1
|
Wang J, Zhou F, Xu Y, Zhang L. Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation. CHEM REC 2024:e202400161. [PMID: 39727226 DOI: 10.1002/tcr.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Indexed: 12/28/2024]
Abstract
Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry. Over the last few decades, Ir- and Ru-based organometallic photocatalysts have attracted significant interest because of their high stability, high-energy triplet state, strong visible-light absorption, long luminescence lifetime, and amenability to ligand modification. This review highlights the recent progress in the organometallic photocatalyst-promoted synthesis and modification of carbohydrates under photoirradiation, as well as the related benefits and drawbacks.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| |
Collapse
|
2
|
Ghosh B, Alber A, Lander CW, Shao Y, Nicholas KM, Sharma I. Catalytic Activation of Thioglycosides with Copper-Carbenes for Stereoselective 1,2- Cis-Furanosylations. Org Lett 2024; 26:9436-9441. [PMID: 39465984 DOI: 10.1021/acs.orglett.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Thioglycoside activation, crucial for oligosaccharide synthesis, faces challenges with the need for stoichiometric promoters, additives, and cryogenic conditions, particularly in stereoselective 1,2-cis-linkage formation. This study introduces a carbene-based catalytic method using Cu(OTf)2 for thioglycoside activation, enabling efficient 1,2-cis-furanosylation in ribose and arabinose. The method is orthogonal to conventional thioglycoside and alkyne donors, accommodates sterically demanding acceptors, and achieves stereoselectivity independent of the donor anomeric configuration and C2-protecting groups, with copper chelation playing a key role.
Collapse
Affiliation(s)
- Bidhan Ghosh
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Adam Alber
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Chance W Lander
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Kenneth M Nicholas
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
3
|
Ridgway LM, Das A, Shadrick ML, Demchenko AV. Ferric Chloride Promoted Glycosidation of Alkyl Thioglycosides. Molecules 2024; 29:4845. [PMID: 39459213 PMCID: PMC11510396 DOI: 10.3390/molecules29204845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Reported herein is a new reaction for glycosylation with thioglycosides in the presence of iron(III) chloride. Previously, FeCl3 was used for the activation of thioglycosides as a Lewis acid co-promoter paired with NIS. In the reported process, although 5.0 equiv of FeCl3 are needed to activate thioglycosides most efficiently, no additives were used, and the reactions with reactive glycosyl donors smoothly proceeded to completion in 1 h at 0 °C. This work showcases a new direction in developing glycosylation methods using greener and earth-abundant activators.
Collapse
Affiliation(s)
| | | | | | - Alexei V. Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103, USA
| |
Collapse
|
4
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
5
|
Hu LY, Zhang SY, Zhu L, Li Y, Luo K, Wu L. "Boomerang" Strategy in Carbohydrate Chemistry: Diastereoselective Synthesis of C-Glycosylated Benzothiazoles from ortho-Isocyanophenyl Thioglycosides. Org Lett 2024; 26:215-220. [PMID: 38117978 DOI: 10.1021/acs.orglett.3c03817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
This paper reveals a novel "boomerang" strategy in the expedient and diastereoselective synthesis of C-nucleoside analogues. Bench-stable ortho-isocyanophenyl thioglycosides can be converted to glycosyl radicals through rapid and efficient C-S bond homolysis when they are irradiated by visible light. The glycosyl radicals are subsequently trapped by the corresponding leaving group or other radical acceptors to provide diverse C-nucleoside analogues under mild conditions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen-Yuan Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
6
|
Zhang J, Luo ZX, Wu X, Gao CF, Wang PY, Chai JZ, Liu M, Ye XS, Xiong DC. Photosensitizer-free visible-light-promoted glycosylation enabled by 2-glycosyloxy tropone donors. Nat Commun 2023; 14:8025. [PMID: 38049421 PMCID: PMC10695961 DOI: 10.1038/s41467-023-43786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Photochemical glycosylation has attracted considerable attention in carbohydrate chemistry. However, to the best of our knowledge, visible-light-promoted glycosylation via photoactive glycosyl donor has not been reported. In the study, we report a photosensitizer-free visible-light-mediated glycosylation approach using a photoactive 2-glycosyloxy tropone as the donor. This glycosylation reaction proceeds at ambient temperature to give a wide range of O-glycosides or oligosaccharides with yields up to 99%. This method is further applied in the stereoselective preparation of various functional glycosyl phosphates/phosphosaccharides, the construction of N-glycosides/nucleosides, and the late-stage glycosylation of natural products or pharmaceuticals on gram scales, and the iterative synthesis of hexasaccharide. The protocol features uncomplicated conditions, operational simplicity, wide substrate scope (58 examples), excellent compatibility with functional groups, scalability of products (7 examples), and high yields. It provides an efficient glycosylation method for accessing O/N-glycosides and glycans.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Chen-Fei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jin-Ze Chai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China.
| |
Collapse
|
7
|
Duong T, Valenzuela EA, Ragains JR. Benzyne-Promoted, 1,2- cis-Selective O-Glycosylation with Benzylchalcogenoglycoside Donors. Org Lett 2023; 25:8526-8529. [PMID: 37970840 PMCID: PMC10696609 DOI: 10.1021/acs.orglett.3c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Here, we show that the reaction of benzylchalcogenoglycosides with benzyne in the presence of alcohols results in highly 1,2-cis-selective O-glycosylation in a solvent-dependent manner. Thioglycosides, selenoglycosides, and alcohols with a range of nucleophilicities lead to a productive reaction, and unusual protecting groups, auxiliary groups, and additives are avoided.
Collapse
Affiliation(s)
- Tiffany Duong
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Erik Alvarez Valenzuela
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
8
|
Dent A, Escopy S, Demchenko AV. Cooperatively Catalyzed Activation of Thioglycosides That Bypasses Intermediacy of Glycosyl Halides. Chemistry 2023; 29:e202300873. [PMID: 37154481 PMCID: PMC11370891 DOI: 10.1002/chem.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Reported herein is the development of a novel method for activating thioglycosides without a glycosyl halide intermediate. This has been achieved through the use of a silver salt coupled with an acid additive and molecular iodine. The enhanced stereocontrol was achieved via the H-bond mediated aglycone delivery (HAD) method, and the extended trisaccharide synthesis was achieved via iteration of deprotection and glycosylation steps.
Collapse
Affiliation(s)
- Ashley Dent
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Samira Escopy
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
9
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
10
|
Tong X, Li Z, Xi B, Wang Z, Li Y, Xue W. 3,5-Di(trifluoromethyl)phenyl(cyano)iodonium triflate as a novel and potential activator for p-tolyl thioglycoside donors. Org Biomol Chem 2023; 21:2101-2106. [PMID: 36815222 DOI: 10.1039/d2ob01940j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
3,5-Di(trifluoromethyl)phenyl(cyano)iodonium triflate is described as an accessible, stable, and powerful thiophile that can activate batches of p-tolyl thioglycoside donors at room temperature. Various alcoholic acceptors were efficiently glycosylated, providing the desired glycosides. The novel activation protocol features mild conditions as well as high compatibility with some classic strategies for the stereoselective construction of some biologically relevant glycosidic linkages, as exemplified by α-idosides, α-galactoamines, β-mannosides, and β-rhamnosides.
Collapse
Affiliation(s)
- Xiaowei Tong
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zuowa Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Boting Xi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhaoyan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yuan Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Weihua Xue
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
11
|
Matsukuma K, Tayu M, Yashiro Y, Yamaguchi T, Ohrui S, Saito N. A Photoredox/Sulfide Dual Catalysis System That Uses Sulfide Radical Cations to Promote Alkene Chlorotrifluoromethylation. Chem Pharm Bull (Tokyo) 2023; 71:695-700. [PMID: 37661375 DOI: 10.1248/cpb.c23-00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sulfides and their derivatives are among the most important class of reagent in synthetic chemistry. Despite the importance of such compounds, the use of sulfide radical cations in synthetic chemistry is underdeveloped. To address this issue, herein, we describe alkene chlorotrifluoromethylation reactions promoted by photoredox/sulfide dual catalysis systems, which involves sulfide radical cations generated through the oxidation of sulfides by a photoredox catalyst. The high functional group tolerance of this chemistry was demonstrated using natural products and drug molecules as substrate alkenes.
Collapse
|
12
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
13
|
Tsutsui Y, Tanaka D, Manabe Y, Ikinaga Y, Yano K, Fukase K, Konishi A, Yasuda M. Synthesis of Cage‐Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation. Chemistry 2022; 28:e202202284. [DOI: 10.1002/chem.202202284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yuya Tsutsui
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Daiki Tanaka
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yuka Ikinaga
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kumpei Yano
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Akihito Konishi
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
- Center for Atomic and Molecular Technologies Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Makoto Yasuda
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
14
|
Zhong X, Zhao X, Ao J, Huang Y, Liu Y, Zhou S, Li B, Ishiwata A, Fang Q, Yang C, Cai H, Ding F. An experimental and theoretical study on stereocontrolled glycosylations by a “one-pot” procedure. Org Chem Front 2022. [DOI: 10.1039/d2qo00727d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a “one-pot” strategy to install the stereoselectivity of both α- and β-glycosides by changing reaction conditions.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bizhi Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | | | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
15
|
Escopy S, Demchenko AV. Transition-Metal-Mediated Glycosylation with Thioglycosides. Chemistry 2021; 28:e202103747. [PMID: 34935219 DOI: 10.1002/chem.202103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/09/2022]
Abstract
Thioglycosides are among the most common glycosyl donors that find broad application in the synthesis of glycans and glycoconjugates. However, the requirement for toxic and/or large access of activators needed for common glycosylations with thioglycosides remains a notable drawback. Due to the increased awareness of the chemical waste impact on the environment, synthetic studies have been driven by the goal of finding non-toxic reagents. The main focus of this review is to highlight recent methods for thioglycoside activation that rely on transition metal catalysis.
Collapse
Affiliation(s)
- Samira Escopy
- University of Missouri - St. Louis, Chemistry, UNITED STATES
| | - Alexei V Demchenko
- Saint Louis University, Chemistry, 3501 Laclede Ave, 63103, St. Louis, UNITED STATES
| |
Collapse
|
16
|
Zhao G, Li J, Wang T. Visible-light-induced photoacid catalysis: application in glycosylation with O-glycosyl trichloroacetimidates. Chem Commun (Camb) 2021; 57:12659-12662. [PMID: 34768281 DOI: 10.1039/d1cc04887b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of visible-light-induced photoacid catalyzed glycosylation is reported. The eosin Y and PhSSPh catalyst system is applied to realize glycosylation with different glycosyl donors upon light irradiation. The reaction shows a broad substrate scope, including both glycosyl donors and acceptors, and highlights the mild nature of the reaction conditions.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Juncheng Li
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Ting Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
17
|
Cao Y, Zhou M, Mao RZ, Zou Y, Xia F, Liu DK, Liu J, Li Q, Xiong DC, Ye XS. Visible-light-promoted 3,5-dimethoxyphenyl glycoside activation and glycosylation. Chem Commun (Camb) 2021; 57:10899-10902. [PMID: 34590634 DOI: 10.1039/d1cc04473g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new glycosylation method promoted by visible light with 3,5-dimethoxyphenyl glycoside as the donor was developed. This protocol delivers both O-glycosides and N-glycosides in moderate to excellent yields using a wide range of O-nucleophiles and nucleobases as the glycosyl acceptors.
Collapse
Affiliation(s)
- Yafei Cao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| | - Minmin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China. .,School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Run-Ze Mao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| | - You Zou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| | - Feng Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| | - Da-Ke Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| | - Jianhui Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| |
Collapse
|
18
|
Abstract
Described herein is the first example of glycosidation of thioglycosides in the presence of palladium(ii) bromide. While the activation with PdBr2 alone was proven feasible, higher yields and cleaner reactions were achieved when these glycosylations were performed in the presence of propargyl bromide as an additive. Preliminary mechanistic studies suggest that propargyl bromide assists the reaction by creating an ionizing complex, which accelerates the leaving group departure. A variety of thioglycoside donors in reactions with different glycosyl acceptors were investigated to determine the initial scope of this new reaction. Selective and chemoselective activation of thioglycosides over other leaving groups has also been explored.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA.
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA.
| |
Collapse
|
19
|
Ansari K, Nazeef M, Ali S, Waseem MA, Shah WA, Ansari S, Siddiqui IR, Singh J. A metal‐free visible light promoted three‐component facile synthesis of 4‐oxo‐tetrahydroindoles in ethanol–water. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Khursheed Ansari
- Laboratory of Green Synthesis, Department of Chemistry University of Allahabad Allahabad India
| | - Mohd Nazeef
- Laboratory of Green Synthesis, Department of Chemistry University of Allahabad Allahabad India
| | - Shabir Ali
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Malik A. Waseem
- Department of Chemistry University of Kashmir Hazaratbal India
| | - Wajaht A. Shah
- Department of Chemistry University of Kashmir Hazaratbal India
| | - Saif Ansari
- Laboratory of Green Synthesis, Department of Chemistry University of Allahabad Allahabad India
| | - Ibadur R. Siddiqui
- Laboratory of Green Synthesis, Department of Chemistry University of Allahabad Allahabad India
| | - Jagdamba Singh
- Department of Chemistry University of Allahabad Allahabad India
| |
Collapse
|
20
|
Abstract
Carbohydrates are a large class of natural products that play key roles in a number of biological processes such as in cellular communication or disease progression. Carbohydrates are also used as vaccines and pharmaceuticals. Their synthesis through glycosylation reactions is challenging, and often stoichiometric amounts of promoters are required. Transition metal catalyzed glycosylation reactions are far less common, but can have advantages with respect to reaction conditions and selectivity. The review intends to approach the topic from the catalysis and carbohydrate perspective to encourage researchers from both the fields to perform research in the area. The article covers the basics in glycosylation and catalysis chemistry. The catalysts for the reaction can be roughly divided into two groups. In one group, the catalysts serve as Lewis acids. In the other group, the catalysts play a higher sophisticated role, are involved in all elementary steps of the mechanism and remain coordinated to the substrate throughout the whole catalytic cycle. Based on selected examples, the main trends in transition metal catalyzed glycosylation reactions are explained. Lewis acid catalysts tend to require a somewhat higher catalyst load compared to other organometallic catalysts. The reaction conditions such as the temperature and time depend in many cases on the leaving group employed. An outlook is also presented. The article is not meant to be comprehensive; it outlines the most common transition metal catalyzed processes with the intention to bring the catalysis and carbohydrate communities together and to inspire research activities in both areas.
Collapse
Affiliation(s)
- Eike B Bauer
- University of Missouri - St Louis, Department of Chemistry and Biochemistry, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
21
|
Gao J, Feng J, Du D. Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis. Chem Asian J 2020; 15:3637-3659. [DOI: 10.1002/asia.202000905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Jian Gao
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Jie Feng
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Ding Du
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| |
Collapse
|
22
|
Courant T, Lombard M, Boyarskaya DV, Neuville L, Masson G. Tritylium assisted iodine catalysis for the synthesis of unsymmetrical triarylmethanes. Org Biomol Chem 2020; 18:6502-6508. [PMID: 32789393 DOI: 10.1039/d0ob01502d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The combined Lewis acid catalytic system, generated from molecular iodine and tritylium tetrafluoroborate effectively catalyzed the Friedel-Crafts (FC) arylation of diarylmethyl sulfides providing an efficient access to various unsymmetrical triarylmethanes. The addition of tritylium and iodine created a more active catalytic system to promote the cleavage of sulfidic C-S bonds.
Collapse
Affiliation(s)
- Thibaut Courant
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Dina V Boyarskaya
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
23
|
Sifri RJ, Kennedy AJ, Fors BP. Photocontrolled cationic degenerate chain transfer polymerizations via thioacetal initiators. Polym Chem 2020. [DOI: 10.1039/d0py01100b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photocontrolled cationic polymerizations controlled through a degenerate chain transfer process and photocatalyst turnover to recap propagating chains.
Collapse
Affiliation(s)
- Renee J. Sifri
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Audrey J. Kennedy
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
24
|
Le T, Courant T, Merad J, Allain C, Audebert P, Masson G. s-Tetrazine Dyes: A Facile Generation of Photoredox Organocatalysts for Routine Oxidations. J Org Chem 2019; 84:16139-16146. [PMID: 31718179 DOI: 10.1021/acs.joc.9b02454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of organic dyes derived from s-tetrazine have been synthesized, and their photophysical and electrochemical properties are systematically investigated. Testing these compounds as photoredox catalysts in a model oxidative C-S bond cleavage of thioethers has led us to identify new classes of active s-tetrazines. Moreover, some of them can be formed in situ from commercially available 3,6-dichlorotetrazine, making this photocatalyzed C-S bond functionalization simple and highly practical.
Collapse
Affiliation(s)
- Tuan Le
- PPSM, ENS Paris-Saclay, CNRS, Université Paris-Saclay , 94235 Cachan , France
| | - Thibaut Courant
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse , 91198 Gif-sur-Yvette Cedex , France
| | - Jérémy Merad
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse , 91198 Gif-sur-Yvette Cedex , France
| | - Clémence Allain
- PPSM, ENS Paris-Saclay, CNRS, Université Paris-Saclay , 94235 Cachan , France
| | - Pierre Audebert
- PPSM, ENS Paris-Saclay, CNRS, Université Paris-Saclay , 94235 Cachan , France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse , 91198 Gif-sur-Yvette Cedex , France
| |
Collapse
|
25
|
Breder A, Depken C. Lichtgetriebene Ein‐Elektronen‐Transferprozesse als Funktionsprinzip in der Schwefel‐ und Selen‐Multikatalyse. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Breder
- Institut für Organische ChemieUniversität Regensburg Universitätsstrasse 31 93053 Regenburg Deutschland
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Christian Depken
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| |
Collapse
|
26
|
Breder A, Depken C. Light‐Driven Single‐Electron Transfer Processes as an Enabling Principle in Sulfur and Selenium Multicatalysis. Angew Chem Int Ed Engl 2019; 58:17130-17147. [DOI: 10.1002/anie.201812486] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Breder
- Institut für Organische ChemieUniversität Regensburg Universitätsstrasse 31 93053 Regenburg Deutschland
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Christian Depken
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| |
Collapse
|
27
|
Levitre G, Audubert C, Dumoulin A, Goual N, Retailleau P, Moreau X, Masson G. Combining Organocatalysis and Photoredox Catalysis: An Asymmetric Synthesis of Chiral
β‐
Amino
α‐
Substituted Tryptamines. ChemCatChem 2019. [DOI: 10.1002/cctc.201901266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guillaume Levitre
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-SudUniversité Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Clément Audubert
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-SudUniversité Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Audrey Dumoulin
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-SudUniversité Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Nawel Goual
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-SudUniversité Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-SudUniversité Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Xavier Moreau
- Institut Lavoisier Versailles UMR CNRS 8180Université de Versailles-St-Quentin-en-Yvelines Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-SudUniversité Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| |
Collapse
|
28
|
Li Y, Li XL, Lai CJS, Wang RS, Kang LP, Ma T, Zhao ZH, Gao W, Huang LQ. Functional characterization of three flavonoid glycosyltransferases from Andrographis paniculata. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190150. [PMID: 31312486 PMCID: PMC6599797 DOI: 10.1098/rsos.190150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/17/2019] [Indexed: 05/04/2023]
Abstract
Andrographis paniculata is an important traditional medicinal herb in South and Southeast Asian countries with diverse pharmacological activities that contains various flavonoids and flavonoid glycosides. Glycosylation can transform aglycones into more stable, biologically active and structurally diverse glycosides. Here, we report three glycosyltransferases from the leaves of A. paniculata (ApUFGTs) that presented wide substrate spectra for flavonoid glycosylation and exhibited multi-site glycosylation on the substrate molecules. They acted on the 7-OH position of the A ring and were able to glycosylate several other different types of compounds. The biochemical properties and phylogenetic analysis of these glycosyltransferases were also investigated. This study provides a basis for further research on the cloning of genes involved in glycosylation from A. paniculata and offers opportunities for enhancing flavonoid glycoside production in heterologous hosts. These enzymes are expected to become effective tools for drug discovery and for the biosynthesis of derivatives via flavonoid glycosylation.
Collapse
Affiliation(s)
- Yuan Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Xin-Lin Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Chang-Jiang-Sheng Lai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Rui-Shan Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Li-Ping Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ting Ma
- Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Zhen-Hua Zhao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, People's Republic of China
- Authors for correspondence: Wei Gao e-mail:
| | - Lu-Qi Huang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
- Authors for correspondence: Lu-Qi Huang e-mail:
| |
Collapse
|
29
|
Abstract
Because of their pivotal biological functions, attention to sugars and glycobiology has grown rapidly in recent decades, leading to increased demand for homogeneous oligosaccharides. The stereoselective preparation of oligosaccharides by chemical means remains challenging and continues to be a vivid research area for organic chemists. In the past decade, new approaches and reinvestigated traditional methods have transformed the field. These developments include novel catalyses, various types of glycosylation modulators and the use of photochemical energy to facilitate glycosylation. This Minireview presents a brief overview of the latest trends in chemical glycosylation, with emphasis on the stereoselective synthetic protocols developed in the past decade.
Collapse
Affiliation(s)
- Jesse Ling
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, USA
| | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, USA
| |
Collapse
|
30
|
Krumb M, Lucas T, Opatz T. Visible Light Enables Aerobic Iodine Catalyzed Glycosylation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Matthias Krumb
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Tobias Lucas
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Till Opatz
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
31
|
Du S, Ragains JR. MPTGs: Thioglycoside Donors for Acid-Catalyzed O-Glycosylation and Latent-Active Synthetic Strategies. Org Lett 2019; 21:980-983. [DOI: 10.1021/acs.orglett.8b03958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaofu Du
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
32
|
Li Y, Lin HX, Wang J, Yang J, Lai CJS, Wang X, Ma BW, Tang JF, Li Y, Li XL, Guo J, Gao W, Huang LQ. Glucosyltransferase Capable of Catalyzing the Last Step in Neoandrographolide Biosynthesis. Org Lett 2018; 20:5999-6002. [DOI: 10.1021/acs.orglett.8b02146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
| | - Hui-Xin Lin
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Jian Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Chang-Jiang-Sheng Lai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
| | - Bao-Wei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
| | - Jin-Fu Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Yong Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xin-Lin Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, P. R. China
| | - Lu-Qi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
33
|
Abstract
Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.
Collapse
Affiliation(s)
- Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
34
|
Lacey KD, Quarels RD, Du S, Fulton A, Reid NJ, Firesheets A, Ragains JR. Acid-Catalyzed O-Glycosylation with Stable Thioglycoside Donors. Org Lett 2018; 20:5181-5185. [DOI: 10.1021/acs.orglett.8b02125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kristina D. Lacey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rashanique D. Quarels
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Shaofu Du
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ashley Fulton
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Nicholas J. Reid
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Austin Firesheets
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
35
|
Lanzi M, Merad J, Boyarskaya DV, Maestri G, Allain C, Masson G. Visible-Light-Triggered C–C and C–N Bond Formation by C–S Bond Cleavage of Benzylic Thioethers. Org Lett 2018; 20:5247-5250. [DOI: 10.1021/acs.orglett.8b02196] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Matteo Lanzi
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- Università di Parma, Dipartimento SCVSA, 17/A Parco Area delle Scienze, 43124 Parma, Italy
| | - Jérémy Merad
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Dina V. Boyarskaya
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Giovanni Maestri
- Università di Parma, Dipartimento SCVSA, 17/A Parco Area delle Scienze, 43124 Parma, Italy
| | - Clémence Allain
- PPSM, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
36
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
37
|
Sulfur Radicals and Their Application. Top Curr Chem (Cham) 2018; 376:22. [DOI: 10.1007/s41061-018-0197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
|
38
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800909] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
39
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018; 57:6120-6124. [DOI: 10.1002/anie.201800909] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
40
|
Xu FF, Pereira CL, Seeberger PH. 1,3-Dibromo-5,5-dimethylhydantoin as promoter for glycosylations using thioglycosides. Beilstein J Org Chem 2017; 13:1994-1998. [PMID: 29062419 PMCID: PMC5629399 DOI: 10.3762/bjoc.13.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/07/2017] [Indexed: 01/02/2023] Open
Abstract
1,3-Dibromo-5,5-dimethylhydantoin (DBDMH), an inexpensive, non-toxic and stable reagent, is a competent activator of thioglycosides for glycosidic bond formation. Excellent yields were obtained when triflic acid (TfOH) or trimethylsilyl trifluoromethanesulfonate (TMSOTf) were employed as co-promoters in solution or automated glycan assembly on solid phase.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Vaxxilon Deutschland GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
41
|
Xia MJ, Yao W, Meng XB, Lou QH, Li ZJ. Co 2 (CO) 6 -propargyl cation mediates glycosylation reaction by using thioglycoside. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Abstract
Photocatalytic formation of glycosidic bonds employing stable and readily accessible O-glycosyl derivatives of 2,2,6,6-tetramethylpiperidin-1-ol is presented that employs an iridium-based photocatalyst and blue LEDs. The reaction proceeds at room temperature and in the absence of additives other than 4 Å molecular sieves. Stereoselectivities are modest but nevertheless dependent on the anomeric configuration of the donor, suggesting a substantial degree of concerted character.
Collapse
Affiliation(s)
- Peng Wen
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
43
|
Sangwan R, Mandal PK. Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Adv 2017. [DOI: 10.1039/c7ra01858d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbohydrates have been demonstrated to perform imperative act in biological processes. This review highlights recent uses of photoinduced glycosylation in carbohydrate chemistry for the synthesis of oligosaccharides, thiosugars, glycoconjugates and glycoprotein.
Collapse
Affiliation(s)
- Rekha Sangwan
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
44
|
Santacroce V, Duboc R, Malacria M, Maestri G, Masson G. Visible-Light, Photoredox-Mediated Oxidative Tandem Nitroso-Diels-Alder Reaction of Arylhydroxylamines with Conjugated Dienes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Veronica Santacroce
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1, av. de la Terrasse 91198 Gif-sur-Yvette Cedex France
- Dipartimento di Chimica; Università degli Studi di Parma; 17/A Parco Area delle Scienze 43124 Parma Italy
| | - Raphael Duboc
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1, av. de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Max Malacria
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1, av. de la Terrasse 91198 Gif-sur-Yvette Cedex France
- IPCM (UMR CNRS 7201); UPMC Sorbonne Universités; 4 place Jussieu, C. 229 75005 Paris France
| | - Giovanni Maestri
- Dipartimento di Chimica; Università degli Studi di Parma; 17/A Parco Area delle Scienze 43124 Parma Italy
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1, av. de la Terrasse 91198 Gif-sur-Yvette Cedex France
| |
Collapse
|
45
|
Zhang W, Luo X, Wang Z, Zhang J. One-pot synthesis of β-2,6-dideoxyglycosides via glycosyl iodide intermediates. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1239729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaosheng Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhongfu Wang
- School of Life Sciences, Northwestern University, Xi'an, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
46
|
Li X, Zhu J. Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600484] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohua Li
- Department of Natural Sciences; University of Michigan-Dearborn; 4901 Evergreen Road 48128 Dearborn Michigan USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering; The University of Toledo; 2801 West Bancroft Street 43606 Toledo Ohio USA
| |
Collapse
|
47
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
48
|
Smith R, Müller-Bunz H, Zhu X. Investigation of α-Thioglycoside Donors: Reactivity Studies toward Configuration-Controlled Orthogonal Activation in One-Pot Systems. Org Lett 2016; 18:3578-81. [PMID: 27399930 DOI: 10.1021/acs.orglett.6b01572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The influence of anomeric configuration upon thioglycoside donors remains relatively unexplored. Utilizing methodology developed for the stereoselective and high-yielding synthesis of α-glycosyl thiols, a series of α-thioglycosides were synthesized, and their reactivity was compared to that of their β-counterparts. The highly selective activation observed for anomeric pairs containing a 2-O-acyl moiety and additional findings are reported. Application of a pair of "superarmed" thioglycosides to a one-pot oligosaccharide system is also described, in which selectivity is a result of configuration-based orthogonal activation.
Collapse
Affiliation(s)
- Raymond Smith
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin , Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin , Belfield, Dublin 4, Ireland
| | - Xiangming Zhu
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
49
|
Vibhute AM, Dhaka A, Athiyarath V, Sureshan KM. A versatile glycosylation strategy via Au(iii) catalyzed activation of thioglycoside donors. Chem Sci 2016; 7:4259-4263. [PMID: 30090287 PMCID: PMC6054025 DOI: 10.1039/c6sc00633g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Among various methods of chemical glycosylations, glycosylation by activation of thioglycoside donors using a thiophilic promoter is an important strategy. Many promoters have been developed for the activation of thioglycosides. However, incompatibility with substrates having alkenes and the requirement of a stoichiometric amount of promoters, co-promoters and extreme temperatures are some of the limitations. We have developed an efficient methodology for glycosylation via the activation of thioglycoside donors using a catalytic amount of AuCl3 and without any co-promoter. The reaction is very fast, high-yielding and very facile at room temperature. The versatility of this method is evident from the facile glycosylation with both armed and disarmed donors and sterically demanding substrates (acceptors/donors) at ambient conditions, from the stability of the common protecting groups, and from the compatibility of alkene-containing substrates during the reaction.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Arun Dhaka
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Vignesh Athiyarath
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Kana M Sureshan
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| |
Collapse
|
50
|
Jarrige L, Levitre G, Masson G. Visible-Light Photoredox-Catalyzed Coupling Reaction of Azoles with α-Carbamoyl Sulfides. J Org Chem 2016; 81:7230-6. [DOI: 10.1021/acs.joc.6b01108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lucie Jarrige
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Guillaume Levitre
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|