
|
Ashu EE, Xu J, Yuan ZC. Bacteria in Cancer Therapeutics: A Framework for Effective Therapeutic Bacterial Screening and Identification. J Cancer 2019; 10:1781-1793. [PMID: 31205534 PMCID: PMC6547982 DOI: 10.7150/jca.31699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
By 2030, the global incidence of cancer is expected to increase by approximately 50%. However, most conventional therapies still lack cancer selectivity, which can have severe unintended side effects on healthy body tissue. Despite being an unconventional and contentious therapy, the last two decades have seen a significant renaissance of bacterium-mediated cancer therapy (BMCT). Although promising, most present-day therapeutic bacterial candidates have not shown satisfactory efficacy, effectiveness, or safety. Furthermore, therapeutic bacterial candidates are available to only a few of the approximately 200 existing cancer types. Excitingly, the recent surge in BMCT has piqued the interest of non-BMCT microbiologists. To help advance these interests, in this paper we reviewed important aspects of cancer, present-day cancer treatments, and historical aspects of BMCT. Here, we provided a four-step framework that can be used in screening and identifying bacteria with cancer therapeutic potential, including those that are uncultivable. Systematic methodologies such as the ones suggested here could prove valuable to new BMCT researchers, including experienced non-BMCT researchers in possession of extensive knowledge and resources of bacterial genomics. Lastly, our analyses highlight the need to establish and standardize quantitative methods that can be used to identify and compare bacteria with important cancer therapeutic traits.
Collapse
Affiliation(s)
- Eta E. Ashu
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ze-Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
27
|
Mei X, Lan M, Cui G, Zhang H, Zhu W. Caerulomycins from Actinoalloteichus cyanogriseus WH1-2216-6: isolation, identification and cytotoxicity. Org Chem Front 2019. [DOI: 10.1039/c9qo00685k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SAR study of 42 caerulomycins from A. cyanogriseus revealed that 6-aldoxime and 4-O-glycosidation are respectively essential for their activity and selectivity.
Collapse
Affiliation(s)
- Xiangui Mei
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Mengmeng Lan
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Guodong Cui
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Hongwei Zhang
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Weiming Zhu
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| |
Collapse
|
28
|
Du YL, Ryan KS. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 2019; 36:430-457. [DOI: 10.1039/c8np00049b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review reactions catalyzed by pyridoxal phosphate-dependent enzymes, highlighting enzymes reported in the recent natural product biosynthetic literature.
Collapse
Affiliation(s)
- Yi-Ling Du
- Institute of Pharmaceutical Biotechnology
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
29
|
Discovery of caerulomycin/collismycin-type 2,2'-bipyridine natural products in the genomic era. J Ind Microbiol Biotechnol 2018; 46:459-468. [PMID: 30484122 DOI: 10.1007/s10295-018-2092-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
Abstract
2,2'-Bipyridine (2,2'-BP) is the unique molecular scaffold of the bioactive natural products represented by caerulomycins (CAEs) and collismycins (COLs). CAEs and COLs are highly similar in the chemical structures in which their 2,2'-BP cores typically contain a di- or tri-substituted ring A and an unmodified ring B. Here, we summarize the CAE and COL-type 2,2'-BP natural products known or hypothesized to date: (1) isolated using methods traditional for natural product characterization, (2) created by engineering the biosynthetic pathways of CAEs or COLs, and (3) predicted upon bioinformatics-guided genome mining. The identification of these CAE and COL-type 2,2'-BP natural products not only demonstrates the development of research techniques and methods in the field of natural product chemistry but also reflects the general interest in the discovery of CAE and COL-type 2,2'-BP natural products.
Collapse
|
30
|
Auerbach D, Yan F, Zhang Y, Müller R. Characterization of an Unusual Glycerate Esterification Process in Vioprolide Biosynthesis. ACS Chem Biol 2018; 13:3123-3130. [PMID: 30286293 DOI: 10.1021/acschembio.8b00826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria produce a large number of secondary metabolites with extraordinary chemical structures and bioactivities. Vioprolides are promising anticancer and antifungal lead compounds produced by the myxobacterium Cystobacter violaceus Cb vi35, which are initially synthesized as acylated precursors (previoprolides) by nonribosomal peptide synthetases (NRPS). Here, we describe and characterize an unprecedented glycerate esterification process in the biosynthesis of vioprolides. In vitro biochemical investigations revealed that the fatty acyl chain of previoprolides is adenylated by the starting fatty acyl-AMP ligase (FAAL) domain, while the glycerate moiety is incorporated by the FkbH domain. An unusual ester-bond forming condensation domain is shown responsible for the acylation of glycerate. LC-MS analysis and bioactivity assays suggest that the acylation serves for directed membrane transport rather than representing a prodrug mechanism.
Collapse
Affiliation(s)
- David Auerbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Fu Yan
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, People’s Republic of China
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
31
|
Chen M, Zhang Y, Du Y, Zhao Q, Zhang Q, Wu J, Liu W. Enzymatic competition and cooperation branch the caerulomycin biosynthetic pathway toward different 2,2'-bipyridine members. Org Biomol Chem 2018. [PMID: 28649680 DOI: 10.1039/c7ob01284e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we characterized CaeB6 as a selective hydroxylase and CaeG1 as an O-methyltransferase in the biosynthesis of the 2,2'-bipyridine natural products caerulomycins (CAEs). The C3-hydroxylation activity of CaeB6 competes with the C4-O-methylation activity of CaeG1 and thereby branches the CAE pathway from a common C4-O-demethylated 2,2'-bipyridine intermediate. CaeG1-catalyzed C4-O-methylation leads to a main route that produces the major product CAE-A in Actinoalloteichus cyanogriseus NRRL B-2194. In contrast, CaeB6-catalyzed C3-hydroxylation results in a shunt route in which CaeG1 causes C4-O-methylation and subsequent C3-O-methylation to produce a series of minor CAE products. These findings provide new insights into the biosynthetic pathway of CAEs and a synthetic biology strategy for the selective functionalization of the 2,2'-bipyridine core.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Xie Y, Ma J, Qin X, Li Q, Ju J. Identification and utilization of two important transporters: SgvT1 and SgvT2, for griseoviridin and viridogrisein biosynthesis in Streptomyces griseoviridis. Microb Cell Fact 2017; 16:177. [PMID: 29065880 PMCID: PMC5655939 DOI: 10.1186/s12934-017-0792-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/14/2017] [Indexed: 01/08/2023] Open
Abstract
Background Griseoviridin (GV) and viridogrisein (VG, also referred as etamycin), both biosynthesized by a distinct 105 kb biosynthetic gene cluster (BGC) in Streptomyces griseoviridis NRRL 2427, are a pair of synergistic streptogramin antibiotics and very important in treating infections of many multi-drug resistant microorganisms. Three transporter genes, sgvT1–T3 have been discovered within the 105 kb GV/VG BGC, but the function of these efflux transporters have not been identified. Results In the present study, we have identified the different roles of these three transporters, SgvT1, SgvT2 and SgvT3. SgvT1 is a major facilitator superfamily (MFS) transporter whereas SgvT2 appears to serve as the sole ATP-binding cassette (ABC) transporter within the GV/VG BGC. Both proteins are necessary for efficient GV/VG biosynthesis although SgvT1 plays an especially critical role by averting undesired intracellular GV/VG accumulation during biosynthesis. SgvT3 is an alternative MFS-based transporter that appears to serve as a compensatory transporter in GV/VG biosynthesis. We also have identified the γ-butyrolactone (GBL) signaling pathway as a central regulator of sgvT1–T3 expression. Above all, overexpression of sgvT1 and sgvT2 enhances transmembrane transport leading to steady production of GV/VG in titers ≈ 3-fold greater than seen for the wild-type producer and without any notable disturbances to GV/VG biosynthetic gene expression or antibiotic control. Conclusions Our results shows that SgvT1–T2 are essential and useful in GV/VG biosynthesis and our effort highlight a new and effective strategy by which to better exploit streptogramin-based natural products of which GV and VG are prime examples with clinical potential. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0792-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
33
|
Actinoalloteichus fjordicus sp. nov. isolated from marine sponges: phenotypic, chemotaxonomic and genomic characterisation. Antonie van Leeuwenhoek 2017; 110:1705-1717. [PMID: 28770445 PMCID: PMC5676828 DOI: 10.1007/s10482-017-0920-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/25/2017] [Indexed: 12/04/2022]
Abstract
Two actinobacterial strains, ADI 127-17T and GBA 129-24, isolated from marine sponges Antho dichotoma and Geodia barretti, respectively, collected at the Trondheim fjord in Norway, were the subjects of a polyphasic study. According to their 16S rRNA gene sequences, the new isolates were preliminarily classified as belonging to the genus Actinoalloteichus. Both strains formed a distinct branch, closely related to the type strains of Actinoalloteichus hoggarensis and Actinoalloteichus hymeniacidonis, within the evolutionary radiation of the genus Actinoalloteichus in the 16S rRNA gene-based phylogenetic tree. Isolates ADI 127-17T and GBA 129-24 exhibited morphological, chemotaxonomic and genotypic features distinguishable from their close phylogenetic neighbours. Digital DNA: DNA hybridization and ANI values between strains ADI 127-17T and GBA 129-24 were 97.6 and 99.7%, respectively, whereas the corresponding values between both tested strains and type strains of their closely related phylogenetic neighbours, A. hoggarensis and A. hymeniacidonis, were well below the threshold for delineation of prokaryotic species. Therefore, strains ADI 127-17T (= DSM 46855T) and GBA 129-24 (= DSM 46856) are concluded to represent a novel species of the genus Actinoalloteichus for which the name of Actinoalloteichus fjordicus sp. nov. (type strain ADI 127-17T = DSM 46855T = CECT 9355T) is proposed. The complete genome sequences of the new strains were obtained and compared to that of A. hymeniacidonis DSM 45092T and A. hoggarensis DSM 45943T to unravel unique genome features and biosynthetic potential of the new isolates.
Collapse
|
34
|
Chen M, Pang B, Du YN, Zhang YP, Liu W. Characterization of the metallo-dependent amidohydrolases responsible for "auxiliary" leucinyl removal in the biosynthesis of 2,2'-bipyridine antibiotics. Synth Syst Biotechnol 2017; 2:137-146. [PMID: 29062971 PMCID: PMC5636949 DOI: 10.1016/j.synbio.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023] Open
Abstract
2,2'-Bipyridine (2,2'-BiPy) is an attractive core structure present in a number of biologically active natural products, including the structurally related antibiotics caerulomycins (CAEs) and collismycins (COLs). Their biosynthetic pathways share a similar key 2,2'-BiPy-l-leucine intermediate, which is desulfurated or sulfurated at C5, arises from a polyketide synthase/nonribosomal peptide synthetase hybrid assembly line. Focusing on the common off-line modification steps, we here report that the removal of the "auxiliary" l-leucine residue relies on the metallo-dependent amidohydrolase activity of CaeD or ColD. This activity leads to the production of similar 2,2'-BiPy carboxylate products that then receive an oxime functionality that is characteristic for both CAEs and COLs. Unlike many metallo-dependent amidohydrolase superfamily proteins that have been previously reported, these proteins (particularly CaeD) exhibited a strong zinc ion-binding capacity that was proven by site-specific mutagenesis studies to be essential to proteolytic activity. The kinetics of the conversions that respectively involve CaeD and ColD were analyzed, showing the differences in the efficiency and substrate specificity of these two proteins. These findings would generate interest in the metallo-dependent amidohydrolase superfamily proteins that are involved in the biosynthesis of bioactive natural products.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo Pang
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ya-Nan Du
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yi-Peng Zhang
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
35
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
36
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
37
|
Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species. Front Microbiol 2017; 8:394. [PMID: 28360891 PMCID: PMC5350119 DOI: 10.3389/fmicb.2017.00394] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Hye-Rim Pyeon
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University Incheon, South Korea
| |
Collapse
|
38
|
Chen M, Liu J, Duan P, Li M, Liu W. Biosynthesis and molecular engineering of templated natural products. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Bioactive small molecules that are produced by living organisms, often referred to as natural products (NPs), historically play a critical role in the context of both medicinal chemistry and chemical biology. How nature creates these chemical entities with stunning structural complexity and diversity using a limited range of simple substrates has not been fully understood. Focusing on two types of NPs that share a highly evolvable ‘template’-biosynthetic logic, we here provide specific examples to highlight the conceptual and technological leaps in NP biosynthesis and witness the area of progress since the beginning of the twenty-first century. The biosynthesis of polyketides, non-ribosomal peptides and their hybrids that share an assembly-line enzymology of modular multifunctional proteins exemplifies an extended ‘central dogma’ that correlates the genotype of catalysts with the chemotype of products; in parallel, post-translational modifications of ribosomally synthesized peptides involve a number of unusual biochemical mechanisms for molecular maturation. Understanding the biosynthetic processes of these templated NPs would largely facilitate the design, development and utilization of compatible biosynthetic machineries to address the challenge that often arises from structural complexity to the accessibility and efficiency of current chemical synthesis.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingyu Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Panpan Duan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mulin Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Huzhou Center of Bio-Synthetic Innovation, Huzhou 313000, China
| |
Collapse
|
39
|
Pang B, Wang M, Liu W. Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines. Nat Prod Rep 2016; 33:162-73. [PMID: 26604034 DOI: 10.1039/c5np00095e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modular polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that serve as templates to program the assembly of short carboxylic acids and amino acids in a primarily co-linear manner. The variation, combination, permutation and evolution of their functional units (e.g., modules, domains and proteins) along with their association with external enzymes have resulted in the generation of numerous versions of templates, the roles of which have not been fully recognized in the structural diversification of polyketides, non-ribosomal peptides and their hybrids present in nature. In this Highlight, we focus on the assembly-line enzymology and associated chemistry by providing examples of some newly characterized cyclization reactions that occur on and off the assembly lines during and after chain elongation for the purpose of elucidating the template effects of PKSs and NRPSs. A fundamental understanding of the underlying biosynthetic logic would facilitate the elucidation of chemical information contained within the PKS or NRPS templates and benefit the development of strategies for genome mining, biosynthesis-inspired chemical synthesis and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
40
|
Zhu Y, Xu J, Mei X, Feng Z, Zhang L, Zhang Q, Zhang G, Zhu W, Liu J, Zhang C. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis. ACS Chem Biol 2016; 11:943-52. [PMID: 26714051 DOI: 10.1021/acschembio.5b00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinxin Xu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiangui Mei
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhan Feng
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liping Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guangtao Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinsong Liu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changsheng Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
41
|
Zhu Y, Picard MÈ, Zhang Q, Barma J, Després XM, Mei X, Zhang L, Duvignaud JB, Couture M, Zhu W, Shi R, Zhang C. Flavoenzyme CrmK-mediated substrate recycling in caerulomycin biosynthesis. Chem Sci 2016; 7:4867-4874. [PMID: 30155134 PMCID: PMC6016722 DOI: 10.1039/c6sc00771f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022] Open
Abstract
Biochemical and structural investigations into the flavoenzyme CrmK reveal a substrate recycling/salvaging mechanism in caerulomycin biosynthesis.
Substrate salvage or recycling is common and important for primary metabolism in cells but is rare in secondary metabolism. Herein we report flavoenzyme CrmK-mediated shunt product recycling in the biosynthesis of caerulomycin A (CRM A 1), a 2,2′-bipyridine-containing natural product that is under development as a potent novel immunosuppressive agent. We demonstrated that the alcohol oxidase CrmK, belonging to the family of bicovalent FAD-binding flavoproteins, catalyzed the conversion of an alcohol into a carboxylate via an aldehyde. The CrmK-mediated reactions were not en route to 1 biosynthesis but played an unexpectedly important role by recycling shunt products back to the main pathway of 1. Crystal structures and site-directed mutagenesis studies uncovered key residues for FAD-binding, substrate binding and catalytic activities, enabling the proposal for the CrmK catalytic mechanism. This study provides the first biochemical and structural evidence for flavoenzyme-mediated substrate recycling in secondary metabolism.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| | - Marie-Ève Picard
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| | - Julie Barma
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Xavier Murphy Després
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Xiangui Mei
- Key Laboratory of Marine Drugs , Chinese Ministry of Education , School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| | - Jean-Baptiste Duvignaud
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Manon Couture
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Weiming Zhu
- Key Laboratory of Marine Drugs , Chinese Ministry of Education , School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Rong Shi
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| |
Collapse
|
42
|
Born Y, Remus-Emsermann MNP, Bieri M, Kamber T, Piel J, Pelludat C. Fe2+ chelator proferrorosamine A: a gene cluster of Erwinia rhapontici P45 involved in its synthesis and its impact on growth of Erwinia amylovora CFBP1430. MICROBIOLOGY-SGM 2016; 162:236-245. [PMID: 26732708 DOI: 10.1099/mic.0.000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proferrorosamine A (proFRA) is an iron (Fe2+) chelator produced by the opportunistic plant pathogen Erwinia rhapontici P45. To identify genes involved in proFRA synthesis, transposon mutagenesis was performed. The identified 9.3 kb gene cluster, comprising seven genes, designated rosA-rosG, encodes proteins that are involved in proFRA synthesis. Based on gene homologies, a biosynthetic pathway model for proFRA is proposed. To obtain a better understanding of the effect of proFRA on non-proFRA producing bacteria, E. rhapontici P45 was co-cultured with Erwinia amylovora CFBP1430, a fire-blight-causing plant pathogen. E. rhapontici P45, but not corresponding proFRA-negative mutants, led to a pink coloration of E. amylovora CFBP1430 colonies on King's B agar, indicating accumulation of the proFRA-iron complex ferrorosamine, and growth inhibition in vitro. By saturating proFRA-containing extracts with Fe2+, the inhibitory effect was neutralized, suggesting that the iron-chelating capability of proFRA is responsible for the growth inhibition of E. amylovora CFBP1430.
Collapse
Affiliation(s)
- Yannick Born
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland.,Institute for Plant Production Sciences, Agroscope, Schloss 1, 8820 Wädenswil, Switzerland
| | | | - Marco Bieri
- Institute for Plant Production Sciences, Agroscope, Schloss 1, 8820 Wädenswil, Switzerland
| | - Tim Kamber
- Institute for Plant Production Sciences, Agroscope, Schloss 1, 8820 Wädenswil, Switzerland.,Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Jörn Piel
- ETH Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Cosima Pelludat
- Institute for Plant Production Sciences, Agroscope, Schloss 1, 8820 Wädenswil, Switzerland
| |
Collapse
|
43
|
Zhu Y, Zhang W, Chen Y, Yuan C, Zhang H, Zhang G, Ma L, Zhang Q, Tian X, Zhang S, Zhang C. Characterization of Heronamide Biosynthesis Reveals a Tailoring Hydroxylase and Indicates Migrated Double Bonds. Chembiochem 2015; 16:2086-93. [PMID: 26194087 DOI: 10.1002/cbic.201500281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Yaolong Chen
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Chengshan Yuan
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| |
Collapse
|
44
|
Fu P, Zhu Y, Mei X, Wang Y, Jia H, Zhang C, Zhu W. Acyclic congeners from Actinoalloteichus cyanogriseus provide insights into cyclic bipyridine glycoside formation. Org Lett 2014; 16:4264-7. [PMID: 25090585 DOI: 10.1021/ol5019757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inactivation of the O-methyltransferase gene crmM of Actinoalloteichus cyanogriseus WH1-2216-6 led to a mutant that produced three new acyclic bipyridine glycosides, cyanogrisides E-G (1-3). Further chemical analysis of the wild strain yielded 1 and another new analogue, cyanogriside H (4). Compounds 1-4 possess a skeleton consisting of a 2,2'-bipyridine and a d-quinovose or l-rhamnose sugar moiety. Cyanogriside G (3) was considered to be a key biosynthetic intermediate of the cyclic bipyridine glycosides cyanogrisides A-D. Compounds 2 and 3 showed cytotoxicities against HCT116 and HL-60 cells, and compounds 1 and 4 were cytotoxic on K562 cells.
Collapse
Affiliation(s)
- Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Vior NM, Olano C, García I, Méndez C, Salas JA. Collismycin A biosynthesis in Streptomyces sp. CS40 is regulated by iron levels through two pathway-specific regulators. Microbiology (Reading) 2014; 160:467-478. [DOI: 10.1099/mic.0.075218-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two putative pathway-specific regulators have been identified in the collismycin A gene cluster: ClmR1, belonging to the TetR-family, and the LuxR-family transcriptional regulator ClmR2. Inactivation of clmR1 led to a moderate increase of collismycin A yields along with an early onset of its production, suggesting an inhibitory role for the product of this gene. Inactivation of clmR2 abolished collismycin A biosynthesis, whereas overexpression of ClmR2 led to a fourfold increase in production yields, indicating that ClmR2 is an activator of collismycin A biosynthesis. Expression analyses of the collismycin gene cluster in the wild-type strain and in ΔclmR1 and ΔclmR2 mutants confirmed the role proposed for both regulatory genes, revealing that ClmR2 positively controls the expression of most of the genes in the cluster and ClmR1 negatively regulates both its own expression and that of clmR2. Additionally, production assays and further transcription analyses confirmed the existence of a higher regulatory level modulating collismycin A biosynthesis in response to iron concentrations in the culture medium. Thus, high iron levels inhibit collismycin A biosynthesis through the repression of clmR2 transcription. These results have allowed us to propose a regulatory model that integrates the effect of iron as the main environmental stimulus controlling collismycin A biosynthesis.
Collapse
Affiliation(s)
- Natalia M. Vior
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio García
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
46
|
Kudo F, Miyanaga A, Eguchi T. Biosynthesis of natural products containing β-amino acids. Nat Prod Rep 2014; 31:1056-73. [DOI: 10.1039/c4np00007b] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Amino acids are unique components involved in a wide variety of natural products such as anticancer agents taxol, bleomycin, cytotoxic microcystin, enediyne compound C-1027 chromophore, nucleoside antibiotic blasticidin S, and macrolactam antibiotic vicenistatin. The biosynthesis and incorporation mechanisms are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| |
Collapse
|
47
|
Zhu Y, Zhang Q, Li S, Lin Q, Fu P, Zhang G, Zhang H, Shi R, Zhu W, Zhang C. Insights into Caerulomycin A Biosynthesis: A Two-Component Monooxygenase CrmH-Catalyzed Oxime Formation. J Am Chem Soc 2013; 135:18750-3. [PMID: 24295370 DOI: 10.1021/ja410513g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yiguang Zhu
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Qingbo Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sumei Li
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Qinheng Lin
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangtao Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Haibo Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Rong Shi
- Département
de Biochimie, de Microbiologie et de Bio-informatique, PROTEO et IBIS, Université Laval, Québec, G1V 0A6, Canada
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Changsheng Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| |
Collapse
|
48
|
Generation by mutasynthesis of potential neuroprotectant derivatives of the bipyridyl collismycin A. Bioorg Med Chem Lett 2013; 23:5707-9. [DOI: 10.1016/j.bmcl.2013.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/01/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
49
|
Garcia I, Vior NM, González-Sabín J, Braña AF, Rohr J, Moris F, Méndez C, Salas JA. Engineering the biosynthesis of the polyketide-nonribosomal peptide collismycin A for generation of analogs with neuroprotective activity. ACTA ACUST UNITED AC 2013; 20:1022-32. [PMID: 23911584 DOI: 10.1016/j.chembiol.2013.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Collismycin A is a member of the 2,2'-bipyridyl family of natural products that shows cytotoxic activity. Structurally, it belongs to the hybrid polyketides-nonribosomal peptides. After the isolation and characterization of the collismycin A gene cluster, we have used the combination of two different approaches (insertional inactivation and biocatalysis) to increase structural diversity in this natural product class. Twelve collismycin analogs were generated with modifications in the second pyridine ring of collismycin A, thus potentially maintaining biologic activity. None of these analogs showed better cytotoxic activity than the parental collismycin. However, some analogs showed neuroprotective activity and one of them (collismycin H) showed better values for neuroprotection against oxidative stress in a zebrafish model than those of collismycin A. Interestingly, this analog also showed very poor cytotoxic activity, a feature very desirable for a neuroprotectant compound.
Collapse
Affiliation(s)
- Ignacio Garcia
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu F, Kong D, He X, Zhang Z, Han M, Xie X, Wang P, Cheng H, Tao M, Zhang L, Deng Z, Lin S. Characterization of streptonigrin biosynthesis reveals a cryptic carboxyl methylation and an unusual oxidative cleavage of a N-C bond. J Am Chem Soc 2013; 135:1739-48. [PMID: 23301954 DOI: 10.1021/ja3069243] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid with broad and potent antitumor activity. Here, we reported the biosynthetic gene cluster of STN identified by genome scanning of a STN producer Streptomyces flocculus CGMCC4.1223. This cluster consists of 48 genes determined by a series of gene inactivations. On the basis of the structures of intermediates and shunt products accumulated from five specific gene inactivation mutants and feeding experiments, the biosynthetic pathway was proposed, and the sequence of tailoring steps was preliminarily determined. In this pathway, a cryptic methylation of lavendamycin was genetically and biochemically characterized to be catalyzed by a leucine carboxyl methyltransferase StnF2. A [2Fe-2S](2+) cluster-containing aromatic ring dioxygenase StnB1/B2 system was biochemically characterized to catalyze a regiospecific cleavage of the N-C8' bond of the indole ring of the methyl ester of lavendamycin. This work provides opportunities to illuminate the enzymology of novel reactions involved in this pathway and to create, using genetic and chemo-enzymatic methods, new streptonigrinoid analogues as potential therapeutic agents.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|