1
|
Zhang ZM, Zhang J, Cai Q. Enantioselective and collective total synthesis of pentacyclic 19- nor-clerodanes. Chem Sci 2023; 14:12598-12605. [PMID: 38020367 PMCID: PMC10646913 DOI: 10.1039/d3sc04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
We report herein the collective asymmetric total synthesis of seven pentacyclic 19-nor-clerodane diterpenoids, namely (+)-teucvin (+)-cracroson A, (+)-cracroson E, (+)-montanin A, (+)-teucvisin C, (+)-teucrin A, and (+)-2-hydroxyteuscorolide. An ytterbium-catalyzed asymmetric inverse-electron-demand Diels-Alder reaction of 4-methyl-2-pyrone with a chiral C5-substituted cyclohexa-1,3-dienol silyl ether is the key feature of the synthesis, which provides the common cis-decalin intermediate with five continuous stereocenters in excellent yield and stereoselectivity. From this diversifiable intermediate, the total synthesis of (+)-teucvin and (+)-2-hydroxyteuscorolide was realized in thirteen and eighteen steps, respectively. From (+)-teucvin, five other pentacyclic 19-nor-clerodanes were divergently and concisely generated through late-stage oxidation state adjustments.
Collapse
Affiliation(s)
- Zhi-Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Junliang Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
2
|
Narode AS, Ho YS, Cheng MJ, Liu RS. Gold-Catalyzed Addition of β-Oxo Enols at Tethered Alkynes via a Non-Conia-ene Pathway: Observation of a Formal 1,3-Hydroxymethylidene Migration. Org Lett 2023; 25:1589-1594. [PMID: 36861973 DOI: 10.1021/acs.orglett.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
With the relay process of Ag(I)/Au(I) catalysts, a one-pot synthesis of skeletally rearranged (1-hydroxymethylidene)indene derivatives from 2-alkynylbenzaldehydes and α-diazo esters is described. This cascade sequence involves Au(I)-catalyzed 5-endo-dig attack of highly enolizable aldehydes at the tethered alkynes, leading to carbocyclizations with a formal 1,3-hydroxymethylidene transfer. On the basis of density functional theory calculations, the mechanism likely involves formation of cyclopropylgold carbenes, followed by an appealing 1,2-cyclopropane migration.
Collapse
Affiliation(s)
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan City, Taiwan (ROC) 701
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan City, Taiwan (ROC) 701
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan (ROC) 300
| |
Collapse
|
3
|
Li JP, Dou LJ, Mu WH. Electronic and Steric Control of Rates and Selectivities in Rhodium-Catalyzed [2+2+2] Cycloadditions for Constructing Fused Tricyclic Hydronaphthofurans: A Density Functional Theory Study. J Org Chem 2022; 87:16328-16342. [DOI: 10.1021/acs.joc.2c01937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jiang-Ping Li
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Li-Juan Dou
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Wei-Hua Mu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| |
Collapse
|
4
|
Abdullah FO, Hussain FHS, Sardar AS, Gilardoni G, Thu ZM, Vidari G. Bio-Active Compounds from Teucrium Plants Used in the Traditional Medicine of Kurdistan Region, Iraq. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103116. [PMID: 35630593 PMCID: PMC9145536 DOI: 10.3390/molecules27103116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
Herbal medicine is still widely practiced in the Kurdistan Region, Iraq, especially by people living in villages in mountainous regions. Seven taxa belonging to the genus Teucrium (family Lamiaceae) are commonly employed in the Kurdish traditional medicine, especially to treat jaundice, stomachache and abdominal problems. We report, in this paper, a comprehensive account about the chemical structures and bioactivities of most representative specialized metabolites isolated from these plants. These findings indicate that Teucrium plants used in the folk medicine of Iraqi Kurdistan are natural sources of specialized metabolites that are potentially beneficial to human health.
Collapse
Affiliation(s)
- Fuad O. Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
- Correspondence: (F.O.A.); (G.V.)
| | - Faiq H. S. Hussain
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq;
| | - Abdullah Sh. Sardar
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region, Iraq;
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 110107, Ecuador;
| | - Zaw Min Thu
- Department of Chemistry, Kalay University, Kalay 03044, Myanmar;
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq;
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
- Correspondence: (F.O.A.); (G.V.)
| |
Collapse
|
5
|
Zou C, Yang L, Zhang L, Liu C, Ma Y, Song G, Liu Z, Cheng R, Ye J. Enantioselective Vinylogous Conia-Ene Reaction Catalyzed by a Disilver(I)/Bisdiamine Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chuncheng Zou
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemistry and Biology. East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Ruihua Cheng
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
6
|
|
7
|
Si XG, Zhang ZM, Zheng CG, Li ZT, Cai Q. Enantioselective Synthesis of cis-Decalin Derivatives by the Inverse-Electron-Demand Diels-Alder Reaction of 2-Pyrones. Angew Chem Int Ed Engl 2020; 59:18412-18417. [PMID: 32662155 DOI: 10.1002/anie.202006841] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 01/08/2023]
Abstract
A novel strategy for the synthesis of cis-decalins by an ytterbium-catalyzed asymmetric inverse-electron-demand Diels-Alder reaction of 2-pyrones and silyl cyclohexadienol ethers is reported here. A broad range of synthetically important cis-decalin derivatives with multiple contiguous stereogenic centers and functionalities are obtained in good yields and stereoselectivities. A full set of diastereomeric substituted cis-decalin motifs are readily accessible by tuning the absolute configurations of substituted silyl cyclohexadienol ethers (R or S) as well as the ligands (R or S). The synthetic potential is showcased by the enantioselective total synthesis of 4-amorphen-11-ol, and further demonstrated by the first total synthesis of cis-crotonin.
Collapse
Affiliation(s)
- Xu-Ge Si
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Zhi-Mao Zhang
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Cheng-Gong Zheng
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Quan Cai
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| |
Collapse
|
8
|
Si X, Zhang Z, Zheng C, Li Z, Cai Q. Enantioselective Synthesis of
cis
‐Decalin Derivatives by the Inverse‐Electron‐Demand Diels–Alder Reaction of 2‐Pyrones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu‐Ge Si
- Department of Chemistry Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Zhi‐Mao Zhang
- Department of Chemistry Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Cheng‐Gong Zheng
- Department of Chemistry Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Zhan‐Ting Li
- Department of Chemistry Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Quan Cai
- Department of Chemistry Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
9
|
Peng C, Arya P, Zhou Z, Snyder SA. A Concise Total Synthesis of (+)-Waihoensene Guided by Quaternary Center Analysis. Angew Chem Int Ed Engl 2020; 59:13521-13525. [PMID: 32330370 PMCID: PMC7906115 DOI: 10.1002/anie.202004177] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 11/07/2022]
Abstract
The four contiguous all-carbon quaternary centers of waihoensene, coupled with the absence of any traditional reactive functional groups other than a single alkene, render it a particularly challenging synthetic target among angular triquinane natural products. Here, we show that its polycyclic frame can be assembled concisely by using a strategically chosen quaternary center to guide the formation of the other three through judiciously selected C-C bond formation reactions. Those events, which included a unique Conia-ene cyclization and a challenging Pauson-Khand reaction, afforded a 17-step synthesis of the molecule in enantioenriched form.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Piyush Arya
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Zhiyao Zhou
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Peng C, Arya P, Zhou Z, Snyder SA. A Concise Total Synthesis of (+)‐Waihoensene Guided by Quaternary Center Analysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng Peng
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Piyush Arya
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Zhiyao Zhou
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Scott A. Snyder
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
11
|
Teng Q, Mao W, Chen D, Wang Z, Tung C, Xu Z. Asymmetric Synthesis of a Fused Tricyclic Hydronaphthofuran Scaffold by Desymmetric [2+2+2] Cycloaddition. Angew Chem Int Ed Engl 2020; 59:2220-2224. [DOI: 10.1002/anie.201911071] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Qi Teng
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Wenxiu Mao
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Dong Chen
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Zhen Wang
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Chen‐Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
12
|
Teng Q, Mao W, Chen D, Wang Z, Tung C, Xu Z. Asymmetric Synthesis of a Fused Tricyclic Hydronaphthofuran Scaffold by Desymmetric [2+2+2] Cycloaddition. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qi Teng
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Wenxiu Mao
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Dong Chen
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Zhen Wang
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Chen‐Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education MinistryDepartment of ChemistryShandong University No. 27 South Shanda Road Jinan 250100 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
13
|
Abstract
Total syntheses of clerodane diterpenoids have been reviewed from the literature since 2000.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology, Niigata University, Nishiku, Niigata, Japan
| |
Collapse
|
14
|
Cao M, Yesilcimen A, Wasa M. Enantioselective Conia-Ene-Type Cyclizations of Alkynyl Ketones through Cooperative Action of B(C 6F 5) 3, N-Alkylamine and a Zn-Based Catalyst. J Am Chem Soc 2019; 141:4199-4203. [PMID: 30786707 DOI: 10.1021/jacs.8b13757] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and highly enantioselective Conia-ene-type process has been developed. Reactions are catalyzed by a combination of B(C6F5)3, an N-alkylamine and a BOX-ZnI2 complex. Specifically, through cooperative action of B(C6F5)3 and amine, ketones with poorly acidic α-C-H bonds can be converted in situ to the corresponding enolates. Subsequent enantioselective cyclization involving a BOX-ZnI2-activated alkyne leads to the formation of various cyclopentenes in up to 99% yield and 99:1 er.
Collapse
Affiliation(s)
- Min Cao
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Ahmet Yesilcimen
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
15
|
Chouthaiwale PV, Aher RD, Tanaka F. Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol-Aldol Annulation of Pyruvate Derivatives with Cyclohexane-1,3-Diones to Afford Functionalized Decalins. Angew Chem Int Ed Engl 2018; 57:13298-13301. [PMID: 30125444 DOI: 10.1002/anie.201808219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 01/12/2023]
Abstract
The decalin structure is found in bioactive molecules. We have developed catalytic enantioselective formal (4+2) cycloaddition reactions via aldol-aldol cascade reactions between pyruvate-derived diketoester derivatives and cyclohexane-1,3-dione derivatives that afford highly functionalized decalin derivatives. The reactions were performed using a quinidine-derived catalyst under mild conditions. Decalin derivatives bearing up to six chiral carbon centers including tetrasubstituted carbon centers were synthesized with high diastereo- and enantioselectivities. Five to six stereogenic centers were generated from achiral molecules with the formation of two C-C bonds in a single transformation resulting in the formation of the decalin system.
Collapse
Affiliation(s)
- Pandurang V Chouthaiwale
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Ravindra D Aher
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
16
|
Chouthaiwale PV, Aher RD, Tanaka F. Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol–Aldol Annulation of Pyruvate Derivatives with Cyclohexane‐1,3‐Diones to Afford Functionalized Decalins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pandurang V. Chouthaiwale
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Ravindra D. Aher
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| |
Collapse
|
17
|
Ye Q, Qu P, Snyder SA. Total Syntheses of Scaparvins B, C, and D Enabled by a Key C-H Functionalization. J Am Chem Soc 2017; 139:18428-18431. [PMID: 29227651 DOI: 10.1021/jacs.7b06185] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clerodane diterpene family possesses an impressive range of bioactivities and high synthetic challenge due to their unique amalgamation of rings, stereocenters, and oxygenation. Herein, we disclose the first total syntheses of three members, scaparvins B, C, and D, through a route fueled by several chemoselective and carefully orchestrated steps. One such operation is a tailored late-stage C-H functionalization converting a carboxylic acid into a lactone through the oxidation of a tertiary C-H bond under conditions that minimize epoxidation of an alkene. This step, among others, afforded critical functionality to complete the targets. In addition, use of an appropriate chiral catalyst with a Rawal diene renders the sequence enantioselective.
Collapse
Affiliation(s)
- Qinda Ye
- Department of Chemistry, Columbia University , 3000 Broadway, New York, New York 10027, United States.,Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States.,Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Pei Qu
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, Columbia University , 3000 Broadway, New York, New York 10027, United States.,Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States.,Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Kumar R, Hoshimoto Y, Tamai E, Ohashi M, Ogoshi S. Two-step synthesis of chiral fused tricyclic scaffolds from phenols via desymmetrization on nickel. Nat Commun 2017; 8:32. [PMID: 28652575 PMCID: PMC5484674 DOI: 10.1038/s41467-017-00068-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/26/2017] [Indexed: 12/04/2022] Open
Abstract
Tricyclic furan derivatives with multiple chiral centers are ubiquitous in natural products. Construction of such tricyclic scaffolds in a stereocontrolled, step-economic, and atom-economic manner is a key challenge. Here we show a nickel-catalyzed highly enantioselective synthesis of hydronaphtho[1,8-bc]furans with five contiguous chiral centers via desymmetrization of alkynyl-cyclohexadienone by oxidative cyclization and following formal [4 + 2] cycloaddition processes. Alkynyl-cyclohexadienone was synthesized in one step from easily accessible phenols. This reaction represents excellent chemo-selectivity, regio-selectivity, diastereo-selectivity, and enantio-selectivity (single diastereomer, up to 99% ee). An extraordinary regioselectivity in the formal [4 + 2] cycloaddition step with enones revealed the diverse reactivity of the nickelacycle intermediate. Desymmetrization of alkynyl-cyclohexadienones via oxidative cyclization on nickel was supported by the isolation of a nickelacycle from a stoichiometric reaction. Enantioenriched tricyclic products contain various functional groups such as C=O and C=C. The synthetic utility of these products was demonstrated by derivatization of these functional groups. Tricyclic furanic compounds with multiple chiral centers are found in a variety of natural products. Here, the authors show a highly enantioselective nickel-catalyzed procedure to access tricyclic oxygen-containing scaffolds with five contiguous chiral centers.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eri Tamai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Ohashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
|
20
|
Dhambri S, Mohammad S, Van Buu ON, Galvani G, Meyer Y, Lannou MI, Sorin G, Ardisson J. Recent advances in the synthesis of natural multifunctionalized decalins. Nat Prod Rep 2015; 32:841-64. [PMID: 25891138 DOI: 10.1039/c4np00142g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review highlights recent innovative synthetic strategies developed for the stereoselective construction of natural complex decalin systems. It offers an insight into various synthetic targets and approaches and provides information for developments within the area of natural products as well as synthetic methodology.
Collapse
Affiliation(s)
- S Dhambri
- Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Unité CNRS UMR 8638 COMÈTE, 4 avenue de l'observatoire, 75270 PARIS Cedex 06.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hack D, Blümel M, Chauhan P, Philipps AR, Enders D. Catalytic Conia-ene and related reactions. Chem Soc Rev 2015; 44:6059-93. [PMID: 26031492 DOI: 10.1039/c5cs00097a] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.
Collapse
Affiliation(s)
- Daniel Hack
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
22
|
Mineeva IV. Cyclopropanol methodology in the synthesis of (4R)- and (4S)-4-methyltetrahydro-2H-pyran-2-ones. Application in the synthesis of insect pheromones with methyl-branched carbon skeleton. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015030094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Du G, Bao W, Huang J, Huang S, Yue H, Yang W, Zhu L, Liang Z, Lee CS. Enantioselective Synthesis of the ABC-Tricyclic Core of Phomactin A by a γ-Hydroxylation Strategy. Org Lett 2015; 17:2062-5. [DOI: 10.1021/acs.orglett.5b00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangyan Du
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Wenli Bao
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Junrong Huang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Shuangping Huang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Hong Yue
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Wei Yang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Lizhi Zhu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Zhenhao Liang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| |
Collapse
|
24
|
Vasamsetty L, Sahu D, Ganguly B, Khan FA, Mehta G. Total synthesis of novel bioactive natural product paracaseolide A and analogues: computational evaluation of a ‘proposed’ biomimetic Diels–Alder reaction. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Hale KJ. Terpenoid- and shikimate-derived natural product total synthesis: a personal analysis and commentary on the importance of the papers that appear in this virtual issue. Org Lett 2014; 15:3181-98. [PMID: 23826672 DOI: 10.1021/ol401788y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Zhu L, Zhou C, Yang W, He S, Cheng GJ, Zhang X, Lee CS. Formal Syntheses of (±)-Platensimycin and (±)-Platencin via a Dual-Mode Lewis Acid Induced Cascade Cyclization Approach. J Org Chem 2013; 78:7912-29. [DOI: 10.1021/jo401105q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lizhi Zhu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Congshan Zhou
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
- College of Chemistry and Chemical
Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wei Yang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Shuzhong He
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Gui-Juan Cheng
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Xinhao Zhang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| |
Collapse
|
27
|
Zeng X. Recent Advances in Catalytic Sequential Reactions Involving Hydroelement Addition to Carbon–Carbon Multiple Bonds. Chem Rev 2013; 113:6864-900. [DOI: 10.1021/cr400082n] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoming Zeng
- Center for
Organic Chemistry, Frontier Institute of
Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, P. R. China
| |
Collapse
|
28
|
Urabe F, Nagashima S, Takahashi K, Ishihara J, Hatakeyama S. Total Synthesis of (−)-Cinatrin C1 Based on an In(OTf)3-Catalyzed Conia-Ene Reaction. J Org Chem 2013; 78:3847-57. [DOI: 10.1021/jo400263w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Fumiya Urabe
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi,
Nagasaki 852-8521,
Japan
| | - Shunsuke Nagashima
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi,
Nagasaki 852-8521,
Japan
| | - Keisuke Takahashi
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi,
Nagasaki 852-8521,
Japan
| | - Jun Ishihara
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi,
Nagasaki 852-8521,
Japan
| | - Susumi Hatakeyama
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi,
Nagasaki 852-8521,
Japan
| |
Collapse
|
29
|
Synthesis of chiral 2(5H)-furanone derivatives with 1,3-butadiyne structure. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|