1
|
Nie Z, Wu K, Zhan X, Yang W, Lian Z, Lin S, Wang SG, Yin Q. Palladium-catalyzed difluorocarbene transfer enables access to enantioenriched chiral spirooxindoles. Nat Commun 2024; 15:8510. [PMID: 39353887 PMCID: PMC11445564 DOI: 10.1038/s41467-024-52392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
We disclose herein an unprecedented Pd-catalyzed difluorocarbene transfer reaction, which assembles a series of structurally interesting chiral spiro ketones with generally over 90% ee. Commercially available BrCF2CO2K serves as the difluorocarbene precursor, which is harnessed as a user-friendly and safe carbonyl source in this transformation. Preliminary mechanistic studies exclude the formation of free CO in the reaction process, and importantly, we also find that BrCF2CO2K outcompete gaseous CO and several common CO surrogates in this asymmetric process. The reaction mechanism, including the in-situ progressive release of the difluorocarbene, the rapid migratory insertion of ArPd(II) = CF2 species, and subsequent defluorination hydrolysis by water to introduce the carbonyl group, accounts for the overall high efficiency and uniqueness. This work clearly showcases the advantage and potential of the difluorocarbene in synthesis and supplies a mechanistically distinct route for asymmetric carbonylative cyclization reactions.
Collapse
Affiliation(s)
- Zhiwen Nie
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Keqin Wu
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiaohang Zhan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Weiran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Shaoquan Lin
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qin Yin
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| |
Collapse
|
2
|
Rao C, Zhang T, Huang H. Dialkylation of CF 2 unit enabled by cobalt electron-shuttle catalysis. Nat Commun 2024; 15:7924. [PMID: 39256384 PMCID: PMC11387730 DOI: 10.1038/s41467-024-51532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
The incorporation of difluoromethylene (CF2) group into chemical molecules often imparts desirable properties such as lipophilicity, binding affinity, and thermal stability. Consequently, the increasing demand for gem-difluoroalkylated compounds in drug discovery and materials science has continued to drive the development of practical methods for their synthesis. However, traditional synthetic methods such as deoxofluorination often confront challenges including complicated substrate synthesis sequences and poor functional group compatibility. In this context, we herein report a metal electron-shuttle catalyzed, modular synthetic methodology for difluoroalkylated compounds by assembling two C(sp3) fragments across CF2 unit in a single step. The approach harnesses a difluoromethylene synthon as a biradical linchpin, achieving the construction of two C(sp3)-CF2 bonds through radical addition to two different π-unsaturated molecules. This catalytic protocol is compatible with broad range of coupling partners including diverse olefins, iminiums, and hydrazones, supporting endeavors in the efficient construction of C(sp3)-rich difluoroalkylated molecules.
Collapse
Affiliation(s)
- Changqing Rao
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianze Zhang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
3
|
Gladkov AA, Levin VV, Dilman AD. Photoredox Activation of Fluorinated Organozinc Reagents: Hydrofluoroalkylation of Unactivated and Electron Deficient Alkenes. J Org Chem 2024; 89:11826-11835. [PMID: 39059413 DOI: 10.1021/acs.joc.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hydrofluoroalkylation of alkenes with organozinc reagents under photocatalytic conditions is described. The fluorinated alkyl radicals were generated from organozincs by the single electron oxidation of the carbon-zinc bond. The radical addition step is followed either by hydrogen atom transfer for unactivated olefins or by a reduction/protonation sequence for strongly accepting arylidenemalononitriles.
Collapse
Affiliation(s)
- Anton A Gladkov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, 119991, Moscow, Leninskie Gory 1-3, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
4
|
Zhang YY, Zhang Y, Xue XS, Qing FL. Reversal of the Regioselectivity of Iron-Promoted Hydrogenation and Hydrohalogenation of gem-Difluoroalkenes. Angew Chem Int Ed Engl 2024; 63:e202406324. [PMID: 38637292 DOI: 10.1002/anie.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The reaction regioselectivity of gem-difluoroalkenes is dependent on the intrinsic polarity. Thus, the reversal of the regioselectivity of the addition reaction of gem-difluoroalkenes remains a formidable challenge. Herein, we described an unprecedented reversal of regioselectivity of hydrogen atom transfer (HAT) to gem-difluoroalkenes triggered by Fe-H species for the formation of difluoroalkyl radicals. Hydrogenation of the in situ generated radicals gave difluoromethylated products. Mechanism experiments and theoretical studies revealed that the kinetic effect of the irreversible HAT process resulted in the reversal of the regioselectivity of this scenario, leading to the formation of a less stable α-difluoroalkyl radical regioisomer. On basis of this new reaction of gem-difluoroalkene, the iron-promoted hydrohalogenation of gem-difluoroalkenes for the efficient synthesis of aliphatic chlorodifluoromethyl-, bromodifluoromethyl- and iododifluoromethyl-containing compounds was developed. Particularly, this novel hydrohalogenation of gem-difluoroalkenes provided an effect and large-scale access to various iododifluoromethylated compounds of high value for synthetic application.
Collapse
Affiliation(s)
- Yu-Yang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
6
|
Jiang X, Song Y, Peng J, Zhong Z, Chen L, Zeng X. Oxidant- and Base-Free, Copper-Catalyzed Difluoromethylation of Haloalkynes. Org Lett 2023; 25:8127-8132. [PMID: 37922337 DOI: 10.1021/acs.orglett.3c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
We report herein a highly efficient copper-catalyzed protocol for the transformation of haloalkynes to the corresponding difluoromethylated alkynes. This scalable protocol exhibits a broad substrate scope and excellent functional group tolerance, enabling the late-stage difluoromethylation of bioactive molecules. Additionally, the strategy of utilizing the difluoromethylalkynes in gram-scale reactions and multiple transformations has proven to be highly valuable in synthetic chemistry.
Collapse
Affiliation(s)
- Xujuan Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanshan Song
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Junjie Peng
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhiying Zhong
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Li Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
7
|
Levin VV, Dilman AD. Visible-Light Promoted Radical Fluoroalkylation of O- and N-Substituted Alkenes. CHEM REC 2023; 23:e202300038. [PMID: 37017493 DOI: 10.1002/tcr.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Indexed: 04/06/2023]
Abstract
Interaction of enol ethers enol acetates, enamides and enamines with fluorinated reagents may be considered as a reliable method for the synthesis of organofluorine compounds. While classic nucleophile/electrophile substitution or addition mechanisms cannot be realized for coupling of these components, their intrinsic reactivities are revealed with the aid of photoredox catalysis. A combination of these electron donating and accepting components provides a perfect balance needed for individual redox steps, which in some cases may proceed even without a photocatalyst. The same electronic factors also support the key C,C-bond forming event involving addition of fluorinated radical at the electron rich double bond.
Collapse
Affiliation(s)
- Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
8
|
Liang H, Morken JP. Stereospecific Transformations of Alkylboronic Esters Enabled by Direct Boron-to-Zinc Transmetalation. J Am Chem Soc 2023; 145:9976-9981. [PMID: 37126565 PMCID: PMC10407644 DOI: 10.1021/jacs.3c01677] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chiral secondary organoboronic esters, when activated with t-butyllithium, are shown to undergo efficient stereoretentive transmetalation with either zinc acetate or zinc chloride. This reaction provides chiral secondary alkylzinc reagents that are configurationally stable under practical experimental conditions. The organozinc compounds were found to engage in stereospecific reactions with difluorocarbene, catalytic cross-couplings with palladium-based catalysts, and trifluoromethylation with a copper(III) complex. Mechanistic and computational studies shed light on the inner workings of the transmetalation event.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
9
|
Liu A, Ni C, Xie Q, Hu J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF 2 Br. Angew Chem Int Ed Engl 2023; 62:e202217088. [PMID: 36517973 DOI: 10.1002/anie.202217088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We have developed a new strategy for controllable single and double difluoromethylene (CF2 ) formal insertions into C-H bonds of aldehydes with nearly full selectivity under transition-metal-free conditions. The key to the success of controllable CF2 insertions lies in the well-defined formation of 2,2-difluoroenolsilyl ether and 2,2,3,3-tetrafluorocyclopropanolsilyl ether intermediates using difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). These two intermediates can react with various electrophiles including proton sources and various halogenation reagents, allowing for the access to diverse arrays of ketones containing difluoromethylene (CF2 ) and tetrafluoroethylene (CF2 CF2 ) units. The first synthesis of relatively stable 2,2,3,3-tetrafluorocyclopropanolsilyl ethers has been achieved, which offers a new platform to explore other unknown chemical space.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
10
|
Allylic substitution reactions with fluorinated nucleophiles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Diao Z, Feng Y, Zhang J, Wang X, Li H, Ding C, Zhou Z, Li X. Nickel‐Catalyzed Reductive Cross‐Coupling of (Hetero)aryl Halides with 2‐Chloro‐1,1‐difluoroethane: Facile Access to 2,2‐Difluoroethylated Aromatics. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhengzhen Diao
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yu Feng
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Jida Zhang
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xin Wang
- Dongyue Fluorosilicone Technology State Key Laboratory of Fluorinated Functional Membrane Materials CHINA
| | - Hansheng Li
- Dongyue Fluorosilicone Technology State Key Laboratory of Fluorinated Functional Membrane Materials CHINA
| | - Chen Ding
- Dongyue Fluorosilicone Technology State Key Laboratory of Fluorinated Functional Membrane Materials CHINA
| | - Zhen Zhou
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xinjin Li
- Shandong University of Technology School of Chemistry and Chemical Engineering 266 West Xincun Road 255000 Zibo CHINA
| |
Collapse
|
12
|
Ren X, Gao X, Min QQ, Zhang S, Zhang X. (Fluoro)alkylation of alkenes promoted by photolysis of alkylzirconocenes. Chem Sci 2022; 13:3454-3460. [PMID: 35432852 PMCID: PMC8943901 DOI: 10.1039/d1sc07061d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/16/2022] [Indexed: 01/17/2023] Open
Abstract
Difluoroalkylated compounds have important applications in pharmaceutical, agrochemical, and materials science. However, efficient methods to construct the alkylCF2–alkyl bond are very limited, and the site-selective introduction of a difluoromethylene (CF2) group into an aliphatic chain at the desired position remains challenging. Here, we report an unprecedented example of alkylzirconocene promoted difluoroalkylation of alkyl- and silyl-alkenes with a variety of unactivated difluoroalkyl iodides and bromides under the irradiation of visible light without a catalyst. The resulting difluoroalkylated compounds can serve as versatile synthons in organic synthesis. The reaction can also be applied to activated difluoroalkyl, trifluoromethyl, perfluoroalkyl, monofluoroalkyl, and nonfluorinated alkyl halides, providing a general method to controllably access fluorinated compounds. Preliminary mechanistic studies reveal that a single electron transfer (SET) pathway induced by a Zr(iii) species is involved in the reaction, in which the Zr(iii) species is generated by the photolysis of alkylzirconocene with blue light. An unprecedented example of alkylzirconocene promoted difluoroalkylation of alkyl- and silyl-alkenes with a variety of fluoroalkyl and nonfluoroalkyl halides under the irradiation of visible light has been reported.![]()
Collapse
Affiliation(s)
- Xiaoxiao Ren
- Green Catalysis Center, and College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xing Gao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao-Qiao Min
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Shu Zhang
- The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Xingang Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
13
|
Fang Y, Li X, Liu C, Tang J, Chen Z. Nucleophilic Substitution of Selenosulfonates with Me 3SiCF 2Br: Facile and Efficient Access to Bromodifluoromethylated Selenides under Metal-Free Conditions. J Org Chem 2021; 86:18081-18093. [PMID: 34823360 DOI: 10.1021/acs.joc.1c02349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile synthesis of bromodifluoromethylated selenides under metal-free conditions is described here. Commercially available Me3SiCF2Br and bench-stable selenosulfonates react smoothly to give a broad scope of alkyl- and aryl-substituted bromodifluoromethylated selenides in moderate to good yields via a difluorocarbene intermediate. This protocol features a short reaction time, the absence of toxic waste, good scalability, and successful late-stage modification of bioactive molecules. In addition, the title products can be easily converted to different fluorinated and 18F-labeled selenides.
Collapse
Affiliation(s)
- Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xin Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
14
|
Zhao HY, Zhou M, Zhang X. Palladium-Catalyzed Carbonylative Cross-Coupling of Difluoroalkyl Halides with Alkylboranes under 1 atm of CO. Org Lett 2021; 23:9106-9111. [PMID: 34806890 DOI: 10.1021/acs.orglett.1c03396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium catalyzed carbonylative cross-coupling of difluoroalkyl halides with alkyl-9-BBN under 1 atm of CO has been developed. The reaction shows broad substrate scope and high functional group tolerance, even toward complex pharmaceuticals, providing a general and straightforward method to access alkyldifluoroalkyl ketones. Preliminary mechanistic studies reveal that a radical pathway is involved in the reaction.
Collapse
Affiliation(s)
- Hai-Yang Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Minqi Zhou
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
15
|
Hayashi H, Takano H, Katsuyama H, Harabuchi Y, Maeda S, Mita T. Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO 2 : Computational Design, Scope, and Applications. Chemistry 2021; 27:10040-10047. [PMID: 33929060 DOI: 10.1002/chem.202100812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/24/2022]
Abstract
A three-component reaction (3CR) for the synthesis of difluoroglycine derivatives has been achieved by using amines, difluorocarbene (generated in situ), and the abundant, inexpensive, and nontoxic C1 source CO2 . Various tert-amines and pyridine, (iso)quinoline, imidazole, thiazole, and pyrazole derivatives were incorporated, and the corresponding products were isolated in solid form without purification by column chromatography on silica gel. Detailed reaction profiles of the 3CR were obtained from computational analysis using DFT calculations, and the results critically suggest that simple ammonia is not applicable to this reaction. In addition, as strongly supported by computational predictions, a new reagent that can generate difluorocarbene at 0 °C without any additives was discovered. Finally, radical substitution reactions of the obtained difluoroglycine derivatives under photoredox conditions, as well as a synthetic application as an N-heterocyclic carbene ligand are shown.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan
| | - Hitomi Katsuyama
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 3050044, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan
| |
Collapse
|
16
|
Selmi-Higashi E, Zhang J, Cambeiro XC, Arseniyadis S. Synthesis of α-Difluoromethyl Aryl Ketones through a Photoredox Difluoromethylation of Enol Silanes. Org Lett 2021; 23:4239-4243. [PMID: 34029113 DOI: 10.1021/acs.orglett.1c01177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here an efficient and highly straightforward access to α-difluoromethylated ketones through a visible light-mediated difluoromethylation of readily available enol silanes. The method, which takes advantage of the polyvalence of Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, used here as a CHF2 radical precursor under catalytic photoredox conditions, is practical, scalable, and provides the corresponding α-CHF2 ketones in good to excellent yields.
Collapse
Affiliation(s)
- Elias Selmi-Higashi
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jinlei Zhang
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Xacobe C Cambeiro
- School of Science, University of Greenwich, Chatham Maritime ME4 4TB, U.K
| | - Stellios Arseniyadis
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
17
|
Cai Y, Zhu W, Zhao S, Dong C, Xu Z, Zhao Y. Difluorocarbene-Mediated Cascade Cyclization: The Multifunctional Role of Ruppert-Prakash Reagent. Org Lett 2021; 23:3546-3551. [PMID: 33913711 DOI: 10.1021/acs.orglett.1c00962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A difluorocarbene-mediated cascade cyclization reaction for rapid access to gem-difluorinated 3-coumaranone derivatives was developed. The difluorocarbene acts as a bipolar CF2 building block, which enables a homologation cyclization process via sequentially reacting with the phenolate and the ester group on the same substrate. The potential application of this synthetic approach is demonstrated by a late-stage modification of diethylstilbestrol. Mechanistic studies revealed the multiple crucial roles played by the Ruppert-Prakash reagent.
Collapse
Affiliation(s)
- Yanyao Cai
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Wenjie Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chanjuan Dong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Novel multi-functionalized fluorine-containing organometallics: Preparation and applications of tetrafluoroethylenated zinc reagent. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Abstract
Ascorbic acid is the most well-known vitamin found in different types of food. It has
tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics,
and in organic synthesis. Ascorbic acid can be used as a substrate or mediator in organic synthesis.
In this review, we report ascorbic acid-catalyzed reactions in organic synthesis. Several examples
are included in this review to demonstrate that ascorbic acid is a versatile catalyst for the synthesis
of diverse organic compounds. Reactions catalyzed by ascorbic acid are performed in organic or
aqueous media. The ready availability and easy handling features of ascorbic acid make these procedures
highly fascinating.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003 (UP), India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
20
|
García-Domínguez A, West TH, Primozic JJ, Grant KM, Johnston CP, Cumming GG, Leach AG, Lloyd-Jones GC. Difluorocarbene Generation from TMSCF3: Kinetics and Mechanism of NaI-Mediated and Si-Induced Anionic Chain Reactions. J Am Chem Soc 2020; 142:14649-14663. [DOI: 10.1021/jacs.0c06751] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrés García-Domínguez
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Thomas H. West
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Johann J. Primozic
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Katie M. Grant
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Craig P. Johnston
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Grant G. Cumming
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G. Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
21
|
Ilin EA, Smirnov VO, Volodin AD, Korlyukov AA, Dilman AD. ortho-Dialkylamino arylboranes as efficient reagents for difluorocarbene trapping. Chem Commun (Camb) 2020; 56:7140-7142. [DOI: 10.1039/d0cc02567d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A readily accessible reagent bearing ortho-oriented amino and boryl groups efficiently traps difluorocarbene.
Collapse
Affiliation(s)
- Egor A. Ilin
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
- Department of Chemistry
- Lomonosov Moscow State University
| | - Vladimir O. Smirnov
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Alexander D. Volodin
- A. N. Nesmeyanov Institute of Organoelement Compounds
- 119991 Moscow
- Russian Federation
| | | | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| |
Collapse
|
22
|
Supranovich VI, Chernov GN, Levin VV, Dilman AD. Photoredox Fluoroalkylation of Arylidene and Alkylidene Amidrazones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Grigory N. Chernov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
- Department of Chemistry; Moscow State University; Leninskie Gory 1-3 119991 Moscow Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
23
|
Das S, Ko N, Lee E, Kim SE, Lee BC. Stereoselective three-component cascade synthesis of α-substituted 2,4-dienamides from gem-difluorochloro ethanes. Chem Commun (Camb) 2019; 55:14355-14358. [PMID: 31720605 DOI: 10.1039/c9cc07100h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a new transition metal-free Claisen rearrangement for the synthesis of α-substituted 2,4-dienamides. The one-pot, stereoselective three-component cascade reaction between a series of propargyl alcohols, amines, and gem-difluorochloro ethane derivatives afforded various polysubstituted 2,4-dienamides in good yields. This synthetic method for 1,1-captodative dienes, α-substituted 2,4-dienamides, can be utilized for preparing pharmaceutical analogues containing an indolin-2-one or lactone moiety.
Collapse
Affiliation(s)
- Shyamsundar Das
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.
| | | | | | | | | |
Collapse
|
24
|
Xie Q, Zhu Z, Ni C, Hu J. Nucleophilic (Phenylsulfonyl/arylthio)difluoromethylation of Aldehydes with TMSCF2Br: A Three-Component Strategy. Org Lett 2019; 21:9138-9141. [DOI: 10.1021/acs.orglett.9b03520] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Ziyue Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
25
|
Zhu TH, Zhang ZY, Tao JY, Zhao K, Loh TP. Regioselective and Stereoselective Difluoromethylation of Enamides with Difluoromethyltriphenylphosphonium Bromide via Photoredox Catalysis. Org Lett 2019; 21:6155-6159. [DOI: 10.1021/acs.orglett.9b02361] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tong-Hao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Institute of Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Yu Tao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
26
|
Xie Q, Zhu Z, Li L, Ni C, Hu J. A General Protocol for C−H Difluoromethylation of Carbon Acids with TMSCF
2
Br. Angew Chem Int Ed Engl 2019; 58:6405-6410. [DOI: 10.1002/anie.201900763] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Qiqiang Xie
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Ziyue Zhu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Lingchun Li
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
27
|
Politanskaya LV, Selivanova GA, Panteleeva EV, Tretyakov EV, Platonov VE, Nikul’shin PV, Vinogradov AS, Zonov YV, Karpov VM, Mezhenkova TV, Vasilyev AV, Koldobskii AB, Shilova OS, Morozova SM, Burgart YV, Shchegolkov EV, Saloutin VI, Sokolov VB, Aksinenko AY, Nenajdenko VG, Moskalik MY, Astakhova VV, Shainyan BA, Tabolin AA, Ioffe SL, Muzalevskiy VM, Balenkova ES, Shastin AV, Tyutyunov AA, Boiko VE, Igumnov SM, Dilman AD, Adonin NY, Bardin VV, Masoud SM, Vorobyeva DV, Osipov SN, Nosova EV, Lipunova GN, Charushin VN, Prima DO, Makarov AG, Zibarev AV, Trofimov BA, Sobenina LN, Belyaeva KV, Sosnovskikh VY, Obydennov DL, Usachev SA. Organofluorine chemistry: promising growth areas and challenges. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4871] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
A General Protocol for C−H Difluoromethylation of Carbon Acids with TMSCF
2
Br. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Liu J, Yang J, Ferretti F, Jackstell R, Beller M. Pd‐Catalyzed Selective Carbonylation of
gem
‐Difluoroalkenes: A Practical Synthesis of Difluoromethylated Esters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiawang Liu
- Leibniz-Institut für Katalyse an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ji Yang
- Leibniz-Institut für Katalyse an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Francesco Ferretti
- Leibniz-Institut für Katalyse an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Current address: Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
30
|
Liu J, Yang J, Ferretti F, Jackstell R, Beller M. Pd-Catalyzed Selective Carbonylation of gem-Difluoroalkenes: A Practical Synthesis of Difluoromethylated Esters. Angew Chem Int Ed Engl 2019; 58:4690-4694. [PMID: 30779270 DOI: 10.1002/anie.201813801] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/30/2019] [Indexed: 12/23/2022]
Abstract
The first catalyst for the alkoxycarbonylation of gem-difluoroalkenes is described. This novel catalytic transformation proceeds in the presence of Pd(acac)2 /1,2-bis((di-tert-butylphosphan-yl)methyl)benzene (btbpx) (L4) and allows for an efficient and straightforward access to a range of difluoromethylated esters in high yields and regioselectivities. The synthetic utility of the protocol is showcased in the practical synthesis of a Cyclandelate analogue using this methodology as the key step.
Collapse
Affiliation(s)
- Jiawang Liu
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Ji Yang
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Francesco Ferretti
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Current address: Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
31
|
Zhu J, Zheng H, Xue XS, Xiao Y, Liu Y, Shen Q. Carbon-Selective Difluoromethylation of Soft Carbon Nucleophiles with Difluoromethylated Sulfonium Ylide. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiansheng Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| | - Hanliang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineer, Nankai University; Tianjin 300071 China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineer, Nankai University; Tianjin 300071 China
| | - Yisa Xiao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| | - Yafei Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| |
Collapse
|
32
|
Reddy MK, Ramakrishna I, Baidya M. Divergent Reactivity of gem-Difluoro-enolates toward Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of α-Ketoamides. Org Lett 2018; 20:4610-4613. [PMID: 30033729 DOI: 10.1021/acs.orglett.8b01900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An amination reaction of in situ generated gem-difluoro-enolates has been explored with electrophilic nitrogen sources. While their exposure to azodicarboxylates smoothly produced fluorinated α-amino ketones, reaction with nitrosoarenes (nitroso aldol reaction) furnished α-ketoamides in very high yields (up to 94%). The reaction is very fast (typically completed within 5 min) and scalable and tolerates various sensitive functional groups. Synthetic utility of this process was highlighted through the production of diverse nitrogen heterocycles and an orexin receptor antagonist.
Collapse
Affiliation(s)
- Mallu Kesava Reddy
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , Tamil Nadu , India
| | - Isai Ramakrishna
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , Tamil Nadu , India
| | - Mahiuddin Baidya
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , Tamil Nadu , India
| |
Collapse
|
33
|
Geri JB, Wade Wolfe MM, Szymczak NK. The Difluoromethyl Group as a Masked Nucleophile: A Lewis Acid/Base Approach. J Am Chem Soc 2018; 140:9404-9408. [DOI: 10.1021/jacs.8b06093] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jacob B. Geri
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Michael M. Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Supranovich VI, Levin VV, Struchkova MI, Hu J, Dilman AD. Visible light-mediated difluoroalkylation of electron-deficient alkenes. Beilstein J Org Chem 2018; 14:1637-1641. [PMID: 30013689 PMCID: PMC6036985 DOI: 10.3762/bjoc.14.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
A method for the reductive difluoroalkylation of electron-deficient alkenes using 1,1-difluorinated iodides mediated by irradiation with blue light is described. The reaction involves radical addition of 1,1-difluorinated radicals at the double bond followed by hydrogen atom transfer from sodium cyanoborohydride.
Collapse
Affiliation(s)
- Vyacheslav I Supranovich
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Marina I Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
35
|
Panferova LI, Struchkova MI, Dilman AD. Light-Promoted Allylation of Iododifluoromethylated Alcohols. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liubov I. Panferova
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
36
|
Dilman AD, Levin VV. Difluorocarbene as a Building Block for Consecutive Bond-Forming Reactions. Acc Chem Res 2018; 51:1272-1280. [PMID: 29664601 DOI: 10.1021/acs.accounts.8b00079] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compounds containing a difluoromethylene unit have gained increasing attention due to their utility in drug design. Classic methods for the synthesis of these compounds rely on either harsh deoxofluorination reactions or laborious functional group manipulation sequences. In 2013, we proposed a method for assembling gem-difluorinated molecules from a difluorocarbene, a nucleophile, and an electrophile. In this process, a difluorocarbene can be considered an equivalent of a bipolar CF2 unit. Performing consecutive bond-forming reactions by sequential attachment of a nucleophile and an electrophile to a difluorocarbene provides the opportunity for the synthesis of a wide variety of organofluorine compounds. Silicon reagents were the most effective sources of the difluoromethylene fragment, and among them (bromodifluoromethyl)trimethylsilane (Me3SiCF2Br) is the reagent of choice. Mildly basic activators such HMPA, DMPU, bromide and acetate ions can initiate the decomposition of the silane with concomitant generation of a difluorocarbene. Organozinc reagents can be employed as nucleophiles, and the CF2 fragment can insert into the carbon-zinc bond. Primary and secondary benzyl and alkyl organozinc compounds work well. Generally, organozinc reagents tolerate a variety of functional groups. The resulting fluorinated organozinc species can be coupled with heteroatom- or carbon-centered electrophiles. Halogenation of the carbon-zinc bond leads to compounds with bromo- or iododifluoromethyl fragments, which are difficult to access by other means, whereas protonation of that bond generates a valuable difluoromethyl group. Despite the decrease in the reactivity of the carbon-zinc bond caused by the adjacent fluorines, organozinc compounds can effectively participate in copper-catalyzed cross-couplings with allylic and propargyl halides, 1-bromoalkynes, and S-acyl dithiocarbamates. Difluorocarbene can be inserted into the carbon-silicon bond of trimethylsilyl cyanide, and the resulting silane can react with aldehydes and imines to furnish difluorinated nitriles. Interactions of difluorocarbene with heteroatom nucleophiles, such as phosphines or halide ions, are reversible, but the adduct can be trapped by an electrophile. The use of halide ions allows the direct nucleophilic bromo- and iododifluoromethylation of aldehydes and iminium ions. The combination of triphenylphosphine with difluorocarbene generates a difluorinated phosphorus ylide, which can interact with a wide range of π-electrophiles (aldehydes, ketones, acyl chlorides, azomethines, and Michael acceptors) to provide gem-difluorinated phosphonium salts. In the latter species, the carbon-phosphorus bond can be readily cleaved under basic conditions, affording the difluoromethylation products. Primary products resulting from three-component couplings can subsequently be used for further transformations. Single-electron reduction of carbon-phosphorus or carbon-iodine bonds can be conducted under photocatalytic conditions to generate gem-difluorinated radicals. These radicals can be trapped by silyl enol ethers leading to β,β-difluorinated ketones as the primary products. Fluorinated radicals can also undergo intramolecular attacks adjacent to an aromatic ring or a double bond.
Collapse
Affiliation(s)
- Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
37
|
Recent advances in carbon-difluoroalkylation and -difluoroolefination with difluorocarbene. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Supranovich VI, Levin VV, Struchkova MI, Dilman AD. Photocatalytic Reductive Fluoroalkylation of Nitrones. Org Lett 2018; 20:840-843. [DOI: 10.1021/acs.orglett.7b03987] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vyacheslav I. Supranovich
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
39
|
Ashirbaev SS, Levin VV, Struchkova MI, Dilman AD. Copper-Catalyzed Coupling of Acyl Chlorides with gem-Difluorinated Organozinc Reagents via Acyl Dithiocarbamates. J Org Chem 2017; 83:478-483. [PMID: 29178788 DOI: 10.1021/acs.joc.7b02598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A cross-coupling of acyl chlorides with gem-difluorinated organozinc reagents affording difluorinated ketones is described. In the reaction, acyl chlorides are first treated with potassium dithiocarbamate to generate S-acyl dithiocarbamates, which couple with organozincs in the presence of a copper(I) catalyst.
Collapse
Affiliation(s)
- Salavat S Ashirbaev
- N. D. Zelinsky Institute of Organic Chemistry , 119991 Moscow, Leninsky prosp. 47, Russian Federation.,Department of Chemistry, Moscow State University , 119991 Moscow, Leninskie Gory 1-3, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry , 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Marina I Struchkova
- N. D. Zelinsky Institute of Organic Chemistry , 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry , 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
40
|
Luo JJ, Zhang M, Lin JH, Xiao JC. Difluorocarbene for Dehydroxytrifluoromethylthiolation of Alcohols. J Org Chem 2017; 82:11206-11211. [DOI: 10.1021/acs.joc.7b01701] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia-Jia Luo
- Key Laboratory of Organofluorine
Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Zhang
- Key Laboratory of Organofluorine
Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine
Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine
Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
41
|
Affiliation(s)
- Damian E. Yerien
- Departamento de Química Orgánica; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 954, CP 1113 Buenos Aires Argentina
| | - Sebastian Barata-Vallejo
- Departamento de Química Orgánica; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 954, CP 1113 Buenos Aires Argentina
| | - Al Postigo
- Departamento de Química Orgánica; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 954, CP 1113 Buenos Aires Argentina
| |
Collapse
|
42
|
Chernov GN, Levin VV, Kokorekin VA, Struchkova MI, Dilman AD. Interaction of gem
-Difluorinated Iodides with Silyl Enol Ethers Mediated by Photoredox Catalysis. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700423] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Grigory N. Chernov
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
- Moscow State University; Department of Chemistry; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
- I. M. Sechenov First Moscow State Medical University; 119991 Moscow Trubetskaya st. 8-2 Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
43
|
Efficient nucleophilic difluoromethylation of aldehydes with (phenylsulfonyl)difluoromethylzinc and (phenylsulfonyl)difluoromethylcadmium reagents. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Supranovich VI, Levin VV, Struchkova MI, Korlyukov AA, Dilman AD. Radical Silyldifluoromethylation of Electron-Deficient Alkenes. Org Lett 2017; 19:3215-3218. [DOI: 10.1021/acs.orglett.7b01334] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vyacheslav I. Supranovich
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilov str. 28, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
45
|
|
46
|
Levin VV, Struchkova MI, Dilman AD. Coupling of N -acyliminium chlorides with gem -difluorinated organozinc reagents. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Affiliation(s)
- Jian Rong
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| |
Collapse
|
48
|
Das R, Kapur M. Palladium-Catalyzed, ortho-Selective C-H Halogenation of Benzyl Nitriles, Aryl Weinreb Amides, and Anilides. J Org Chem 2017; 82:1114-1126. [PMID: 28029050 DOI: 10.1021/acs.joc.6b02731] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed, ortho-selective C-H halogenation methodology is reported herein. The highlight of the work is the highly selective C(sp2)-H functionalization of benzyl nitriles in the presence of activated C(sp3)-H bond, which results in good yields of the halogenated products with excellent regioselectivity. Along with benzyl nitriles, aryl Weinreb amides and anilides have been evaluated for the transformation using aprotic conditions. Mechanistic studies yield interesting aspects with respect to the pathway of the reaction and the directing group abilities.
Collapse
Affiliation(s)
- Riki Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) , Bhopal, Madhya Pradesh 462 066, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) , Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
49
|
Ashirbaev SS, Levin VV, Struchkova MI, Dilman AD. Coupling of gem -difluorinated organozinc reagents with S-electrophiles. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Fedorov OV, Struchkova MI, Dilman AD. Silicon Reagent with Functionalized Tetrafluoroethylene Fragments: Preparation and Coupling with Aldehydes. J Org Chem 2016; 81:9455-9460. [DOI: 10.1021/acs.joc.6b01739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oleg V. Fedorov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russia
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russia
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russia
| |
Collapse
|